
March 22, 2022 

The Honorable Steven Cliff 
Deputy Administrator 
National Highway Traffic Safety Administration 
1200 New Jersey Avenue, SE 
Washington, DC 20590 

Petition for Rulemaking 

Dear Deputy Administrator Cliff: 

The Insurance Institute for Highway Safety (IIHS) and the Highway Loss Data Institute (HLDI) hereby petition the 
National Highway Traffic Safety Administration (NHTSA) to require through rulemaking that passenger vehicles be 
equipped with automatic emergency braking that responds to pedestrians in all light conditions. Research from IIHS 
estimates that pedestrian automatic emergency braking (PAEB) reduces pedestrian crash risk by an estimated 
32%–33% in daylight or with street lighting but does not reduce pedestrian crash risk in the dark without street 
lighting. Over a third of pedestrian deaths occur in dark, unlighted conditions; thus, requiring PAEB that functions in 
those conditions will lead to a greater reduction in fatalities than only requiring PAEB that functions in daylight. 

The Department of Transportation has announced dual initiatives this year to increase the availability of PAEB. The 
National Roadway Safety Strategy states that NHTSA will initiate rulemaking by 2024 to require PAEB on new 
passenger vehicles (United States Department of Transportation, 2022). Additionally, as required by Section 
24213(b) of the Infrastructure Investment and Jobs Act, NHTSA (2022) has issued a proposal to add PAEB to the 
New Car Assessment Program (NCAP) and has published draft test criteria for it. 

PAEB is effective in the real world 

IIHS and HLDI support NHTSA’s plan to mandate PAEB on passenger vehicles. Evidence suggests that PAEB is 
effective at preventing pedestrian crashes. To investigate the effects of PAEB on pedestrian injury risk, HLDI 
compared pedestrian-related bodily injury liability claim frequency for Subaru vehicles equipped with optional PAEB 
and the same models without the technology (Wakeman et al., 2019). Insurance claims filed under bodily injury 
liability coverage, which covers injury to third parties, without associated first- or third-party damage claims were 
used as a surrogate measure for pedestrian injury crashes. We found that PAEB was associated with a statistically 
significant 35% reduction in the frequency of pedestrian-related claims. Leslie et al. (2021) and Spicer et al. (2021) 
similarly reported that PAEB reduced single-vehicle pedestrian crash risk when comparing equipped and 
unequipped GM and Toyota vehicles by 14% and 16%, respectively, although these effects were not statistically 
significant. 

A study from IIHS investigated the real-world effects of PAEB on pedestrian crash risk and included vehicles from 
multiple automakers (Cicchino, 2022). Like the other PAEB research, our study focused on passenger vehicle 
models with optional PAEB, so that police-reported pedestrian crash risk could be compared for identical vehicles 
with and without the technology. One analysis approach examined the effects of PAEB on pedestrian crash rates 
per insured vehicle year, controlling for driver age and gender, state where the crash occurred, calendar year, and 
the visibility component of IIHS headlight ratings. A second approach used the quasi-induced exposure method to 
compare the ratio of involvement in a pedestrian crash with a crash type not sensitive to PAEB (rear-end struck 
crash involvements). This set of analyses accounted for the same covariates as the initial approach plus light 
condition, speed limit, and vehicle maneuver (turning vs. other maneuvers). Results from both analysis approaches 
converged and indicated that PAEB is associated with statistically significant reductions in pedestrian crash risk of 
all severities of 25%–27% and in pedestrian injury crash risk of 29%–30%. 
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PAEB mandate should require good performance in the dark 

NHTSA’s (2022) proposed procedure for evaluating PAEB in the upgrade to NCAP includes test conditions run in 
the dark. While IIHS and HLDI support adding nighttime testing to NCAP, we believe good performance in the dark 
should be mandated and not merely recommended through NCAP. 

Pedestrian fatalities are a growing concern. According to the Fatality Analysis Reporting System (FARS), 
pedestrian deaths rose by 59% from 2009 to 2020, reaching 6,516 fatalities in 2020 and making up 17% of all crash 
deaths that year. NHTSA estimated that PAEB could potentially prevent up to 77% of fatal pedestrian crashes in 
two common crash scenarios during daylight or other lighted conditions (Yanagisawa et al., 2017). Yet a substantial 
proportion of pedestrian fatalities occur in the dark, when fatality risk is elevated. About 36% of fatal pedestrian 
crashes occurred under dark and unlighted conditions in 2020, compared with 14% of pedestrian crashes of all 
severities. 

The IIHS study described above showed that today’s systems generally don’t perform well in the dark (Cicchino, 
2022). While PAEB was associated with a 32% reduction in pedestrian crash risk in daylight and a 33% reduction in 
dark conditions with some lighting (e.g., lighted by streetlights or at dawn or dusk), there were no benefits from the 
technology in dark conditions without lighting. Effects of PAEB on crashes in which a pedestrian was seriously or 
fatally injured were inconsistent, with nonsignificant reductions in serious or fatal pedestrian crash risk of 3% and 
21% reported using the two analysis methods. Benefits associated with PAEB in serious and fatal injury crashes 
were more robust when crashes that occurred in dark and unlighted conditions were removed from the analyses, 
resulting in more consistent reductions of 30%–33% (see Table 1). 

Table 1 
Effects of PAEB on pedestrian fatal and serious injury crash involvement risk 

(95% confidence interval) 

Analysis method All light conditions 

Lighted conditions 
(daylight, dawn, dusk, 
dark and lighted) 

Crash involvement rate per insured vehicle year −21% (−43%, 9%) −33% (−55%, 0%)
Quasi-induced exposure −3% (-−40%, 56%) −30% (−60%, 23%)

This finding suggests that PAEB could have a larger impact on serious and fatal pedestrian injuries if it performed 
as well in the dark as it does in lighted conditions. A larger proportion of fatal pedestrian crashes than serious injury 
pedestrian crashes occurs in dark, unlighted conditions (36% of fatal crashes vs. 17% of serious injury crashes in 
2020). This suggests that PAEB that performs well in the dark would go even further to reduce fatal crashes than to 
reduce the mix of serious injury and fatal crashes we examined. 

