NEW CAR ASSESSMENT PROGRAM CRASH IMMINENT BRAKING SYSTEM CONFIRMATION TEST NCAP-DRI-CIB-22-06

2022 Honda Civic

DYNAMIC RESEARCH, INC.

355 Van Ness Avenue, STE 200 Torrance, California 90501

15 August 2022

Final Report

Prepared Under Contract No. DTNH22-14-D-00333

U.S. DEPARTMENT OF TRANSPORTATION
National Highway Traffic Safety Administration
New Car Assessment Program
1200 New Jersey Avenue, SE
West Building, 4th Floor (NRM-110)
Washington, DC 20590

Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-14-D-00333.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By:	Stephen Rhim	Anthony Saldana		
	Senior Engineer	Staff Engineer		
Date:	15 August 2022			

Report No.	2. Government Accession No.	Recipient's Catalog No.		
NCAP-DRI-CIB-22-06				
4. Title and Subtitle		5. Report Date		
Final Report of Crash Imminent Bra Honda Civic.	aking System Confirmation Test of a 2022	15 August 2022		
		6. Performing Organization Code		
		DRI		
7. Author(s)		8. Performing Organization Report	No.	
Stephen Rhim, Senior Engineer		DRI-TM-21-81		
Anthony Saldana, Staff Engineer				
9. Performing Organization Name and	Address	10. Work Unit No.		
Dynamic Research, Inc.				
355 Van Ness Ave, STE 200		11. Contract or Grant No.		
Torrance, CA 90501		DTNH22-14-D-00333		
12. Sponsoring Agency Name and Add	Iress	13. Type of Report and Period Cove	ered	
U.S. Department of Transportation National Highway Traffic Safety Administration New Car Assessment Program 1200 New Jersey Avenue, SE, West Building, 4th Floor (NRM-110)		Final Test Report August 2022		
Washington, DC 20590		14. Sponsoring Agency Code		
		NRM-110		
15. Supplementary Notes				
16. Abstract				
(NCAP's) most current Test Proced	subject 2022 Honda Civic in accordance widure in docket NHTSA-2015-0006-0025; CR.R ASSESSMENT PROGRAM, October 2015eds.	ASH IMMINENT BRAKE SYSTEM PE	RFORMANCE	
17. Key Words		18. Distribution Statement		
Crook Imminant Proking		Copies of this report are available from the following:		
Crash Imminent Braking, CIB, AEB, New Car Assessment Program, NCAP		NHTSA Technical Reference D National Highway Traffic Safety 1200 New Jersey Avenue, SE Washington, DC 20590		
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price	
Unclassified	Unclassified	120		

TABLE OF CONTENTS

SEC	TION	<u>I</u>		<u>PAGE</u>	
I.	INTRODUCTION				
II.	DAT	TA SH	IEETS	2	
		Data	Sheet 1: Test Results Summary	3	
		Data	Sheet 2: Vehicle Data	4	
		Data	Sheet 3: Test Conditions	5	
		Data	Sheet 4: Crash Imminent Braking System Operation	7	
III.	TES	T PR	OCEDURES	10	
	A.	Test	Procedure Overview	10	
	B.	Gen	eral Information	15	
	C.	Princ	cipal Other Vehicle	18	
	D.	Auto	matic Braking System	19	
	E.	Instr	umentation	19	
APP	END	IX A	Photographs	A-1	
APPENDIX B Excerpts from Owner's Manual		B-1			
APP	END	IX C	Run Log	C-1	
APP	FND	ם או	Time Histories	D-1	

Section I

INTRODUCTION

Crash Imminent Braking (CIB) systems are a subset of Automatic Emergency Braking (AEB) systems. CIB systems are designed to avoid, or mitigate rear-end crashes, by automatically applying subject vehicle brakes when the system determines that, without intervention, a rear-end crash will occur. CIB systems typically work as an extension of Forward Collision Warning (FCW) systems, which alert the driver to the possibility of a collision unless driver action is taken. CIB systems employ sensors capable of detecting vehicles in the forward path. Current CIB technology typically involves RADAR, LIDAR, or vision-based (camera) sensors, and measurement of vehicle operating conditions such as speed, driver steering and brake application, etc. Algorithms in the system's Central Processing Unit (CPU) use this information to continuously monitor the likelihood of a rear-end crash and command a brake actuator to apply the brakes when necessary.

The method prescribed by the National Highway Traffic Safety Administration (NHTSA) to evaluate CIB performance on the test track¹ involves three rear-end type crash configurations and a "false positive" test. In the rear-end scenarios, a subject vehicle (SV) approaches a stopped, slower-moving, or decelerating principal other vehicle (POV) in the same lane of travel. For these tests, the POV is a strikeable object with the characteristics of a compact passenger car. The false positive scenarios are used to evaluate the propensity of a CIB system to inappropriately activate in a non-critical driving scenario that does not involve a forward vehicle or present a safety risk to the SV occupant(s).

The purpose of the testing reported herein was to objectively quantify the performance of a Crash Imminent Braking system installed on a 2022 Honda Civic. This test is part of the New Car Assessment Program to assess Crash Imminent Braking Systems sponsored by the National Highway Traffic Safety Administration under Contract No. DTNH22-14-D-00333.

1

¹ NHTSA-2015-0006-0025; Crash Imminent Brake System Performance Evaluation for the New Car Assessment Program, October 2015.

Section II

DATA SHEETS

DATA SHEET 1: TEST RESULTS SUMMARY

(Page 1 of 1)

2022 Honda Civic

VIN: <u>2HGFE2F59NH58xxxx</u>

Test start date: <u>8/10/2022</u> Test end date: <u>8/10/2022</u>

Crash Imminent Braking System setting: Long

Test 1 – Subject Vehicle Encounters
Stopped Principal Other Vehicle

SV 25 mph: Pass

Test 2 – Subject Vehicle Encounters
Slower Principal Other Vehicle

SV 25 mph POV 10 mph: Pass

SV 45 mph POV 20 mph: Pass

Test 3 – Subject Vehicle Encounters
Decelerating Principal Other Vehicle

SV 35 mph POV 35 mph: Pass

Test 4 – Subject Vehicle Encounters
Steel Trench Plate

SV 25 mph: Pass

SV 45 mph: Pass

Overall: Pass

Notes:

CRASH IMMINENT BRAKING DATA SHEET 2: VEHICLE DATA

(Page 1 of 1) 2022 Honda Civic

TEST VEHICLE INFORMATION

VIN: 2HGFE2F59NH58xxxx

Body Style: <u>Sedan</u> Color: <u>Meteorite Gray</u>

Date Received: <u>7/28/2022</u> Odometer Reading: <u>4 mi</u>

DATA FROM VEHICLE'S CERTIFICATON LABEL

Vehicle manufactured by: Honda of Canada MFG.

Date of manufacture: 06/22

Vehicle Type: <u>Passenger Car</u>

DATA FROM TIRE PLACARD

Tires size as stated on Tire Placard: Front: 235/40R18 91W

Rear: 235/40R18 91W

Recommended cold tire pressure: Front: <u>225 kPa (33 psi)</u>

Rear: 220 kPa (32 psi)

TIRES

Tire manufacturer and model: Goodyear Eagle Sport

Front tire designation: 235/40R18 91W

Rear tire designation: 235/40R18 91W

Front tire DOT prefix: <u>14B2R LB1R</u>

Rear tire DOT prefix: 14B2R LB1R

DATA SHEET 3: TEST CONDITIONS

(Page 1 of 2) 2022 Honda Civic

GENERAL INFORMATION

Test start date: <u>8/10/2022</u> Test end date: <u>8/10/2022</u>

AMBIENT CONDITIONS

Air temperature: 23.9 C (75 F)

Wind speed: <u>2.6 m/s (5.8 mph)</u>

- X Windspeed ≤ 10 m/s (22 mph)
- X Tests were not performed during periods of inclement weather. This includes, but is not limited to, rain, snow, hail, fog, smoke, or ash.
- X Tests were conducted during daylight hours with good atmospheric visibility (defined as an absence of fog and the ability to see clearly for more than 5000 meters). The tests were not conducted with the vehicle oriented into the sun during very low sun angle conditions, where the sun is oriented 15 degrees or less from horizontal, and camera "washout" or system inoperability results.

