

GTR Pressure Cycling Discussion GTR Meeting – 5th Informal Working Group

March 4th, 2019

Issue with GTR Pressure Cycle Test Procedure

- How do we prevent a validated tank design from failing an accelerated test procedure?
- Test Report: Hydrogen Container Performance Testing, UN GTR No. 13 Prepared For US Department of Transportation, National Highway Traffic Safety Administration.
- 3 Tank manufacturers provided tanks: 2 type IV and 1 type III.
- Quantum provided a 76L type IV (Manufacturer #2) which had an early leak in the baseline initial pressure cycle life and the ambient temperature pressure cycle tests.
- The issue is with the fast depressurization rates during the testing which cause strainrate issues in the liner which are not representative of how the product is used in service.

Pressure Cycle Profile

- The depressurization slope represents a rate of 2,500 psi/sec.
- The overall cycle rate of 2 cycles per minute used is not a concern, as long as the fluid temperature in the tank is controlled.

Pressure Cycle Profile

- One hour cycle (3 minute fast fill and 57 minute discharge) vs 5 hour cycle vs tested cycle
- Profile used during actual testing
- Recommended profile to minimize the effect of pressurization
 - Quantum controls the pressurization with a variable flow valve

Temperature Monitoring and Control

- The temperature of the fluid should be measured inside every tank common to the fluid port.
- The fluid inside the tank can see temperatures higher than the fluid measured before entering the tank
- The skin temperature will always be lower than the fluid in the tank being heated by the heat of compression.
- Quantum has seen in external lab testing where the temperature was so high that caused the water to boil.
- In this arrangement, due to tank #2 having over twice the volume of tanks #1 and #3, the tank would show increased effects of heat up due to fluid flow. Since tank #2 was not instrumented, the temperature inside the tank would be unknown.

The 76L tank was validated prior to this comparison test

QUANTUM

- 70MPa H2 tank designed for an OEM and tested to:
 - Ambient Temperature Pressure Cycle Test performed on 2 tanks from 2 to 88 MPa and stopped at 100,000 cycles each
 - Hydrogen Gas Cycle Test (1,000 cycles)
 - All EC-79 tests completed on this tank design
 - High risk segments of GTR testing were also performed during the development of this tank including:
 - SAE J2579 Durability (Hydraulic) Performance Test, which includes drop, surface damage, chemical exposure, high temp static pressure, extreme temp, and burst
 - High Temperature Permeation (+50°C) = 4.68 cc/hr/L with X-HDPE Rotomolded Liner

Quantum Request to the GTR Committee

- How do we prescribe a test protocol to not fail a validated tank in accelerated testing?
- Quantum is requesting a modification to the wording in the GTR standard to refine the pressure profile and temperature controlling requirements:
 - Provide more uniform up/down ramp rates.
 - The temperature inside the tank is measured and controlled so that the tank does not see an over temperature condition.