IIHS further investigated nighttime PAEB performance with a series of tests conducted in the dark that are 
described in a recent press release (IIHS, 2022a) and summarized in Figure 1. Nine vehicles were run through the 
Institute’s current daytime PAEB testing protocol (IIHS, 2022b) on a covered track in the dark with no overhead 
lighting. The three test scenarios included an adult crossing with an unobstructed view, a child crossing from behind 
parked cars, and an adult standing in the roadway facing away from traffic, simulating a pedestrian walking in a 
parallel path away from the vehicle. Crossing tests were run at 20 km/h and 40 km/h and the parallel scenario was 
run at 40 km/h and 60 km/h. Tests were conducted with high beams and low beams turned on. Test vehicles had a 
range of IIHS headlight ratings and PAEB sensing technologies (camera, radar, combined). 
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Performance degraded for most vehicles in the dark relative to daylight performance, particularly when using low 
beams. However, the systems resulted in a wide range of speed reductions across vehicles in the nighttime test 
scenarios. The 2021 Toyota C-HR had significant speed reductions when tested at night, indicating that acceptable 
performance in the dark is possible using current technology. NHTSA (2022) reports similarly varied results in their 
own nighttime PAEB testing. 

Figure 1 
Average speed reductions in PAEB tests by light condition across multiple runs in each of three test 

scenarios performed at two speeds 

Conclusion 

In summary, IIHS and HLDI support NHTSA’s intention to mandate PAEB on passenger vehicles. Our research 
indicates that PAEB is reducing pedestrian crashes. However, IIHS research also suggests that while PAEB is 
reducing pedestrian crashes during lighted conditions, requiring PAEB that functions well under dark conditions 
would boost system effectiveness, especially in reducing pedestrian fatalities. IIHS and NHTSA testing demonstrate 
that good PAEB performance in the dark is possible. We urge NHTSA to follow through with mandating PAEB and 
to include a requirement for good nighttime performance in this rulemaking. 

Sincerely, 

Jessica B. Cicchino Matthew J. Moore 
Vice President, Research, IIHS Senior Vice President, HLDI 
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Cicchino, J. B. (2022). Effects of automatic emergency braking systems on pedestrian crash risk. Insurance 
Institute for Highway Safety. 
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ABSTRACT 

Objective: Automatic emergency braking (AEB) that detects pedestrians has great potential to 

reduce pedestrian crashes. The objective of this study was to examine its effects on real-world police-

reported crashes. 

Methods: Two methods were used to assess the effects of pedestrian-detecting AEB on 

pedestrian crash risk. Vehicles with and without the system were examined on models where it was an 

optional feature. Poisson regression was used to estimate the effects of AEB on pedestrian crash rates per 

insured vehicle year, and quasi-induced exposure using logistic regression compared involvement in 

pedestrian crashes to a system-irrelevant crash type. 

Results: AEB with pedestrian detection was associated with significant reductions of 25%–27% 

in pedestrian crash risk and 29%–30% in pedestrian injury crash risk. However, there was not evidence 

that that the system was effective in dark conditions without street lighting, at speed limits of 50 mph or 

greater, or while the AEB-equipped vehicle was turning. 

Conclusions: Pedestrian-detecting AEB is reducing pedestrian crashes, but its effectiveness 

could be even greater. For the system to make meaningful reductions in pedestrian fatalities, it is crucial 

for it to work well in dark and high-speed conditions. Other proven interventions to reduce pedestrian 

crashes under challenging circumstances, such as improved headlights and roadway-based 

countermeasures, should continue to be implemented in conjunction with use of AEB to prevent 

pedestrian crashes most effectively. 

Keywords: pedestrian detection system; pedestrian AEB; pedestrian crash prevention; advanced 

driver assistance system; light condition; speed limit 
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1. INTRODUCTION 

Pedestrian deaths have risen alarmingly in the United States over the past decade. The 51% rise in 

pedestrian fatalities since 2009 resulted in 6,205 pedestrians losing their lives in 2019, making up 17% of 

all traffic fatalities. In that same year, approximately 76,000 additional pedestrians sustained nonfatal 

injuries in crashes with motor vehicles (Insurance Institute for Highway Safety [IIHS], 2021). Efforts to 

make travel safe have increasingly focused on preventing pedestrian crashes, injuries, and fatalities. 

Pedestrian detection systems, which typically warn a driver when they are at risk of striking a 

pedestrian in front of their vehicle and apply the brakes if the driver does not respond, are a promising 

vehicle-based countermeasure for reducing pedestrian crashes. Some studies have predicted the potential 

of these systems by examining the proportion of pedestrian crashes that systems could possibly mitigate. 

Haus et al. (2019), for example, estimated automatic emergency braking (AEB) that detects pedestrians 

could potentially reduce U.S. pedestrian fatality risk by 84%–87% and serious injury risk by 83%–87% 

when optimally designed. Others have estimated a range of potential effects depending on assumptions 

regarding system specifications and crash scenarios addressed (Edwards et al., 2014; Hamdane et al., 

2015; Jermakian & Zuby, 2011; Rosén et al., 2010; Yanagisawa et al., 2017). 

Evaluations of the real-world effects of pedestrian detection systems are beginning to suggest 

they are delivering on this potential and reducing crashes. However, thus far studies have been limited to 

individual automakers and have not always reported robust effects. Wakeman et al. (2019) investigated 

the effects of Subaru’s AEB system with pedestrian detection on rates of crashes where an insurance 

claim was filed to cover injury to a third party but no accompanying third-party vehicle damage claim 

was filed, which often signifies a pedestrian crash. Subaru’s system was associated with a significant 35% 

reduction in U.S. pedestrian-related claim rates. Isaksson-Hellman and Lindman (2019) reported that car-

to-pedestrian insurance claim rates were 21% lower among Volvos with AEB that detects pedestrians 

than those without in Sweden, but the number of crashes included was small and confidence intervals 

were wide. American studies of Toyota (Spicer, Vahabaghaie, Murakhovsky, Bahouth, et al., 2021) and 
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General Motors (Leslie et al., 2021) vehicles also found that pedestrian crash prevention systems were 

associated with reductions in pedestrian crash risk, although effects were not statistically significant. 

For pedestrian detection systems to successfully prevent pedestrian fatalities, they need to work 

under the conditions where deaths commonly occur. Low light and high speed are key risk factors in 

pedestrian deaths (Kim et al., 2010; Sullivan & Flannagan, 2002; Tefft, 2013). Less than half of all U.S. 

pedestrian crashes in 2019 occurred in the dark, but more than three quarters of pedestrian fatalities were 

under dark conditions with 35% of deaths occurring in the dark without overhead street lighting. 