VEHICLE PREPARATION

Verify the following:

All non-consumable fluids at 100% capacity: X

Fuel tank is full: X

Tire pressures are set to manufacturer's recommended cold tire pressure:

Front: <u>225 kPa (33 psi)</u>

Rear: 220 kPa (32 psi)

CRASH IMMINENT BRAKING DATA SHEET 3: TEST CONDITIONS

(Page 2 of 2) 2022 Honda Civic

WEIGHT

Weight of vehicle as tested including driver and instrumentation

Left Front: 443.2 kg (977 lb) Right Front: 420.5 kg (927 lb)

Left Rear: 290.8 kg (641 lb) Right Rear: 282.6 kg (623 lb)

Total: <u>1437.1 kg (3168 lb)</u>

DATA SHEET 4: CRASH IMMINENT BRAKING SYSTEM OPERATION

(Page 1 of 3)

2022 Honda Civic

Name of the CIB option, option package, etc.:		
Honda Sensing: Collision Mitigation Braking System (CMBS) comes this vehicle.	<u>standar</u>	<u>rd on</u>
Type and location of sensors the system uses:		
Mono-camera located in the top center of the windshield.		
System setting used for test (if applicable):		
<u>Long</u>		
Over what speed range is the system operational?		
The AEB system is operational at speeds greater than 5 km/h (3 mpl manufacturer supplied information.	<u>h) per</u>	
Does the vehicle system require an initialization sequence/procedure?	X	Yes
		No
If yes, please provide a full description.		
To initialize the system, cycle the ignition and drive the vehicle at apparent 25 mph using automatic cruise control (ACC) on a road 6 m wide or distance of at least 2 km. Do not exceed 0.1 g of braking during the period.	less for	<u>a</u>
Will the system deactivate due to repeated CIB activations, impacts, or near-misses?	X	Yes
		No
If yes, please provide a full description.		
After five AEB activations on a single ignition cycle, the system will a and will illuminate the Safety Support Indicator. To reactivate the AE		

cycle the ignition.

DATA SHEET 4: CRASH IMMINENT BRAKING SYSTEM OPERATION

(Page 2 of 3)

2022 Honda Civ	ric				
How is the Forward Collision Warning system alert presented to the driver? (Check all that apply)	X Warning light X Buzzer or auditory alarm Vibration Other				
Describe the method by which the driver is alerted. For example, if the warning is a light, where is it located, its color, size, words, or symbol, does it flash on and off, etc. If it is a sound, describe if it is a constant beep or a repeated beep. If it is a vibration, describe where it is felt (e.g., pedals, steering wheel), the dominant frequency (and possibly magnitude), the type of warning (light, auditory, vibration, or combination), etc. The AEB system alerts the driver with a visual and auditory alert. The visual alert is displayed in the instrument panel within the tachometer and consists of an orange box and the word "BRAKE". The auditory alert consists of repeated beeps with a primary frequency of approximately 1318 Hz.					
Is there a way to deactivate the system?	X Yes				
	No				
If yes, please provide a full description including the switch location and method of operation, any associated instrument panel indicator, etc. The AEB system can be turned on/off using the home button/selector wheel on					
the left side of the steering wheel. The procedure is as follows:					
1. Press the home button to access the Driver Information Interface.					
2. Scroll and select "Safety support", "Collision	on mitigation braking system".				

The system is automatically enabled each time the engine switch is turned on.

3. Press the selector wheel to turn the AEB system on/off.

DATA SHEET 4: CRASH IMMINENT BRAKING SYSTEM OPERATION

(Page 3 of 3)

2022 Honda Civic

Is the vehicle equipped with a control whose purpose is to adjust the range setting or otherwise influence the operation of CIB?		Yes
If yes, please provide a full description. The range setting for the AEB system can be adjusted using the button/selector wheel on the left side of the steering wheel. The follows: 1. Press the home button to access the Driver Information Interview.	proc	n <u>e</u> edure is as
 Scroll and select "Settings", "Vehicle settings", "Driver assisted "Forward collision warning distance" 	-	em setup",
3. Select between "Long", "Normal", and "Short" warning distant the range setting is retained when the engine switch is turned of		
Are there other driving modes or conditions that render CIB inoperable or reduce its effectiveness?	X	Yes No
If yes, please provide a full description.		
Refer to the owner's manual pages 518-524 shown in Appendix B-13.	<u>(B pa</u>	ages B-7 to
Notes:		

Section III

TEST PROCEDURES

A. Test Procedure Overview

Four test scenarios were used, as follows:

- Test 1. Subject Vehicle (SV) Encounters Stopped Principal Other Vehicle (POV)
- Test 2. Subject Vehicle Encounters Slower Principal Other Vehicle
- Test 3. Subject Vehicle Encounters Decelerating Principal Other Vehicle
- Test 4. Subject Vehicle Encounters Steel Trench Plate

An overview of each of the test procedures follows.

1. <u>TEST 1 – SUBJECT VEHICLE ENCOUNTERS STOPPED PRINCIPAL OTHER VEHICLE ON A STRAIGHT ROAD</u>

This test evaluates the ability of the CIB system to detect and respond to a stopped lead vehicle in the immediate forward path of the SV, as depicted in Figure 1.

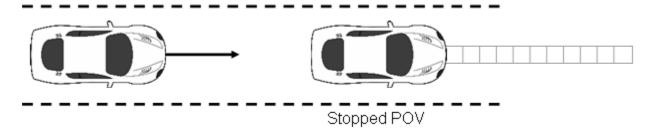


Figure 1. Depiction of Test 1

a. Procedure

The POV was parked in the center of a travel lane, with its longitudinal axis oriented parallel to the roadway edge and facing the same direction as the SV so that the SV approached the rear of the POV.

The SV ignition was cycled prior to each test run. The SV was driven at a nominal speed of 25 mph (40.2 km/h) in the center of the lane of travel, toward the parked POV. The SV throttle pedal was released within 500 ms after t_{FCW}, i.e. within 500 ms of the FCW alert. The test concluded when either:

- The SV came into contact with the POV or
- The SV came to a stop before making contact with the POV.

In addition to the general test validity criteria described below, for an individual test trial to be valid, the following was required throughout the test:

- The lateral distance between the centerline of the SV to the center of the travel lane could not deviate more than ±1 ft (0.3 m) during the validity period.
- The yaw rate of the SV could not deviate more than ±1 deg/sec during the validity period.
- The SV speed could not deviate from the nominal speed by more than ±1.0 mph (±1.6 km/h) during an interval defined by a Time to Collision (TTC) = 5.1 seconds to t_{FCW} or impact if no FCW alert was given.

b. Criteria

In order to pass the test, the magnitude of the SV speed reduction attributable to CIB intervention must have been \geq 9.8 mph (15.8 km/h) for at least five of seven valid test trials.

The magnitude of the SV speed reduction attributable to CIB intervention was calculated in one of two ways, depending on whether a test trial concluded with the SV colliding with the POV.

- If SV-to-POV contact occurred during a test trial, the CIB speed reduction was calculated by subtracting the SV speed at the time of SV-to-POV contact (i.e., when longitudinal range became zero) from the average SV speed calculated from tecw-100 ms to tecw.
- If SV-to-POV contact did not occur during a test trial (i.e., CIB intervention prevented the crash), the SV speed at a time of SV-to-POV contact was taken to be zero. The speed reduction is therefore equal to the SV speed at tFCW.

2. <u>TEST 2 – SUBJECT VEHICLE ENCOUNTERS SLOWER PRINCIPAL OTHER VEHICLE</u>

This test evaluates the ability of the CIB system to detect and respond to a slower-moving lead vehicle traveling at a constant speed in the immediate forward path of the SV, as depicted in Figure 2.

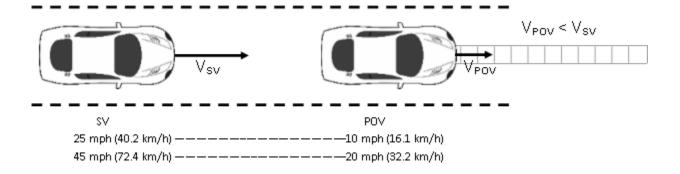


Figure 2. Depiction of Test 2

a. Procedure

The SV ignition was cycled prior to each test run. The tests were conducted two ways. In the first, the POV was driven at a constant 10.0 mph (16.1 km/h) in the center of the lane of travel while the SV was driven at 25.0 mph (40.2 km/h), in the center lane of travel, toward the slower-moving POV. In the second, the POV was driven at a constant 20.0 mph (32.2 km/h) in the center of the lane of travel while the SV was driven at 45.0 mph (72.4 km/h), in the center lane of travel, toward the slower-moving POV. In both cases, the SV throttle pedal was released within 500 ms after tFCW, i.e. within 500 ms of the FCW alert. The test concluded when either:

- The SV came into contact with the POV or
- 1 second after the velocity of the SV became less than or equal to that of the POV.

The SV driver then braked to a stop.

In addition to the general test validity criteria described below, for an individual test trial to be valid, the following was required throughout the test:

- The lateral distance between the centerline of the SV and POV to the center of the travel lane could not deviate more than ±1 ft (0.3 m) during the validity period.
- The yaw rate of the SV and POV could not deviate more than ±1 deg/sec during the validity period.
- The SV speed could not deviate more than ±1.0 mph (±1.6 km/h) during an interval defined by TTC = 5.0 seconds to t_{FCW} or impact if no FCW alert was given.
- The POV speed could not deviate more than ±1.0 mph (±1.6 km/h) during the validity period.

b. Criteria

For the test series in which the initial SV speed was 25 mph, the condition for passing was that there be no SV-to-POV impact for at least five of the seven valid test trials.

In order to pass the test series for which the initial speed of the SV was 45 mph, the magnitude of the SV speed reduction attributable to CIB intervention must have been ≥ 9.8 mph (15.8 km/h) for at least five of seven valid test trials. The magnitude of the SV speed reduction attributable to CIB intervention was calculated in one of two ways, depending on whether a test trial concluded with the SV colliding with the POV.