Similarly, 22% of all pedestrian crashes in 2019 with known speed limits occurred on roads with speed 

limits of 40–45 mph and 10% at 50 mph or greater, but over 60% of deaths were at speed limits of 40 

mph or greater (IIHS, 2021). These conditions also represent where the largest increases in fatalities have 

occurred since reaching their low point in 2009. Hu and Cicchino (2018) reported that from 2009 to 2016, 

pedestrian fatalities increased by 20% in daylight and by 56% in the dark, and increases were also larger 

on higher speed arterial roads (67%) and on interstates and freeways (49%) than on lower-speed 

collectors and local roads (9%). Yet, tests of pedestrian AEB systems have demonstrated that they can 

struggle to perform well in the dark (American Automobile Association [AAA], 2019; IIHS, 2022), and 

owner manuals often note that systems are not designed to activate at higher speeds. Testing has also 

shown difficulty with other common but less deadly pedestrian crash scenarios, such as when a vehicle is 

turning (AAA, 2019). 

The goal of this study was to examine the effects of AEB systems with pedestrian detection on 

pedestrian crashes while including a larger range of vehicle models than previous work. A second 

objective was to investigate pedestrian AEB crash effects by light condition, speed limit, and the driver’s 

maneuver prior to the crash (turning vs. not), to assess real-world performance under conditions that 

systems have struggled with in testing or that are strongly associated with fatality risk. These estimates 

could be used to establish the effects of current implementations of pedestrian-detecting AEB more 

robustly and also identify opportunities for improvement. 
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2. METHODS 

The effects of AEB with pedestrian detection on pedestrian crashes were investigated using two 

methodologies. Effects on pedestrian crash rates per insured vehicle year were examined using Poisson 

regression while controlling for driver and vehicle risk factors. Quasi-induced exposure, where 

involvement in system-relevant crashes is compared with involvement in crashes unaffected by the 

system of interest as an exposure measure, is another method that has been used to study the effects of 

crash avoidance systems (e.g., Fildes et al., 2015; Keall et al., 2017; Leslie et al., 2021). While previous 

analyses of crash avoidance system effects from IIHS have examined rates of relevant crashes per insured 

vehicle year (e.g., Cicchino, 2017), the quasi-induced exposure method was introduced in the current 

study because it could better account for exposure to characteristics important to pedestrian crashes (light 

condition, speed limit, vehicle maneuver prior to the crash) that cannot be derived when using insured 

vehicle years as a measure of exposure. Quasi-induced exposure was used to evaluate the effects of AEB 

with pedestrian detection while accounting for driver, vehicle, and environmental risk factors, as well as 

to examine effects by crash characteristics. Additional analyses examined the effects of AEB on 

pedestrian injury severity among crashes that occur. 

2.1 Vehicle feature data 

The Highway Loss Data Institute (HLDI) collected data on the presence of AEB with pedestrian 

detection by make, series, model year, and trim for model year 2017–2020 vehicles. Study vehicles 

included series where AEB was an optional feature, its presence or absence could be determined by trim, 

and trim was discernable by the Vehicle Information Number (VIN). Additional vehicle feature data came 

from Nissan, who provided information on the presence of pedestrian crash prevention linked to unique 

VINs on the model year 2017–2018 Rogue. The population of study vehicles consisted of 79 

make/series/model year combinations from Acura, Buick, Cadillac, Chevrolet, GMC, Honda, Hyundai, 

Kia, Mazda, Mitsubishi, Nissan, and Subaru (Table A1, Appendix). 
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IIHS headlight ratings were used as a covariate in the analyses. Headlights are rated good, 

acceptable, marginal, or poor based on measurements of the visibility illuminance of high and low beams 

on a straightaway and four curved approaches, with penalties for excessive glare. Vehicles can receive 

extra credit if they have high beam assist, which automatically switches between high and low beams in 

the dark based on the presence of other vehicles, if the high beams provide more visibility than the low 

beams on one or more approach. Because excess glare would not be thought to increase pedestrian crash 

risk, headlight ratings were adjusted to include only the visibility and high beam assist components and 

exclude the glare component. Brumbelow (2021) demonstrated that these components of the IIHS 

headlight ratings are associated with a reduction in nighttime pedestrian crash rates. Headlight ratings 

were linked to vehicles by make, series, model year, and trim. If more than one headlight type was 

available on a trim, the worst rating was used. 

2.2 Crash data 

Police-reported crash databases were obtained from 18 states during 2017–2020 that included full 

or partial VINs so that study vehicles could be identified. The involvement of pedestrians, maximum 

injury severity to a pedestrian in the crash, driver age, driver gender, light condition, speed limit, vehicle 

maneuver prior to the crash, and vehicle point of impact were derived from the state data sets and coded 

into a common format. Pedestrian crash involvements where the vehicle was backing were excluded from 

analyses. Variables for speed limit, vehicle maneuver, or point of impact were unavailable in six states for 

all or some years (Table 1), and data from state/year combinations without these variables were excluded 

in analyses where the variables were used. 
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Table 1. Police-reported crash data availability with variables for speed limit,  
vehicle maneuver, and vehicle point of impact by state and year 

State and years 
available Speed limit 

Vehicle maneuver 
(turning) 

Vehicle point of 
impact 

CT 2017–2020  x x 
FL 2017–2019 x x x 
GA 2017–2020 x x x 
IL 2017–2020  x x 
LA 2017–2019 x x x 
MD 2017–2020 x x x 
MI 2017–2020 x x x 
MN 2017–2019 x x x 
MO 2017–2019 x x x 
NC 2017–2019 x x x 
NY 2017–2019  x  
OH 2017–2020 x x x 
PA 2017–2020 x x x 
TN 2017–2019 x x x 
TX 2017–2020 x  x 
UT 2017–2020 2017–2019 only x 2018 only 
WA 2017–2019 x x  
WI 2018–2019 x x x 

 

2.3 Insured driver data 

HLDI provided data on the number of days vehicles were insured. Crash rates using these data 

are expressed as crashes per insured vehicle year, where one insured vehicle year is the equivalent to two 

vehicles insured for six months each or a single vehicle insured for one year, etc. Insured driver data 

included the state, age, and gender of the rated driver on the insurance policy and were matched to the 

crash data by vehicle, state, calendar year, driver age group, and driver gender. 