- If SV-to-POV contact occurred during a test trial, the CIB speed reduction was calculated by subtracting the SV speed at the time of SV-to-POV contact (i.e., when longitudinal range became zero) from the average SV speed calculated from trcw -100 ms to trcw.
- If SV-to-POV contact did not occur during a test trial (i.e., CIB intervention prevented the crash), the CIB speed reduction was calculated by subtracting the SV speed at the minimum longitudinal SV-to-POV range during the validity period from the SV speed at tFCW.

3. <u>TEST 3 – SUBJECT VEHICLE ENCOUNTERS DECELERATING PRINCIPAL</u> OTHER VEHICLE

This test evaluates the ability of the CIB system to detect and respond to a lead vehicle slowing with a constant deceleration in the immediate forward path of the SV, as depicted in Figure 3.

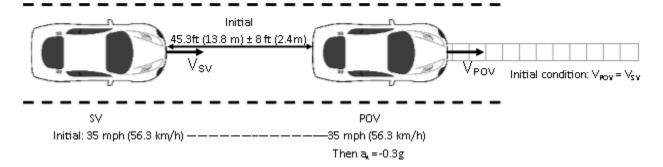


Figure 3. Depiction of Test 3

a. Procedure

The SV ignition was cycled prior to each test run. For this test scenario, both the POV and SV were driven at a constant 35.0 mph (56.3 km/h) in the center of the lane, with a headway of 45.3 ft (13.8 m) \pm 8 ft (2.4 m). Once these conditions were met, the POV tow vehicle brakes were applied to achieve 0.3 \pm 0.03 g of deceleration within 1.5 \pm 0.1 sec. The test concluded when either:

- The SV came into contact with the POV or
- 1 second after minimum longitudinal SV-to-POV distance has occurred.

The SV driver then braked to a stop.

In addition to the general test validity criteria described below, for an individual test trial to be valid, the following was required throughout the test:

- The lateral distance between the centerline of the SV and POV to the center of the travel lane could not deviate more than ±1 ft (0.3 m) during the validity period.
- The yaw rate of the SV and POV could not deviate more than ±1 deg/sec during the validity period.
- The SV speed could not deviate more than ±1.0 mph (1.6 km/h) during an interval defined by 3.0 seconds before the onset of POV braking to t_{FCW} or impact if no FCW alert was given.
- The POV speed could not deviate more than ±1.0 mph (1.6 km/h) during an interval of 3.0 seconds before the onset of POV braking.
- The SV- POV headway distance could not deviate more than ±8 ft (2.4 m) during an interval defined by the onset of the validity period to the onset of POV braking.
- The average POV deceleration could not deviate by more than ±0.03 g from the nominal 0.3 g deceleration during the interval beginning at 1.5 seconds after the onset of POV braking and ending either 250 ms prior to the POV coming to a stop or the SV coming into contact with the POV.

b. Criteria

In order to pass the decelerating POV test series, the magnitude of the SV speed reduction attributable to CIB intervention must have been ≥ 10.5 mph (16.9 km/h) for at least five of seven valid test trials. The magnitude of the SV speed reduction attributable to CIB intervention was calculated in one of two ways, depending on whether a test trial concluded with the SV colliding with the POV.

- If SV-to-POV contact occurred during a test trial, the CIB speed reduction was calculated by subtracting the SV speed at the time of SV-to-POV contact (i.e., when longitudinal range becomes zero) from the average SV speed calculated from tecw - 100 ms to tecw.
- If SV-to-POV contact did not occur during a test trial (i.e., CIB intervention prevents the crash), the CIB speed reduction was calculated by subtracting the SV speed at the minimum longitudinal SV-to-POV range during the applicable validity period from the SV speed at t_{FCW}.

4. TEST 4 – FALSE POSITIVE SUPPRESSION

The false positive suppression test series evaluates the ability of a CIB system to differentiate a steel trench plate (STP) from an object presenting a genuine safety risk to the SV. Although the STP is large and metallic, it is designed to be driven over without risk of injury to the driver or damage to the SV. Therefore, in this scenario, the automatic braking available from CIB is not necessary and should be suppressed. The test condition is nearly equivalent to that previously defined for Test 1, the stopped POV condition, but

with an STP in the SV forward path in lieu of a POV.

a. Procedure

This test was conducted at two speeds, 25 mph (40.2 km/h) and 45 mph (72.4 km/h). The SV was driven directly towards, and over, the STP, which was positioned in the center of a travel lane, with its longest sides parallel to the road edge. The test concluded when the front most part of the SV reached a vertical plane defined by the edge of the STP first encountered by the SV.

In addition to the general test validity criteria described below, for an individual test trial to be valid, the following was required throughout the test:

- The lateral distance between the centerline of the SV to the center of the travel lane could not deviate more than ±1 ft (0.3 m) during the validity period.
- The yaw rate of the SV could not deviate more than ±1 deg/sec during the validity period.
- The SV speed could not deviate from the nominal speed by more than 1.0 mph (1.6 km/h) during an interval defined by a Time to Collision (TTC) = 5.1 seconds to trow where:
 - For SV test speed of 25 mph, TTC = 5.1 seconds is taken to occur at an SV-to-STP distance of 187 ft (57 m).
 - For SV test speed of 45 mph, TTC = 5.1 seconds is taken to occur at an SV-to-STP distance of 337 ft (106 m).
- If the SV did not present an FCW alert before the end of the validity period, SV speed could not deviate more than ±1.0 mph (±1.6 km/h) from TTC = 5.1 s to the end of the validity period.

If an FCW alert was presented, the driver released the throttle pedal within 500 ms of the alert. If no alert was presented, the driver did not release the throttle pedal until the end of the validity period. The SV driver then braked to a stop.

b. Criteria

In order to pass the False Positive test series, the magnitude of the SV deceleration reduction attributable to CIB intervention must have been ≤ 0.50 g for at least five of seven valid test trials.

B. General Information

1. <u>T</u>FCW

The time at which the Forward Collision Warning (FCW) activation flag indicates that the system has issued an alert to the SV driver is designated as t_{FCW}. FCW alerts are typically either visual, haptic or auditory, and the onset of the alert was determined by post-

processing the test data.

For systems that implement auditory or haptic alerts, part of the pre-test instrumentation verification process was to determine the tonal frequency of the auditory warning or the vibration frequency of the tactile warning through use of the PSD (Power Spectral Density) function in Matlab. This was accomplished in order to identify the center frequency around which a band-pass filter was applied to subsequent auditory or tactile warning data so that the beginning of such warnings can be programmatically determined. The band-pass filter used for these warning signal types was a phaseless, forward-reverse pass, elliptical (Cauer) digital filter, with filter parameters as listed in Table 1.

Table 1. Auditory and Tactile Warning Filter Parameters

Warning Type	Filter Order	Peak-to- Peak Ripple	Minimum Stop Band Attenuation	Passband Frequency Range
Auditory	5 th	3 dB	60 dB	Identified Center Frequency ± 5%
Tactile	5 th	3 dB	60 dB	Identified Center Frequency ± 20%

2. GENERAL VALIDITY CRITERIA

In addition to any validity criteria described above for the individual test scenarios, for an individual trial to be valid, it must have met the following criteria throughout the test:

- The SV driver seatbelt was latched.
- If any load had been placed on the SV front passenger seat (e.g., for instrumentation), the vehicle's front passenger seatbelt was latched.
- The SV was driven at the nominal speed in the center of the travel lane, toward the POV or STP.
- The driver used the least amount of steering input necessary to maintain SV position in the center of the travel lane during the validity period; use of abrupt steering inputs or corrections was avoided.
- The yaw rate of the SV did not exceed ±1.0 deg/s from the onset of the validity period to the instant SV deceleration exceeded 0.25 g.
- The SV driver did not apply any force to the brake pedal during the applicable validity period.
- The lateral distance between the centerline of the SV and the centerline of the POV or STP did not deviate more than ±1 ft (0.3 m) during the applicable validity period.

3. VALIDITY PERIOD

The valid test interval began:

Test 1: When the SV-to-POV TTC = 5.1 seconds

Test 2: When the SV-to-POV TTC = 5.0 seconds

Test 3: 3 seconds before the onset of POV braking

Test 4: When the SV-to-STP TTC = 5.1 seconds

The valid test interval ended:

Test 1: When either of the following occurred:

- The SV came into contact with the POV (assessed using GPS-based range data); or
- The SV came to a stop before making contact with the POV.

Test 2: When either of the following occurred:

- The SV came into contact with the POV; or
- 1 second after the velocity of the SV became less than or equal to that of the POV.

Test 3: When either of the following occurred:

- The SV came into contact with the POV; or
- 1 second after minimum longitudinal SV-to-POV distance occurred.

Test 4: At the instant the front-most part of SV reached a vertical plane defined by the leading edge of the STP first encountered by the SV (i.e., just before it was driven onto the STP).

4. STATIC INSTRUMENTATION CALIBRATION

To assist in resolving uncertain test data, static calibration data was collected prior to, and immediately after each of the test series.

For Tests 1, 2, and 3, the SV, POV, POV moving platform, and tow vehicle were centered in the same travel lane with the same orientation (i.e., facing the same direction). For Test 4, the SV and STP were centered in the same travel lane.

For Tests 1, 2, and 3, the SV was positioned such that it just contacted a vertical plane that defines the rearmost location of the POV. For Test 4, the front-most location of the SV was positioned such that it just reached a vertical plane defined by the leading edge of the STP first encountered by the SV (i.e., just before it is driven onto the STP). This is the "zero position."

If the zero position reported by the data acquisition system was found to differ by more than ± 2 in (± 5 cm) from that measured during collection of the pre-test static calibration data file, the pre-test offset was adjusted to output zero ,another pre-test static calibration data file was collected, and the test series was repeated.

5. NUMBER OF TRIALS

A target total of seven (7) valid trials were performed for each scenario. In cases where the test driver performed more than seven trials, the first seven trials satisfying all test tolerances were used to assess the SV performance.

6. TRANSMISSION

All trials were performed with SV automatic transmissions in "Drive" or with manual transmissions in the highest gear capable of sustaining the desired test speed. Manual transmission clutches remained engaged during all maneuvers. The brake lights of the POV were not illuminated.

C. Principal Other Vehicle

CIB testing requires a POV that realistically represents typical vehicles, does not suffer damage or cause damage to a test vehicle in the event of collision, and can be accurately positioned and moved during the tests. The tests reported herein made use of the NHTSA developed Strikeable Surrogate Vehicle (SSV).

This SSV system was designed specifically for common rear-end crash scenarios which AEB systems address. The key components of the SSV system are:

- A POV shell which is a visually and dimensionally accurate representation of a passenger car.
- A slider and load frame assembly to which the shell is attached.
- A two-rail track on which the slider operates.
- A road-based lateral restraint track.
- A tow vehicle.

The key requirements of the POV element are to:

- Provide an accurate representation of a real vehicle to CIB sensors, including cameras and radar.
- Be resistant to damage and inflict little or no damage to the SV as a result of repeated SV-to-POV impacts.

The key requirements of the POV delivery system are to:

- Accurately control the nominal POV speed up to 35 mph (56 km/h).
- Accurately control the lateral position of the POV within the travel lane.

Allow the POV to move away from the SV after an impact occurs.

Operationally, the POV shell is attached to the slider and load frame which includes rollers that allows the entire assembly to move longitudinally along the guide rail. The guide rail is coupled to a tow vehicle and guided by the lateral restraint track secured to the test track surface. The rail includes a provision for restraining the shell and roller assembly in the ward direction. In operation, the shell and roller assembly engage the rail assembly through detents to prevent relative motion during run-up to test speeds and deceleration of the tow vehicle. The combination of rearward stops and forward motion detents allows the test conditions, such as relative SV-to-POV headway distance, speed, etc., to be achieved and adjusted as needed in the preliminary part of a test. If during the test, the SV strikes the rear of the POV shell, the detents are overcome and the entire shell/roller assembly moves forward in a two-stage manner along the rail and away from the SV. The forward end of the rail has a cushioned stop to restrain forward motion of the shell/roller assembly. After impacting the SSV, the SV driver uses the steering wheel to maintain SV position in the center of the travel lane, thereby straddling the two-rail track. The SV driver must manually apply the SV brakes after impact. The SSV system is shown in Figures A6 through A8 and a detailed description can be found in the NHTSA report: NHTSA'S STRIKEABLE SURROGATE VEHICLE PRELIMINARY DESIGN+OVERVIEW, May 2013.

D. Automatic Braking System

The POV was equipped with an automatic braking system, which was used in Test 3. The braking system consisted of the following components:

- Electronically controlled linear actuator, mounted on the seat rail and attached to the brake pedal. The actuator can be programmed for control of stroke and rate.
- PC module programmed for control of the stroke and rate of the linear actuator.
- Switch to activate actuator.

In some cases, the SV is also equipped with an automatic braking system (E-brake) for the purpose of slowing the SV before impact with the SSV in cases where the SV is likely to fail a test. The system fires when TTC is below 0.7 sec. It is typically enabled when an SV has already impacted the SSV one or two times.

E. Instrumentation

Table 2 lists the sensors, signal conditioning, and data acquisition equipment used for these tests.

Table 2. Test Instrumentation and Equipment

Туре	Output	Range	Accuracy, Other Primary Specs	Mfr, Model	Serial Number	Calibration Dates Last Due
Tire Pressure Gauge	Vehicle Tire Pressure	0-100 psi 0-690 kPa	< 1% error between 20 and 100 psi	Omega DPG8001	17042707002	By: DRI Date: 10/5/2021 Due: 10/5/2022
Platform Scales	Vehicle Total, Wheel, and Axle Load	2200 lb/platform	0.1% of reading	Intercomp SW wireless	0410MN20001	By: DRI Date: 2/11/2022 Due: 2/11/2023
Linear (string) encoder	Throttle pedal travel	50 in	0.05 in	TE Connectivity SE1- 50	K3161850	By: DRI Date: 1/18/2022 Due: 1/18/2023
Differential Global Positioning System	Position, Velocity	Latitude: ±90 deg Longitude: ±180 deg Altitude: 0-18 km Velocity: 0-1000 knots	Horizontal Position: ±1 cm Vertical Position: ±2 cm Velocity: 0.05 km/h	Trimble GPS Receiver, 5700 (base station and in-vehicle)	00440100989	N/A
	Position; Longitudinal, Lateral, and Vertical					By: Oxford Technical Solutions
Multi-Axis Inertial Sensing System	Accels; Lateral, Longitudinal and Vertical Velocities;	Accels ± 10g, Angular Rate ±100 deg/s, Angle >45 deg, Velocity >200 km/h	Accels .01g, Angular Rate 0.05 deg/s, Angle 0.05 deg, Velocity 0.1 km/h	Oxford Inertial +	2182	Date: 11/19/2021 Due: 11/19/2023
	Roll, Pitch, Yaw Rates; Roll, Pitch, Yaw Angles				2258	Date: 4/28/2021 Due: 4/28/2023

Table 2. Test Instrumentation and Equipment (continued)

Туре	Output	Range	Accuracy, Other Primary Specs	Mfr, Model	Serial Number	Calibration Dates Last Due
Real-Time Calculation of Position and Velocity Relative to POV	Distance and Velocity to lane markings (LDW) and POV (FCW)	Lateral Lane Dist: ±30 m Lateral Lane Velocity: ±20 m/sec Longitudinal Range to POV: ±200 m Longitudinal Range Rate: ±50 m/sec	Lateral Distance to Lane Marking: ±2 cm Lateral Velocity to Lane Marking: ±0.02m/sec Longitudinal Range: ±3 cm Longitudinal Range Rate: ±0.02 m/sec	Oxford Technical Solutions (OXTS), RT-Range	97	N/A
Microphone	Sound (to measure time at alert)	Frequency Response: 80 Hz – 20 kHz	Signal-to-noise: 64 dB, 1 kHz at 1 Pa	Audio-Technica AT899	N/A	N/A
Light Sensor	Light intensity (to measure time at alert)	Spectral Bandwidth: 440-800 nm	Rise time < 10 msec	DRI designed and developed Light Sensor	N/A	N/A
Accelerometer	Acceleration (to measure time at alert)	±5g	≤ 3% of full range	Silicon Designs, 2210-005	N/A	N/A
Coordinate Measurement Machine	Inertial Sensing System Coordinates	0-8 ft 0-2.4 m	±.0020 in. ±.051 mm (Single point articulation accuracy)	Faro Arm, Fusion	UO8-05-08- 06636	By: DRI Date: 1/6/2022 Due: 1/6/2023
Туре	Description		Mfr, Mo	del	Serial Number	
	Data acquisition is achieved using a dSPACE MicroAutoBox II. Data from the Oxford IMU, including Longitudinal, Lateral, and Vertical Acceleration, Roll, Yaw, and Pitch Rate, Forward and Lateral Velocity, Roll and Pitch Angle are sent over Ethernet to the			dSPACE Micro-Autobox II 1401/1513		
Data Acquisition System				Base Board		549068
	MicroAutoBox. The Oxford IMUs are calibrated per the manufacturer's recommended schedule (listed above).		I/O Board		588523	

APPENDIX A

Photographs

LIST OF FIGURES

		Page
Figure A1.	Front View of Subject Vehicle	A-3
Figure A2.	Rear View of Subject Vehicle	A-4
Figure A3.	Window Sticker (Monroney Label)	A-5
Figure A4.	Vehicle Certification Label	A-6
Figure A5.	Tire Placard	A-7
Figure A6.	Rear View of Principal Other Vehicle (SSV)	A-8
Figure A7.	Load Frame/Slider of SSV	A-9
Figure A8.	Two-Rail Track and Road-Based Lateral Restraint Track	A-10
Figure A9.	Steel Trench Plate	A-11
Figure A10.	DGPS, Inertial Measurement Unit, and MicroAutoBox Installed in Subject Vehicle	A-12
Figure A11.	Sensors for Detecting Visual and Auditory Alerts	A-13
Figure A12.	Computer Installed in Subject Vehicle	A-14
Figure A13.	Brake Actuator Installed in POV System	A-15
Figure A14.	Menus for Adjusting AEB Sensitivity	A-16
Figure A15.	Menus for Turning AEB system On/Off	A-17
Figure A16.	Visual Alert	A-18
Figure A17.	Steering Wheel Buttons	A-19