2.4 Analyses 

Poisson regression was used to evaluate the effects of AEB with pedestrian detection on 

pedestrian crash rates per insured vehicle year, with the log of insured vehicle years included as an offset 

term. Separate models were constructed for all pedestrian crashes, crashes where a pedestrian was injured, 

and crashes where a pedestrian sustained a serious or fatal injury (K or A on the KABCO scale). Models 

included covariates for state, calendar year, driver age group (< 25, 25–64, 65+, unknown), driver gender 
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(male, female, unknown), and IIHS headlight visibility rating (good, acceptable, marginal, poor). An 

additional covariate coded for the combination of vehicle make/model/model year, to prevent 

confounding of AEB effects with other design differences between vehicles. Scale parameters were 

estimated within the Poisson models to account for potential overdispersion. 

Quasi-induced exposure analyses were performed with logistic regression. Crashes in which the 

target vehicle was struck in the rear in a rear-end crash were used as the nonsensitive crash type, and thus 

logistic regression analyses examined the effects of AEB with pedestrian detection on the odds that a 

crash involved a pedestrian as opposed to a rear-struck involvement. Three models were constructed for 

each level of pedestrian injury severity (all severities, any injury, serious/fatal injury). In addition to the 

covariates used in Poisson regression models, the quasi-induced exposure analyses introduced other 

covariates where exposure per insured vehicle year could not be calculated: light condition (daylight, dark 

and lighted/dawn/dusk, dark and not lighted), speed limit (≤ 25 mph, 30–35 mph, 40–45 mph, 50+ mph), 

and vehicle maneuver prior to the crash (turning vs. not turning). Dark and lighted conditions refer to 

those where there is no natural light, but the area is illuminated by artificial overhead light. Crashes with 

dark and not lighted conditions have no overhead lighting present where the crash occurred. These 

analyses were limited to states with variables for speed limit, vehicle maneuver, and vehicle point of 

impact (to identify rear-end struck involvements). 

Quasi-induced exposure was also used to investigate the effects of the system on pedestrian 

crashes by crash characteristics. Three separate logistic regression models were constructed to examine 

the effects of AEB by the crash characteristics of interest: light condition, speed limit, and vehicle 

maneuver. Each model included the same covariates as prior logistic regression models, plus interaction 

terms between the characteristic of interest and driver age, driver gender, state, calendar year, IIHS 

headlight rating, and the additional crash characteristic variables that were not the focus of the model 

among light condition, speed limit, and vehicle maneuver. 

Interactions with driver age and gender were included to account for demographic differences in 

travel patterns that can affect crash circumstances. Older drivers are more likely to restrict their driving at 
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night and on higher speed roads (Braitman & McCartt, 2008) and experience cognitive decline that results 

in over-involvement in turning crashes at intersections (Cicchino & McCartt, 2015), while younger and 

male drivers are more likely to crash at night (Massie et al., 1997; McCartt & Teoh, 2015). Because of 

differences in rurality and road type, the distribution of crashes by time of day, speed limit, and vehicle 

maneuver (due to density of intersections) vary by state. An interaction term with calendar year was 

included to control for the change in crash patterns seen in 2020 during the COVID-19 pandemic 

(Doucette et al., 2021; National Center for Statistics and Analysis, 2021). The interaction between the 

crash circumstance of interest and AEB was used to estimate the effects of AEB at each level of the 

characteristic and to compare differences in effects between levels. 

An additional logistic regression model examined the effects of AEB on injury severity by 

examining the odds that a pedestrian crash resulted in a serious or fatal pedestrian injury, controlling for 

state, calendar year, driver age group, driver gender, IIHS headlight visibility ratings, make/model/model 

year, light condition, speed limit, and vehicle maneuver. This model excluded states without variables for 

speed limit or vehicle maneuver, but since rear-end struck involvements were not included as an exposure 

measure, it did not exclude states that were missing point of impact. 

In all analyses, vehicle make/model/model year combinations involved in no pedestrian crashes 

of the severity examined were removed, as were vehicles involved in no crashes resulting in serious or 

fatal pedestrian injuries in models examining the odds of a serious/fatal injury in a pedestrian crash. 

Sparse levels of other covariates were combined in some analyses. Model parameters were exponentiated 

and interpreted as rate ratios (RRs) from Poisson regression models and odds ratios (ORs) from logistic 

regression models, and percent changes in these rates and odds associated with AEB were expressed by 

100(𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒) − 1), where x is the parameter estimate for AEB. 

  



11 

3. RESULTS

There were 1,483 pedestrian crashes, 1,381 pedestrian injury crashes, and 266 pedestrian serious 

injury or fatal crashes involving study vehicles across the 18 states. Pedestrian crash rates per insured 

vehicle year were lower among vehicles with AEB than those without at each severity level, and this 

pattern held for most vehicle makes (Table 2). 

Table 2. Pedestrian crash rates, injury crash rates, and serious or fatal crash rates per insured vehicle year 
by make and equipment with AEB with pedestrian detection 

Make System Pedestrian crashes 
Pedestrian injury 

crashes 
Pedestrian serious/fatal 

injury crashes 

Crashes 
Rate 

(x 100,000) Crashes 
Rate 

(x100,000) Crashes 
Rate 

(x 100,000) 
Acura AEB 1 10.5 1 10.5 0 0.0 

No AEB 7 25.7 7 25.7 2 7.3 
Buick AEB 0 0 0 0 0 0 

No AEB 1 37.0 1 37.0 0 0 
Cadillac AEB 25 41.0 23 37.8 3 4.9 

No AEB 11 26.6 11 26.6 2 4.8 
Chevrolet Truck AEB 1 15.6 1 15.6 1 15.6 

No AEB 1 16.9 1 16.9 0 0.0 
GMC Truck AEB 1 6.4 0 0.0 0 0.0 

No AEB 17 41.9 16 39.5 2 4.9 
Honda AEB 224 27.1 210 25.4 39 4.9 

No AEB 415 47.0 386 43.7 62 7.1 
Hyundai AEB 7 45.3 7 45.3 3 21.9 

No AEB 34 55.9 29 47.7 7 14.0 
Kia AEB 3 18.1 3 18.1 2 15.8 

No AEB 62 57.4 56 51.8 17 16.2 
Mazda AEB 1 10.0 0 0 0 0 

No AEB 3 41.1 3 43.9 0 0 
Mitsubishi AEB 1 109.1 1 109.1 0 0.0 

No AEB 5 99.3 5 99.3 1 21.5 
Nissan AEB 36 54.5 32 48.4 5 7.6 

No AEB 250 61.5 233 57.3 42 10.3 
Subaru AEB 154 17.9 140 16.2 28 3.3 

No AEB 223 25.2 215 24.3 50 5.8 
All  AEB 454 24.0 418 22.1 81 4.4 

No AEB 1,029 41.6 963 38.9 185 7.7 

Total 1,483 34.0 1,381 31.7 266 6.3 

Note: Because vehicle make/model/model year combinations were dropped from an analysis if they 
were involved in no pedestrian crashes of the severity examined, insured vehicle years vary slightly  
by injury severity. 
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Poisson regression model results for the effects of AEB with pedestrian detection on pedestrian 