Figure A1. Front View of Subject Vehicle

Figure A2. Rear View of Subject Vehicle

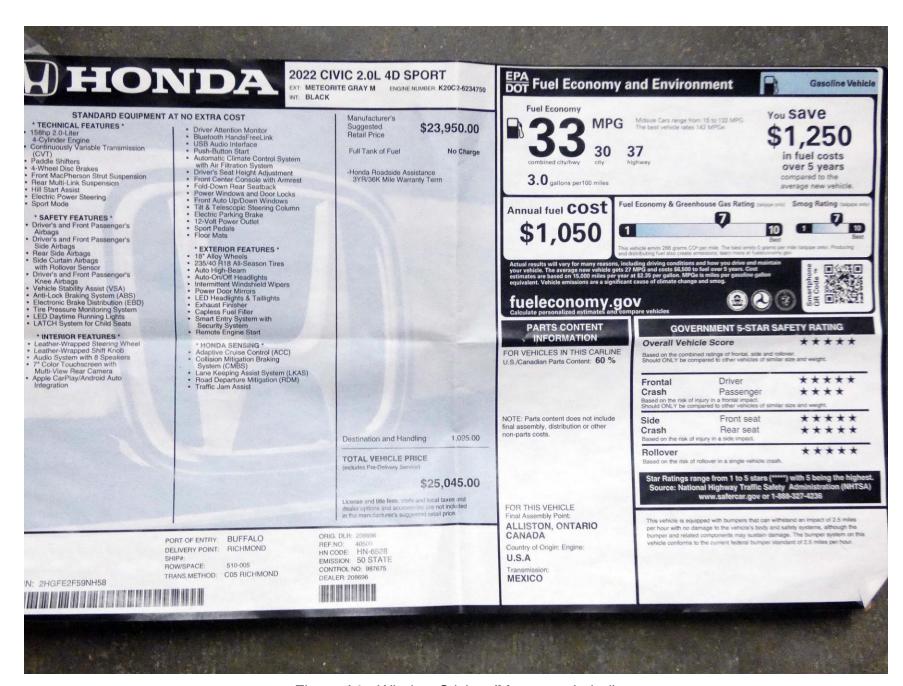


Figure A3. Window Sticker (Monroney Label)

Figure A4. Vehicle Certification Label

Figure A5. Tire Placard

Figure A6. Rear View of Principal Other Vehicle (SSV)

Figure A7. Load Frame/Slider of SSV

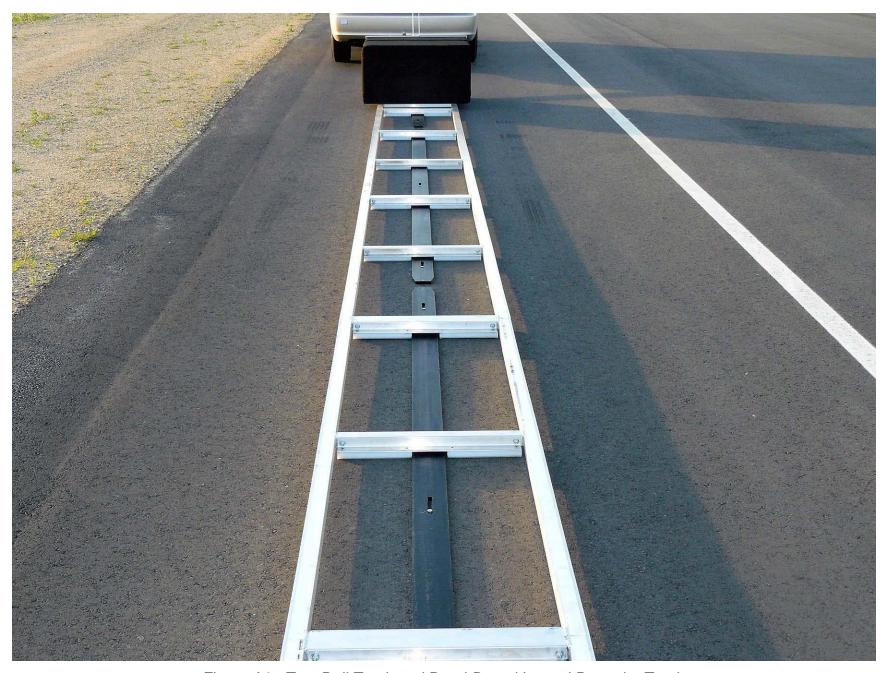


Figure A8. Two-Rail Track and Road-Based Lateral Restraint Track

Figure A9. Steel Trench Plate

Figure A10. DGPS, Inertial Measurement Unit, and MicroAutoBox Installed in Subject Vehicle

Figure A11. Sensors for Detecting Visual and Auditory Alerts

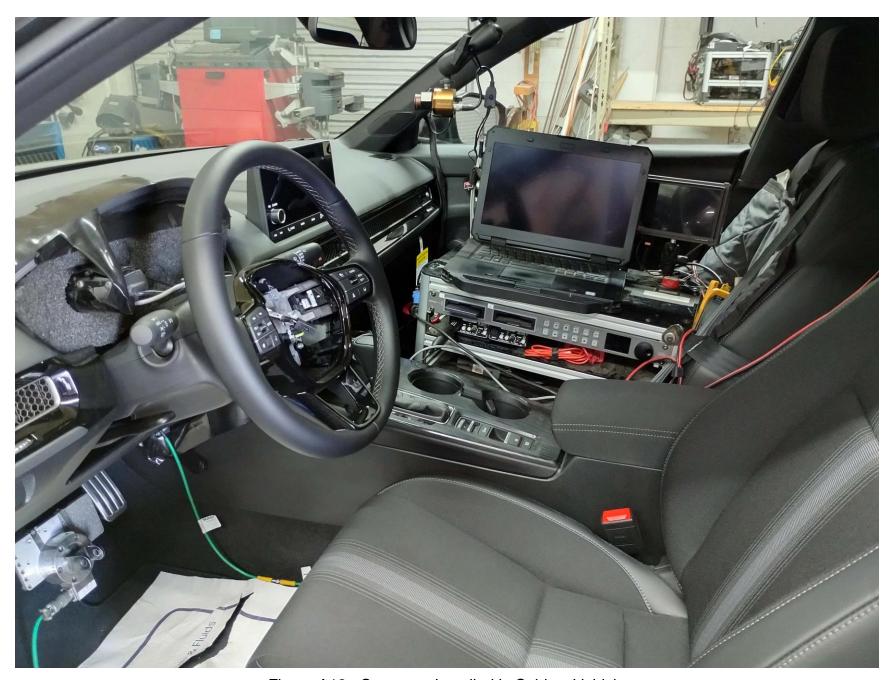


Figure A12. Computer Installed in Subject Vehicle

Figure A13. Brake Actuator Installed in POV System

Figure A14. Menus for Adjusting AEB Sensitivity

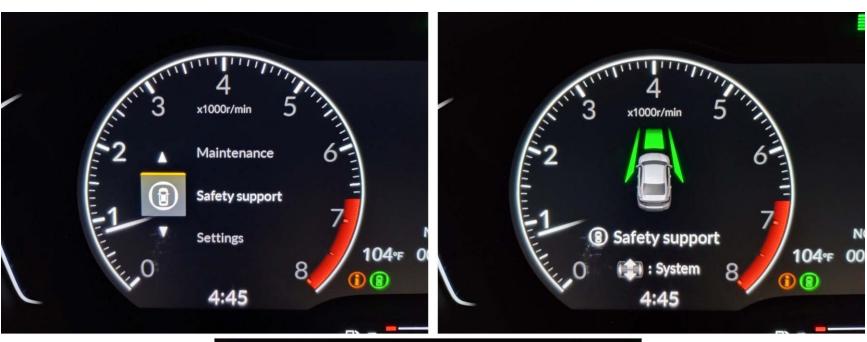


Figure A15. Menus for Turning AEB system On/Off

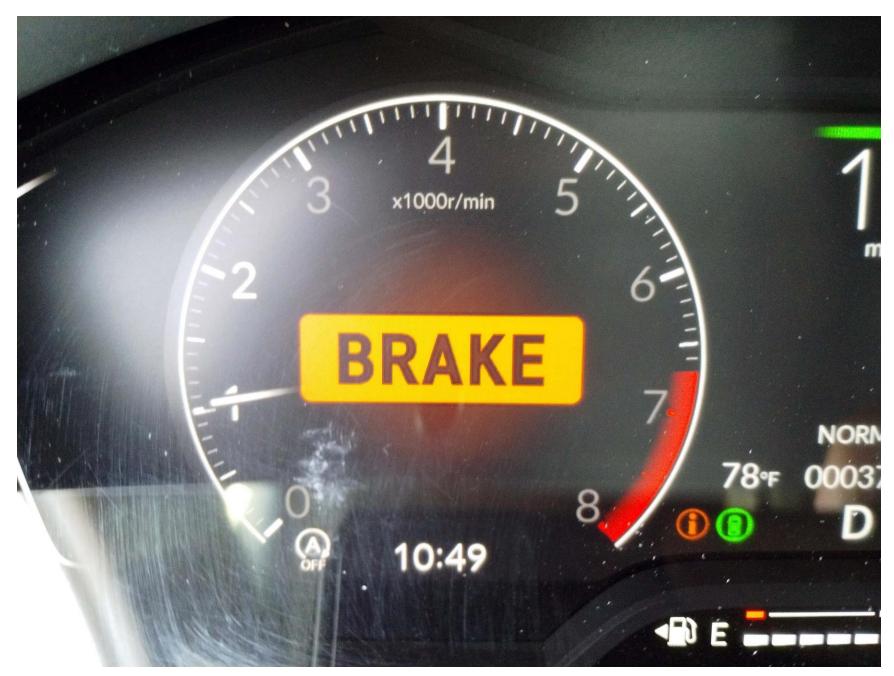


Figure A16. Visual Alert

Figure A17. Steering Wheel Buttons

APPENDIX B

Excerpts from Owner's Manual

Collision Mitigation Braking System™ (CMBS™)