crash rates per insured vehicle year are presented in Table 3. AEB was associated with reductions of 27% 

in pedestrian crash rates of all severities (RR, 0.73; 95% CI, 0.62–0.86, p = 0.0002), 30% in pedestrian 

injury crash rates (RR, 0.70; 95% CI, 0.60–0.83, p < 0.0001), and 21% in pedestrian serious/fatal injury 

crash rates (RR, 0.79; 95% CI, 0.57–1.09, p = 0.14); reductions were significant for pedestrian crashes of 

all severities and injury crashes. 

Table 3. Poisson regression model results of pedestrian crash rates per insured vehicle year, by severity 

Rate ratio (95% confidence interval) 

Parameter 

Pedestrian 
crashes 

(n = 1,483) 

Pedestrian injury 
crashes 

(n = 1,381) 

Pedestrian 
serious and fatal 
injury crashes 

(n = 266) 
AEB with pedestrian detection 0.73 (0.62, 0.86) 0.70 (0.60, 0.83) 0.79 (0.57, 1.09) 
Male driver (vs. female) 1.45 (1.28, 1.64) 1.46 (1.29, 1.65) 1.60 (1.25, 2.03) 
Unknown driver gender (vs. female) 0.81 (0.51, 1.31) 0.70 (0.43, 1.14) 0.60 (0.20, 1.85) 
Driver age < 25 (vs. 25–64) 2.04 (1.69, 2.47) 2.06 (1.70, 2.50) 2.12 (1.48, 3.05) 
Driver age 65+ (vs. 25–64) 0.83 (0.71, 0.99) 0.87 (0.74, 1.03) 0.85 (0.62, 1.18) 
Driver age unknown (vs. 25–64) 1.20 (0.76, 1.90) 1.24 (0.77, 2.00) 0.95 (0.31, 2.85) 
Good headlight visibility rating (vs. poor) 0.74 (0.43, 1.28) 0.80 (0.46, 1.38) 0.96 (0.36, 2.55) 
Acceptable headlight visibility rating (vs. poor) 0.78 (0.49, 1.26) 0.80 (0.50, 1.30) 0.69 (0.28, 1.72) 
Marginal headlight visibility rating (vs. poor) 0.88 (0.57, 1.34) 0.87 (0.56, 1.33) 1.22 (0.53, 2.80) 
2018 (vs. 2017) 0.91 (0.73, 1.13) 0.92 (0.75, 1.14) 1.04 (0.66, 1.66) 
2019 (vs. 2017) 0.90 (0.72, 1.11) 0.91 (0.73, 1.12) 1.12 (0.71, 1.76) 
2020 (vs. 2017) 0.66 (0.51, 0.87) 0.63 (0.48, 0.83) 0.88 (0.51, 1.51) 

Note: Effects for state and make/model/model year combination are not shown. 

Quasi-induced exposure analyses were limited to states with variables for speed limit, vehicle 

maneuver, and vehicle point of impact, so fewer pedestrian crashes were included. A total of 646 

pedestrian crashes of all severities, 577 pedestrian injury crashes, and 130 pedestrian serious/fatal injury 

crashes occurred in states meeting the inclusion criteria, and 32,050 study vehicles were involved in the 

nonsensitive crash type of rear-end struck. Table 4 presents the results of logistic regression models 

examining the effects of AEB on the odds that a crash involved a pedestrian in comparison to being rear-
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end struck. In these analyses, pedestrian crash prevention was associated with significant reductions of 

25% in the odds that a crash involved a pedestrian (OR, 0.75; 95% CI, 0.59–0.95, p = 0.02) and 29% in 

the odds that a crash involved an injured pedestrian (OR, 0.71; 95% CI, 0.55–0.91, p = 0.008). AEB was 

not associated with a change in the odds that a crash involved a seriously or fatally injured pedestrian 

(OR, 0.97; 95% CI, 0.60–1.56, p = 0.90). 

Table 4. Logistic regression model results of quasi-induced exposure analyses examining the odds a crash 
involved a pedestrian, by severity 

 Odds ratio (95% confidence interval) 

Parameter 
Pedestrian crashes 

(n = 646) 

Pedestrian injury 
crashes 

(n = 577) 

Pedestrian serious 
and fatal injury 

crashes 
(n = 130) 

AEB with pedestrian detection 0.75 (0.59, 0.95) 0.71 (0.55, 0.91) 0.97 (0.60, 1.56) 
Male driver (vs. female) 1.32 (1.11, 1.58) 1.26 (1.05, 1.52) 1.51 (1.04, 2.19) 
Unknown driver gender (vs. female) 1.54 (0.69, 3.44) 1.16 (0.46, 2.90) 2.61 (0.47, 14.59) 
Driver age < 25 (vs. 25–64) 1.19 (0.90, 1.58) 1.25 (0.93, 1.69) 1.25 (0.71, 2.19) 
Driver age 65+ (vs. 25–64) 1.70 (1.34, 2.14) 1.81 (1.42, 2.31) 1.68 (1.03, 2.75) 
Driver age unknown (vs. 25–64) 10.15 (4.52, 22.80) 10.19 (4.12, 25.17) 4.74 (0.76, 29.61) 
Good headlight visibility rating  

(vs. poor) 
0.77 (0.36, 1.67) 0.92 (0.41, 2.11) 1.52 (0.39, 5.93) 

Acceptable headlight visibility rating 
(vs. poor) 

0.72 (0.37, 1.40) 0.76 (0.38, 1.54) 0.74 (0.18, 3.00) 

Marginal headlight visibility rating 
(vs. poor) 

0.98 (0.54, 1.76) 0.96 (0.52, 1.78) 1.55 (0.44, 5.48) 