The system can assist you when it determines there is a possibility of your vehicle colliding with a vehicle (including motorcycles*) ahead from behind, an oncoming vehicle in front, a pedestrian, or someone riding a bicycle (moving bicycle). The CMBS™ is designed to alert you when the potential for a collision is determined, as well as assist in reducing speed, avoiding collisions, and reducing collision severity.

Important Safety Reminder

The CMBS™ is designed to reduce the severity of an unavoidable collision. It does not prevent collisions nor stop the vehicle automatically. It is still your responsibility to operate the brake pedal and steering wheel appropriately according to the driving conditions.

The CMBS $^{\text{TM}}$ may not activate or may not detect a vehicle in front of your vehicle under certain

■ CMBS[™] Conditions and Limitations P. 518

You can read about handling information for the camera equipped with this system.

Front Wide View Camera P. 611


When the CMBS™ is activated, it will continue to operate even if the accelerator pedal is partially depressed. However, it will be canceled if the accelerator pedal is fully depressed.

Manual transmission models
When the CMBS™ activates, the engine may stop automatically. Start the engine by normal operation if the engine stops.

Starting the Engine P. 456

* Not available on all models Continued 513

■ How the system works

The system starts monitoring the roadway ahead when your vehicle speed is about 3 mph (5 km/h) or above and will search for a vehicle, pedestrian, or moving bicycle in front of you.

The CMBS™ activates when:

- The speed difference between your vehicle and a vehicle, pedestrian, or moving bicycle detected in front of you becomes about 3 mph (5 km/h) and over with a chance of a collision.
- Your vehicle drives at about 18 mph (30 km/h) or less and there is a chance of in frontal collision with a detected oncoming vehicle when you turn left at an intersection.
- Your vehicle speed is about 62 mph (100 km/h) or less and the system determines there is a chance of a collision with:
- An oncoming or stationary vehicle detected in front of you.
- A pedestrian or moving bicycle detected in front of you.

The CMBSTM will be canceled when your vehicle stops or the system determines there no longer is the potential for a collision.

The CMBSTM may also be canceled when a driver operates the steering wheel and the brake or accelerator pedal to avoid a collision.

Mow the system works

The camera in the CMBS™ is also designed to detect pedestrians.

However, this pedestrian detection feature may not activate or may not detect a pedestrian in front of your vehicle under certain conditions.

Refer to the ones indicating the pedestrian detection limitations from the list.

■ CMBS[™] Conditions and Limitations P. 518

■ When the system activates

The system provides visual and audible alerts of a possible collision, and stops if the collision is avoided.

Take appropriate action to prevent a collision (apply the brakes, change lanes, etc.)

Visual Alerts

Beep

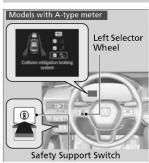
Audible Alert

You can change the distance (**Long/Normal/Short**) between vehicles at which the system's earliest collision alert will come on through the driver information interface* or audio/information screen* setting options.

Settings* P. 135

Customized Features P. 381

* Not available on all models Continued 515


The system has three alert stages for a possible collision. However, depending on circumstances, the CMBSTM may not go through all of the stages before initiating the last stage.

Diet	tance between vehicles	CMBS™							
DISI	lance between vehicles	The sensors detect a vehicle	Audible & Visual WARNINGS	Braking					
Stage one	Normal Long Short Your Vehicle Vehicle Ahead	There is a risk of a collision with the vehicle ahead of you.	When in Long , visual and audible alerts come on at a longer distance from a vehicle ahead than in Normal setting, and in Short , at a shorter distance than in Normal .	-					
Stage two	Your Vehicle Vehicle Ahead	The risk of a collision has increased, time to respond is reduced.	Visual and audible alerts	Lightly applied					
Stage three	Your Vehicle Vehicle Ahead	The CMBS [™] determines that a collision is unavoidable.	visual and addible diets.	Forcefully applied					

iving

516

■ CMBS[™] On and Off

When you turn the CMBS™ on and off, do the following.

1. Press the safety support switch.

Models with A-type meter

2. Roll the left selector wheel to the symbol and push it.

Models with B-type meter

- 2. Roll the right selector wheel to the symbol and push it.
- ► A message appears on the driver information interface when the system turns on or off.
- ► A check mark appears in the box and the color of the ♣ symbol changes to green when the system is on. The check mark disappears and the color of the ♣ symbol changes to gray when the system is off.

The CMBS $^{\text{IM}}$ is turned on every time you start the engine, even if you turned it off the last time you drove the vehicle.

∑Collision Mitigation Braking System™ (CMBS™)

You cannot turn the CMBS™ off while driving.

The CMBS™ may automatically shut off, and the safety support indicator (amber) will come and stay on under certain conditions:

■ CMBS[™] Conditions and Limitations P. 518

The CMBS™ is not activated for about 15 seconds after the engine starts.

You can also select safety support content from the driver information interface.

- **Driver Information Interface** P. 117
- Driver Information Interface (Right Side Area) P. 150

The Vehicle Stability Assist™ (VSA®) system, Vehicle Stability Assist™ (VSA®) **OFF**, Adaptive Cruise Control (ACC) with Low Speed Follow*/Adaptive Cruise Control (ACC)*, low tire pressure/TPMS* and safety support indicators may come on in amber along with a message in the gauge when you set the power mode to ON after reconnecting the battery. Drive a short distance at more than 12 mph (20 km/h). Each indicator should go off. If any do not, have your vehicle checked by a dealer.

* Not available on all models Continued

517

■ CMBS[™] Conditions and Limitations

The system may automatically shut off and the safety support indicator (amber) will come on under certain conditions. Some examples of these conditions are listed below. Other conditions may reduce some of the CMBSTM functions.

Front Wide View Camera P. 611

■ Environmental conditions

- Driving in bad weather (rain, fog, snow, etc.).
- Sudden changes between light and dark, such as the entrance or exit of a tunnel or the shadows of trees, buildings, etc.
- Driving into low sunlight (e.g., at dawn or dusk).
- Strong light is reflected onto vehicles, pedestrians, moving bicycles, or road surfaces.
- Water is sprayed by or snow blown from a vehicle ahead.
- Driving at night or in a dark place such as a tunnel (due to low-light conditions, vehicles, pedestrians, or moving bicycles may not be illuminated).

■ Roadway conditions

- Driving on curvy, winding, undulating, or sloping roads.
- There is a film of water or puddles on the road surface.
- Driving on rutted roads (snowy or unpaved roads, etc.).
- Your vehicle is strongly shaken on uneven road surfaces.

≥CMBS[™] Conditions and Limitations

Have your vehicle checked by a dealer if you find any unusual behavior of the system (e.g., the warning message appears too frequently).

Priving

Driving

■ Vehicle conditions

- The vehicle is tilted due to heavy load in the trunk or rear seats.
- Tire chains* are installed.
- Driving at night or in a dark place (e.g., a tunnel) with the headlights off.
- The front of the camera is covered by dirt, fog, rain, mud, wet snow, seals, accessories, stickers, or film on the windshield.
- There is residue on the windshield from the windshield wipers.
- When lighting is weak due to dirt covering the headlight lenses, or there is poor visibility in a dark place due to the headlights being improperly adjusted.
- An abnormal tire or wheel condition (incorrect sizes, varied sizes or construction, improperly inflated, compact spare tire*, etc.).
- The suspension has been modified.

* Not available on all models Continued 519

■ Examples of limitations on the correct detection of the camera due to the condition of the vehicle ahead of you, oncoming vehicles, pedestrians, or moving bicycles

- The distance between your vehicle and the vehicle ahead of you, oncoming vehicle, pedestrian, or moving bicycle ahead of you is too short.
- The vehicle ahead of you, oncoming vehicle, pedestrian, or moving bicycle suddenly cuts in front of or jumps out in front of you.
- The bicycle is stopped.
- The oncoming vehicle or vehicle ahead of you is sideways.
- When the vehicle ahead of you, oncoming vehicle, pedestrian, or moving bicycle blends in with the background, preventing the system from recognizing them.
- When several pedestrians or bicycles are moving ahead of you in a group.
- When a pedestrian or moving bicycle crosses the road too quickly.
- A pedestrian or moving bicycle approaches from the opposite direction.
- The headlights of the vehicle ahead of you or oncoming vehicle are lit on one side or not lit on either side in a dark place.
- When part of a pedestrian (heads, limbs, etc.) is hidden by load.
- When a pedestrian is bent over or squatting, when their hands are raised, or they
 are running.
- When the pedestrian is shorter than about 3.3 feet (1 meter) or taller than about 6.6 feet (2 meters) in height.
- When the pedestrian is pushing a stroller or bicycle.

Collision Mitigation Braking System™ (CMBS™)

Make sure that all the tires are of the same specified size, type and brand, and that they are evenly worn. If you use tires of different sizes, types, brands, or degree of wear, the system may not work properly.

Do not modify the suspension. Altering the height of the vehicle may prevent the system from working properly.

Driving

■ Examples of other limitations on detection or system operation

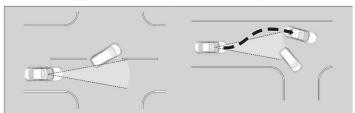
- When the vehicle ahead of you is a motorcycle, wheelchair, or other specially shaped vehicle.
- When a vehicle is lower in the rear than the front such as trucks that are not carrying a load, or a narrow vehicle.
- When the vehicle ahead of you, oncoming vehicle, pedestrian or moving bicycle is not in front of the vehicle.
- The speed difference between your vehicle and the vehicle ahead of you, oncoming vehicle, pedestrian or moving bicycle is significantly large.
- When the vehicle or moving bicycle in front of you slows suddenly.
- When the driver operates the brake pedal and steering wheel to avoid a collision.
- When you approach the vehicle ahead of you, oncoming vehicle, pedestrians or moving bicycles while accelerating rapidly or operating the steering wheel (except when turning left at an intersection etc.)*1
- When the moving bicycle is a child-sized bicycle, folding bicycle, three-wheeler or other bicycle with small tires, or a long bicycle like a tandem bicycle.
- When the camera cannot correctly identify the shape of the vehicle ahead of you, oncoming vehicle, pedestrian, or moving bicycle.
- When the minimum ground clearance of a vehicle ahead of you is extremely high.

Continued 521

^{*1:} When there is a possibility of a frontal collision with the oncoming vehicle while turning left, the CMBS™ is activated. However, it may not be activated if you suddenly turn the steering wheel.

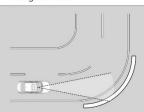
522

■ Automatic shutoff


The CMBS™ may automatically shut itself off and the safety support indicator (amber) comes and stays on when:

- You drive off-road or on a mountain road, or curved and winding road for an extended period.
- Driving in bad weather (rain, fog, snow, etc.).
- Driving with the parking brake applied.
- The camera temperature gets too high.
- The front of the camera is covered by dirt, fog, rain, mud, wet snow, seals, accessories, stickers, or film on the windshield.
- An abnormal tire condition is detected (incorrect tire size, flat tire, etc.). Once the conditions that caused the CMBSTM to shut off improve or are addressed (e.g., cleaning), the system comes back on.

■ With Little Chance of a Collision


Even if there is little chance of a collision, the CMBS $^{\text{TM}}$ may activate under the following conditions:

- Your vehicle approaches or passes another vehicle that is making a left or right turn.
- Your vehicle approaches another vehicle ahead of you and you change lanes to pass.
- Your vehicle approaches another vehicle at an intersection, etc.

Continued 523

- When passing through a low or narrow gate at a speed well over the speed limit.
 When there are traffic signs or structures such as guard rails are beside the road along a curve.

• When driving through curves, your vehicle comes to a point where the oncoming vehicle is right in front of you.

• When approaching stationary vehicles or walls, such as when parking.

524

APPENDIX C

Run Log

Subject Vehicle: 2022 Honda Civic Test start date: 8/10/2022

Principal Other Vehicle: <u>SSV</u> Test end date: <u>8/10/2022</u>

Run	Test Type	Valid Run?	FCW TTC (s)	Min. Distance (ft)	Speed Reduction (mph)	Peak Decel. (g)	CIB TTC (s)	Pass/Fail	Notes
1	Static Run								
2		Υ	2.36	7.17	25.1	0.98	1.11	Pass	
3		Υ	2.38	6.90	25.2	1.00	1.00	Pass	
4		Υ	2.29	6.75	25.1	1.00	0.99	Pass	
5	Stopped POV	Υ	2.31	4.55	25.1	1.00	1.03	Pass	
6		Υ	2.27	6.28	24.6	1.00	1.00	Pass	
7		Υ	2.31	4.58	25.0	0.99	0.92	Pass	
8		Υ	2.31	4.55	25.3	1.01	1.03	Pass	
9	Static Run								
10		Υ	2.11	4.88	15.5	0.93	0.76	Pass	
11		Υ	2.07	5.18	15.4	0.94	0.78	Pass	
12		Υ	2.02	6.04	15.3	0.93	0.83	Pass	
13	Slower POV, 25 vs 10	Υ	2.05	4.98	15.1	0.94	0.76	Pass	
14		Υ	1.99	6.07	15.5	0.94	0.82	Pass	
15		Υ	2.03	5.15	15.2	0.95	0.78	Pass	
16		Υ	2.04	5.58	14.9	0.93	0.80	Pass	
17	Static Run								

Run	Test Type	Valid Run?	FCW TTC (s)	Min. Distance (ft)	Speed Reduction (mph)	Peak Decel. (g)	CIB TTC (s)	Pass/Fail	Notes
18		Υ	2.48	4.93	24.4	0.91	1.03	Pass	
19		Υ	2.50	4.03	23.8	0.89	0.99	Pass	
20		Υ	2.68	4.83	25.5	0.88	0.97	Pass	
21	Slower POV, 45 vs 20	Υ	2.51	5.09	24.1	0.90	0.95	Pass	
22	10 10 =0	Υ	2.38	4.53	24.3	0.90	0.92	Pass	
23		Υ	2.60	6.05	25.2	0.89	0.99	Pass	
24		Υ	2.68	6.05	25.0	0.93	1.07	Pass	
25	Static run								
26		N							Driver Hit Brakes
27		Υ	1.88	0.00	29.8	0.96	0.91	Pass	
28		N							GPS Fix Type
29		Υ	2.06	0.00	30.2	0.97	0.86	Pass	
30	Decelerating	Υ	1.97	0.00	29.8	0.95	0.85	Pass	
31	POV, 35	Υ	1.79	0.00	29.8	0.97	0.83	Pass	
32	_	Υ	1.80	0.00	29.7	0.96	0.78	Pass	
33		Υ	1.91	0.00	30.5	0.95	0.88	Pass	
34		N							SV Speed
35		Υ	2.02	0.00	30.7	0.95	0.86	Pass	
36	Static Run								
							•		

Run	Test Type	Valid Run?	FCW TTC (s)	Min. Distance (ft)	Speed Reduction (mph)	Peak Decel. (g)	CIB TTC (s)	Pass/Fail	Notes
37	STP - Static Run		•						
38		Υ				0.01		Pass	
39		Υ				0.01		Pass	
40		Υ				0.01		Pass	
41	STP False Positive, 25	Υ				0.01		Pass	
42		Υ				0.01		Pass	
43		Υ				0.01		Pass	
44		Υ				0.01		Pass	
45	STP - Static Run								
46		Υ				0.00		Pass	
47		Υ				0.00		Pass	
48		Υ				0.01		Pass	
49	STP False Positive, 45	Υ				0.02		Pass	
50		Υ				0.01		Pass	
51		Υ				0.01		Pass	
52		Υ				0.01		Pass	
53	STP - Static Run								