2018 (vs. 2017) 1.19 (0.86, 1.67) 1.15 (0.82, 1.62) 1.35 (0.63, 2.87) 
2019 (vs. 2017) 1.25 (0.90, 1.73) 1.19 (0.85, 1.67) 1.56 (0.74, 3.25) 
2020 (vs. 2017) 1.53 (1.05, 2.23) 1.36 (0.92, 2.02) 2.49 (1.09, 5.67) 
Dark-lighted/dawn/dusk (vs. daylight) 2.59 (2.13, 3.15) 2.60 (2.11, 3.19) 3.83 (2.56, 5.74) 
Dark-not lighted (vs. daylight) 6.44 (4.80, 8.65) 6.35 (4.64, 8.70) 11.42 (6.95, 18.76) 
Speed limit 30–35 mph (vs. ≤ 25) 0.24 (0.20, 0.30) 0.23 (0.19, 0.29) 0.40 (0.24, 0.68) 
Speed limit 40–45 mph (vs. ≤ 25) 0.10 (0.08, 0.13) 0.10 (0.08, 0.13) 0.22 (0.12, 0.38) 
Speed limit 50+ mph (vs. ≤ 25) 0.04 (0.03, 0.06) 0.04 (0.03, 0.06) 0.16 (0.09, 0.30) 
Turning (vs. not turning) 8.94 (7.26, 11.00) 9.30 (7.47, 11.58) 4.04 (2.39, 6.81) 

Note: Effects for state and make/model/model year combination are not shown. 
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Logistic regression was used to investigate the odds that a pedestrian crash that occurred involved 

a serious or fatal pedestrian injury (Table 5). Controlling for driver, vehicle, and environmental factors, 

AEB was not associated with a significant change in pedestrian injury severity (OR, 1.09; 95% CI, 0.59–

2.00, p = 0.79). 

Table 5. Logistic regression analysis of the odds that a pedestrian in a crash sustained a  
serious or fatal injury (n = 649 pedestrian crashes) 

Parameter 
Odds ratio  

(95% confidence interval) 
AEB with pedestrian detection 1.09 (0.59, 2.00) 
Male driver (vs. female) 0.93 (0.58, 1.50) 
Unknown driver gender (vs. female) 3.85 (0.40, 37.10) 
Driver age < 25 (vs. 25–64) 1.32 (0.63, 2.78) 
Driver age 65+ (vs. 25–64) 1.08 (0.58, 2.02) 
Driver age unknown (vs. 25–64) 0.23 (0.02, 2.23) 
Good headlight visibility rating (vs. poor) 1.75 (0.26, 11.57) 
Acceptable headlight visibility rating (vs. poor) 0.28 (0.04, 1.79) 
Marginal headlight visibility rating (vs. poor) 0.86 (0.17, 4.34) 
2018 (vs. 2017) 1.45 (0.60, 3.48) 
2019 (vs. 2017) 1.44 (0.61, 3.41) 
2020 (vs. 2017) 2.14 (0.77, 5.92) 
Dark-lighted/dawn/dusk (vs. daylight) 1.95 (1.17, 3.27) 
Dark-not lighted (vs. daylight) 2.23 (1.10, 4.52) 
Speed limit 30–35 mph (vs. ≤ 25) 1.58 (0.86, 2.87) 
Speed limit 40–45 mph (vs. ≤ 25) 2.31 (1.18, 4.52) 
Speed limit 50+ mph (vs. ≤ 25) 6.45 (2.74, 15.20) 
Turning (vs. not turning) 0.55 (0.31, 0.97) 

Note: Effects for state and make/model/model year combination are not shown. 

Of the 646 pedestrian crashes of all severities included in quasi-induced exposure analyses, 59% 

occurred during daylight, 4% during dawn or dusk, 26% during dark and lighted conditions, and 11% 

during dark and not lighted conditions; 34% were on roads with speed limits of 25 mph or lower, 37% 

with speed limits of 30–35 mph, 21% with speed limits of 40–45 mph, and 8% with speed limits of 50 

mph or higher; and the driver of the subject vehicle was turning in 30%. The vehicle was proceeding 

straight in most crashes where it was not turning (in 60% of the 646 pedestrian crashes), and in the 
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remaining crashes the vehicle was coded as making another maneuver (e.g., slowing, stopping, 

negotiating a curve) or the precrash maneuver was unknown. 

AEB with pedestrian detection was associated with different effects by crash characteristics 

(Figure 1). In pedestrian crashes occurring during daylight (OR, 0.68; 95% CI, 0.51–0.91, p = 0.01) or 

during dawn, dusk, or dark and lighted conditions (OR, 0.67; 95% CI, 0.44–1.01, p = 0.06), it was 

associated with reductions in the odds of a pedestrian crash of 32% and 33%, respectively, but there was 

no reduction during dark and not lighted conditions (OR, 1.32; 95% CI, 0.75–2.33, p = 0.33). The effect 

during dark and not lighted conditions was significantly different from effects during daylight (p = 0.03) 

and dawn, dusk, or dark and lighted conditions (p = 0.048). 

Figure 1. Effects of AEB with pedestrian detection on the odds a crash involved a pedestrian, by light 
condition, speed limit, and vehicle maneuver prior to the crash (n = 646 pedestrian crashes) 
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There was a 32% reduction in the odds that a crash was with a pedestrian associated with AEB at 

speed limits of 25 mph or less (OR, 0.68; 95% CI, 0.45–1.02, p = 0.06), a 34% reduction at speed limits 

of 30–35 mph (OR, 0.66; 95% CI, 0.46–0.95, p = 0.02), a 22% reduction at speed limits of 40–45 mph 

(OR, 0.78; 95% CI, 0.55–1.19, p = 0.25), and no reduction at speed limits of 50 mph or greater (OR, 1.32; 

95% CI, 0.70–2.50, p = 0.40), although effects at lower speed limits did not differ significantly from 50+ 

mph (25 mph or less vs. 50+ mph: p = 0.08, 30–35 vs. 50+ mph: p = 0.06, 40–45 vs. 50+ mph: p = 0.16). 

Finally, AEB was associated with a 34% reduction in the odds of a pedestrian crash when a vehicle was 

not turning prior to the crash (OR, 0.66; 95% CI, 0.51–0.87, p = 0.003), but no reduction when it was 

turning (OR, 1.10; 95% CI, 0.71–1.68, p = 0.67); these effects were significantly different from each 

other (p = 0.04). 

The analyses of the effects of pedestrian AEB on pedestrian crash rates and severity presented in 

Tables 3–5 were repeated excluding pedestrian crashes occurring in dark and not lighted conditions, at 

speed limits of 50 mph or greater, and where the subject vehicle was turning. Results are summarized in 

Table 6. In Poisson regression models, AEB with pedestrian detection was associated with significant 

reductions of 49% in rates of all pedestrian crashes (RR, 0.51; 95% CI, 0.38–0.68, p < 0.0001), 50% in 

rates of pedestrian injury crashes (RR, 0.50; 95% CI, 0.36–0.68, p < 0.0001), and 52% in rates of 

pedestrian serious or fatal injury crashes (RR, 0.48; 95% CI, 0.24–0.96, p = 0.04) per insured vehicle 

year. Quasi-induced exposure analyses revealed the odds of a pedestrian crash of any severity were 45% 

lower (OR, 0.55; 95% CI, 0.40–0.76, p = 0.0003), odds of a pedestrian injury crash were 47% lower (OR, 

0.53; 95% CI, 0.38–0.75, p = 0.0003), and odds of a serious or fatal pedestrian crash were 44% lower 

(OR, 0.56; 95% CI, 0.28–1.13, p = 0.11) among vehicles with AEB. The odds of a pedestrian crash that 

occurred resulting in serious or fatal pedestrian injuries were 40% lower among vehicles with AEB (OR, 

0.60; 95% CI, 0.22–1.65, p = 0.32), but this was not statistically significant. 
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Table 6 

Effects of AEB with pedestrian detection on pedestrian crash involvement rates per insured vehicle year 
(Poisson regression), the odds that a crash involved a pedestrian (logistic regression), and the odds of a 
pedestrian crash resulting in a serious or fatal pedestrian injury (logistic regression), limited to crashes 
without dark and unlighted conditions, at speed limits < 50 mph, and where the subject vehicle was not 
turning. 

Outcome and analysis Pedestrian crash severity 
Rate ratio  

(95% confidence interval) 
Pedestrian crash involvement rate per 
insured vehicle year  

(Poisson regression) 

All crashes (n = 391) 0.51 (0.38, 0.68) 
Injury crashes (n = 357) 0.50 (0.36, 0.68) 
Serious and fatal injury crashes (n = 74) 0.48 (0.24, 0.96) 

Outcome Crash severity 
Odds ratio  

(95% confidence interval) 
Odds a crash involved a pedestrian 

(quasi-induced exposure, logistic 
regression) 

All crashes (n = 361) 0.55 (0.40, 0.76) 
Injury crashes (n = 328) 0.53 (0.38, 0.75) 
Serious and fatal injury crashes (n = 73) 0.56 (0.28, 1.13) 

Odds of a pedestrian crash resulting in a 
serious or fatal pedestrian injury 

(logistic regression) (n = 351) 0.60 (0.22, 1.65) 
 

4. DISCUSSION 

AEB with pedestrian detection is preventing crashes. This study demonstrates that AEB is 

associated with reductions of 25%–27% in the risk of a pedestrian crash and 29%–30% in the risk of a 

pedestrian injury crash. If these estimates were applied to the approximately 82,000 that sustained 

nonfatal or fatal injuries in motor vehicle crashes in the United States in 2019, more than 23,000 could 

have been prevented if all vehicles had pedestrian-detecting AEB. But its effectiveness could be even 

greater. There is not evidence that the system is preventing pedestrian crashes under dark conditions 

without street lighting, at speed limits of 50 mph or greater, or when the equipped vehicle is turning. 

Effectiveness estimates increased in crashes without these challenging characteristics, with reductions of 

45%–49% in the risk of a pedestrian crash and 47%–50% in the risk of a pedestrian injury crash 

associated with the system. 
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Improving AEB to address high-speed and dark, unlighted conditions is especially important for 

addressing pedestrian deaths. Estimates of the potential of pedestrian detection have cautioned that its 

effectiveness in preventing fatalities would be hampered if it could not function in darkness and at high 

speeds (Jermakian & Zuby, 2011; Rosén, 2013). Consistent with those predictions, the quasi-induced 

exposure analysis in this study, which was better able to control for how driving exposure under difficult 

conditions may differ between vehicles with and without AEB, suggests that pedestrian detection is not 

having a meaningful effect on crashes resulting in serious or fatal pedestrian injuries. Because darkness 

and high speeds often co-occur in pedestrian crashes, both will need to be addressed for AEB to 

substantially reduce pedestrian fatalities. Rural roads, which tend to have higher speeds than urban roads 

(De Leonardis et al., 2018), are also more likely to lack street lighting (Lutkevich et al., 2012), and 

pedestrian crashes in the dark are more likely to occur on roads with higher speed limits (Sullivan & 

Flannagan, 2007). A total of 18% of U.S. pedestrian deaths in 2019 were in dark and not lighted 

conditions on roads with speed limits of 50 mph or greater, and nearly half (48%) occurred under either 

condition (IIHS, 2021). 

Fatal pedestrian crashes do not frequently involve turning vehicles, but this crash type is common 

when considering pedestrian crashes of all severities. Over a third of U.S. police-reported pedestrian 

crashes in 2019 involved a vehicle that was turning (IIHS, 2021). The lack of effectiveness of AEB with 

pedestrian detection in turning scenarios is similar to what has been reported for AEB addressing vehicle-

to-vehicle crashes. Cicchino and Zuby (2019) found that vehicles with AEB are more likely than vehicles 

without the system to be turning when they are the striking vehicle in a rear-end crash, suggesting that the 

system is not as effective at preventing rear-end crashes with turning configurations as other rear-end 

crash types, and Spicer, Vahabaghaie, Murakhovsky, Lawrence, et al. (2021) estimated that vehicle-to-

vehicle AEB is less effective at intersections. These systems may not be designed to activate under 

turning scenarios because it is difficult to judge if drivers are unable to avoid a crash while they are 

providing steering input. It is important to balance increased functionality with avoiding unnecessary 

activations, which could reduce trust in the systems and potentially lead drivers to deactivate them (Kidd 
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& Reagan, 2019; Lee & See, 2004; Parasuraman & Riley, 1997). But because turning is a more common 

configuration in pedestrian crashes than in the rear-end crashes that vehicle-to-vehicle AEB is designed to 

address, improving performance while turning would have a comparatively larger impact for pedestrian-

detecting AEB. 

AEB could potentially mitigate the severity of a pedestrian crash by lowering the striking 

vehicle’s speed even if the crash is not avoided entirely. The system did not reduce the odds that a 

pedestrian crash resulted in a serious or fatal injury in this study, which suggests that crashes that do 

occur involving vehicles with AEB are not less severe. This may be because the severity distribution in 

the crashes that remain skews upwards due to AEB’s greater effectiveness in preventing the lower-speed 

and lighted crashes that are less likely to result in serious injuries. Furthermore, because pedestrians are at 

risk of sustaining serious injuries even at nonextreme speeds (e.g., Tefft [2013] estimated the average risk 

of a pedestrian sustaining an injury on the Abbreviated Injury Scale of 4 or more is 50% at an impact 

speed of 33 mph, 75% at 41 mph, and 90% at 48 mph), AEB may not slow a vehicle traveling at a high 

speed enough to prevent a serious pedestrian injury even when it does activate. AEB was associated with 

a reduction in the odds that a pedestrian crash resulted in a fatal or serious injury when crashes at high 

speed limits and under dark and not lighted conditions were excluded, albeit with a wide confidence 

interval. 

A strength of this study was the convergent findings resulting from both analysis approaches for 

the effects of AEB on pedestrian crashes of all severities and with injuries. Equipment with AEB was 

identified by trim level on most study vehicles, and more expensive trims may differ from the base trim in 

where and how they are driven. Some of these differences were more carefully accounted for with the 

quasi-induced exposure method and by controlling for known environmental risk factors in pedestrian 

crashes in analyses using this method. There were not enough fatalities in the crash sample to directly 

examine system effects on them. Speed limit was used as a proxy for vehicle speeds, but actual vehicle 

speeds were unknown. Pedestrian crashes are underreported in police-reported data, especially among 

crashes not involving injury (Medury et al., 2019; Sciortino et al., 2005). It is evident the data used in the 
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current study were subject to underreporting by how few noninjury crashes were included. It is unknown 

if or how this biased results, but there is not reason to think that underreporting would vary by the striking 

vehicle’s AEB status. 

Another limitation is that AEB and high beam assist were often packaged together on study 

vehicles. More than 70% of crash-involved study vehicles with AEB had high beam assist, while most 

crash-involved study vehicles without AEB did not have it equipped. Leslie et al. (2021) found that high 

beam assist was associated with a 26% reduction in the risk of nighttime crashes with animals, 

pedestrians, or cyclists. High beam assist is factored into the IIHS headlight visibility ratings that were a 

covariate in the analyses, but the presence of this technology specifically could not be controlled for 

because of its collinearity with AEB. High beam assist would not affect the benefits for AEB seen during 

daylight and did not boost system effects in dark and not lighted conditions. It could have inflated effects 

in dark and lighted conditions, however. Because locations with street lighting are less often rural, they 

are also where drivers are less likely to choose to use high beams (Reagan et al., 2017) and so are the 

conditions where high beam assist potentially has the most opportunity to impact nighttime crashes. 

AEB with pedestrian detection appears to be effective in preventing crashes, but it could be even 

more effective if it operated well in low-light conditions, at high speeds, and in turning configurations. As 

systems improve to address a wider range of crash scenarios, other countermeasures to prevent crashes in 

these circumstances should continue to be implemented. Nighttime pedestrian crashes can be reduced 

with improved vehicle headlights (Brumbelow, 2021; Leslie et al., 2021) and increased use of roadway 

lighting (Elvik, 1995; Rea et al., 2009). Intersection improvements like leading pedestrian intervals and 

left-turn traffic calming can be implemented to prevent pedestrian crashes involving turning vehicles 

(Fayish & Gross, 2010; Hu & Cicchino, 2020a). Countermeasures such as automated speed enforcement, 

lowered speed limits, and traffic-calming roadway designs are associated with lower vehicle speeds 

(Hawkins & Hallmark, 2020; Hu & Cicchino, 2020b; Hu & McCartt, 2016), and could result in 

conditions where AEB is more likely to function well. AEB with pedestrian detection is a promising tool 

with the potential to considerably reduce pedestrian crashes as it becomes more widely adopted in the 
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vehicle fleet, and it should operate in conjunction with other proven interventions to have the most 

substantial impact on pedestrian safety. 
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7. APPENDIX 

Table A1. Study vehicle series and model years 

Make Series Model years 

Acura RDX  2017 
Acura TLX  2017 
Buick Enclave  2020 
Cadillac XT5 2WD 2017–2019 
Cadillac XT5 4WD 2018–2019 
Chevrolet Traverse 2WD 2020 
Chevrolet Traverse 4WD 2020 
GMC Acadia 2WD 2019 
GMC Acadia 4WD 2019 
Honda Accord 2D 2017 
Honda Accord 4D 2017 
Honda Civic 4D 2018 
Honda Civic 5D 2018 
Honda CR-V 2WD 2018–2019 
Honda CR-V 4WD 2018–2019 
Honda Fit 2018, 2020 
Honda Odyssey 2018–2020 
Honda Pilot 2WD 2017–2018 
Honda Pilot 4WD 2017–2018 
Honda Ridgeline Crew Cab 2019 
Hyundai Ioniq Hybrid 2019 
Hyundai Ioniq Plug-In Hybrid 2019 
Hyundai Kona 2WD 2019–2020 
Hyundai Kona 4WD 2019–2020 
Hyundai Santa Fe XL 2WD 2019 
Hyundai Santa Fe XL 4WD 2019 
Hyundai Sonata 2019 
Kia Optima 2019 
Kia Sorento 2WD 2020 
Kia Sorento 4WD 2020 
Kia Soul 2020 
Kia Sportage 2WD 2019 
Kia Sportage 4WD 2019 
Kia Stinger 2019 
Mazda 3 2019 
Mazda CX-3 2WD 2018 
Mazda CX-3 4WD 2018 
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Make Series Model years 
Mitsubishi Eclipse Cross 2020 
Mitsubishi Outlander 2020 
Mitsubishi Outlander Sport 2019 
Nissan Altima 2WD 2019 
Nissan Altima 4WD 2019 
Nissan Rouge 2WD 2017–2018 
Nissan Rouge 4WD 2017–2018 
Subaru Crosstrek 2017–2020 
Subaru Forester  2017–2018 
Subaru Impreza 4D 2017–2020 
Subaru Impreza SW 2017–2019 
Subaru Legacy 2017–2018 
Subaru Outback 2017–2018 
Subaru WRX 2017–2020 

Note: 2D=two-door, 4D=four-door, 5D=five-door, 2WD=two-wheel drive,  
4WD=four-wheel drive, SW=station wagon. 