APPENDIX D

Time History Plots

LIST OF FIGURES

Figure D4 Francis Time History for Oten and DOV Deceins	Page
Figure D1. Example Time History for Stopped POV, Passing	
Figure D2. Example Time History for Slower POV 25 vs. 10, Passing	
Figure D3. Example Time History for Slower POV 45 vs. 20, Passing	
Figure D4. Example Time History for Decelerating POV 35, Passing	
Figure D5. Example Time History for False Positive STP 25, Passing	
Figure D6. Example Time History for False Positive STP 45, Passing	
Figure D7. Example Time History Displaying Invalid Headway Criteria	
Figure D8. Example Time History Displaying Various Invalid Criteria	D-16
Figure D9. Example Time History for a Failed Run	
Figure D10. Time History for CIB Run 2, Test 1 - Stopped POV	
Figure D11. Time History for CIB Run 3, Test 1 - Stopped POV	D-19
Figure D12. Time History for CIB Run 4, Test 1 - Stopped POV	
Figure D13. Time History for CIB Run 5, Test 1 - Stopped POV	D-21
Figure D14. Time History for CIB Run 6, Test 1 - Stopped POV	D-22
Figure D15. Time History for CIB Run 7, Test 1 - Stopped POV	D-23
Figure D16. Time History for CIB Run 8, Test 1 - Stopped POV	D-24
Figure D17. Time History for CIB Run 10, Test 2 - Slower Moving POV, 25/10 mph	D-25
Figure D18. Time History for CIB Run 11, Test 2 - Slower Moving POV, 25/10 mph	D-26
Figure D19. Time History for CIB Run 12, Test 2 - Slower Moving POV, 25/10 mph	D-27
Figure D20. Time History for CIB Run 13, Test 2 - Slower Moving POV, 25/10 mph	D-28
Figure D21. Time History for CIB Run 14, Test 2 - Slower Moving POV, 25/10 mph	D-29
Figure D22. Time History for CIB Run 15, Test 2 - Slower Moving POV, 25/10 mph	D-30
Figure D23. Time History for CIB Run 16, Test 2 - Slower Moving POV, 25/10 mph	D-31
Figure D24. Time History for CIB Run 18, Test 2 - Slower Moving POV, 45/20 mph	D-32
Figure D25. Time History for CIB Run 19, Test 2 - Slower Moving POV, 45/20 mph	D-33
Figure D26. Time History for CIB Run 20, Test 2 - Slower Moving POV, 45/20 mph	
Figure D27. Time History for CIB Run 21, Test 2 - Slower Moving POV, 45/20 mph	D-35
Figure D28. Time History for CIB Run 22, Test 2 - Slower Moving POV, 45/20 mph	D-36
Figure D29. Time History for CIB Run 23, Test 2 - Slower Moving POV, 45/20 mph	D-37
Figure D30. Time History for CIB Run 24, Test 2 - Slower Moving POV, 45/20 mph	D-38
Figure D31. Time History for CIB Run 27, Test 3 - Decelerating POV 35 mph	D-39
Figure D32. Time History for CIB Run 29, Test 3 - Decelerating POV 35 mph	
Figure D33. Time History for CIB Run 30, Test 3 - Decelerating POV 35 mph	
Figure D34. Time History for CIB Run 31, Test 3 - Decelerating POV 35 mph	
Figure D35. Time History for CIB Run 32, Test 3 - Decelerating POV 35 mph	
Figure D36. Time History for CIB Run 33, Test 3 - Decelerating POV 35 mph	
Figure D37. Time History for CIB Run 35, Test 3 - Decelerating POV 35 mph	
Figure D38. Time History for CIB Run 38, Test 4 - False Positive STP, 25 mph	
Figure D39. Time History for CIB Run 39, Test 4 - False Positive STP, 25 mph	
Figure D40. Time History for CIB Run 40, Test 4 - False Positive STP, 25 mph	
Figure D41 Time History for CIB Run 41 Test 4 - False Positive STP 25 mph	

Figure D42.	Time History for CIB Run	42, Test 4 - False	Positive STP, 25	mph D-50
Figure D43.	Time History for CIB Run	43, Test 4 - False	Positive STP, 25	mph D-51
Figure D44.	Time History for CIB Run	44, Test 4 - False	Positive STP, 25	mph D-52
Figure D45.	Time History for CIB Run	46, Test 4 - False	Positive STP, 45	mph D-53
Figure D46.	Time History for CIB Run	47, Test 4 - False	Positive STP, 45	mph D-54
Figure D47.	Time History for CIB Run	48, Test 4 - False	Positive STP, 45	mph D-55
Figure D48.	Time History for CIB Run	49, Test 4 - False	Positive STP, 45	mph D-56
Figure D49.	Time History for CIB Run	50, Test 4 - False	Positive STP, 45	mph D-57
Figure D50.	Time History for CIB Run	51, Test 4 - False	Positive STP, 45	mphD-58
Figure D51.	Time History for CIB Run !	52, Test 4 - False	Positive STP, 45	mph D-59

Description of Time History Plots

A set of time history plots is provided for each valid run in the test series. Each set of plots comprises time varying data from both the Subject Vehicle (SV) and the Principal Other Vehicle (POV), as well as pass/fail envelopes and thresholds. The following is a description of data types shown in the time history plots, as well as a description of the color codes indicating to which vehicle the data pertain.

Time History Plot Description

Each time history plot consists of data relevant to the test type under consideration, and therefore the data channels plotted vary according to test type. The test types (shown in the plot titles) include:

- Stopped POV (SV at 25 mph)
- Slower POV, 25/10 (SV at 25 mph, POV at 10 mph)
- Slower POV, 45/20 (SV at 45 mph, POV at 20 mph)
- Decelerating POV 35 mph (Both vehicles at 35 mph with 13.8 m gap, POV brakes at 0.3 g)
- False Positive STP 25 mph (Steel trench plate run over at 25 mph)
- False Positive STP 45 mph (Steel trench plate run over at 45 mph)

Time history figures include the following sub-plots:

- FCW Warning Displays the Forward Collision Warning alert (which can be auditory, visual, or haptic).
 Depending on the type of FCW alert or instrumentation used to measure the alert, this can be any combination of the following:
 - o Filtered, rectified, and normalized sound signal. The vertical scale is 0 to 1.
 - Filtered, rectified, and normalized acceleration (i.e., haptic alert, such as steering wheel vibration). The vertical scale is 0 to 1.
 - Normalized light sensor signal. The vertical scale is 0 to 1.

As only the auditory or haptic alert is perceptible by the driver during a test run, the earliest of either of these alerts is used to define the onset of the FCW alert. A vertical black bar on the plot indicates the TTC (sec) at the first moment of the warning issued by the FCW system. The FCW TTC is displayed to the right of the subplot in green. For False Positive tests, when the FCW presents a warning "FCW" is shown in red at the right edge of the FCW plot.

- Headway (ft) Longitudinal separation (gap) between the frontmost point of the Subject Vehicle and the
 rearmost point of the Strikeable Surrogate Vehicle (SSV) towed by the Principal Other Vehicle. The minimum
 headway during the run is displayed to the right of the subplot.
- SV/POV Speed (mph) Speed of the Subject Vehicle and Principal Other Vehicle (if any). For CIB tests, the speed reduction experienced by the Subject Vehicle is displayed to the right of the subplot.
- Yaw Rate (deg/sec) Yaw rate of the Subject Vehicle and Principal Other Vehicle (if any).
- Lateral Offset (ft) Lateral offset within the lane of the Subject Vehicle to the center of the lane of travel. Note that for tests involving the Strikeable Surrogate Vehicle (SSV), the associated lateral restraint track is defined to be the center of the lane of travel. If testing is done with a different POV which does not have a lateral restraint track, lateral offset is defined to be the lateral offset between the SV and POV.
- Ax (g) Longitudinal acceleration of the Subject Vehicle and Principal Other Vehicle (if any). For CIB tests, the TTC (sec) at the moment of first CIB activation is displayed to the right of the subplot in green. Also, the peak value of Ax for the SV is shown on the subplot.
- Accelerator Pedal Position (0-1) Normalized position of the accelerator pedal.

Envelopes and Thresholds

Some of the time history plot figures contain either green or yellow envelopes and/or black threshold lines. These envelopes and thresholds are used to programmatically and visually determine the validity of a given test run. Envelope and threshold exceedances are indicated with either red shading or red asterisks, and red text is placed to the right side of the plot indicating the type of exceedance. Such exceedances indicate either that the test was invalid or that the requirements of the test were not met (i.e., failure of the AEB system).

For plots with green envelopes, in order for the test to be valid, the time-varying data must not exceed the envelope boundaries at any time. Exceedances of a green envelope are indicated by red shading in the area between the measured time-varying data and the envelope boundaries.

For plots with yellow envelopes, in order for the test to be valid, the time-varying data must not exceed the envelope at the beginning (left edge of the boundary) and/or end (right edge), but may exceed the boundary during the time

between the left and right edges. Exceedances at the left or right extent of a yellow envelope are indicated by red asterisks.

For the headway plot, a dashed black threshold line indicating a relative headway of zero is displayed. If no impact occurs, a green circle is displayed at the moment of minimum distance. If impact occurs, a red asterisk is displayed at the moment of impact.

For the Ax plot, if the scenario is an AEB brake-to-stop scenario, a vertical dashed black line is displayed for all plots indicating the moment of first POV braking. The yellow envelope in this case is relevant to the POV braking only. The left edge of the envelope is at 1.5 seconds after the first POV braking. A solid black threshold line extends horizontally 0.5 seconds to the left of the envelope. This threshold line represents the time during which the Ax of the Principal Other Vehicle must first achieve 0.27 g (the upper edge of the envelope). A green circle or red asterisk is displayed at the moment the POV brake level achieves 0.27 g. A green circle indicates that the test was valid (the threshold was crossed during the appropriate interval) and a red asterisk indicates that the test was invalid (the threshold was crossed outside of the appropriate interval). Additionally, for the CIB tests, a dashed black threshold line indicating an Ax of -0.15 g is given to define the onset of CIB activation. When the Subject Vehicle's Ax crosses this threshold, the CIB TTC is calculated and displayed.

For the accelerator pedal position plot, a green envelope is given starting 500 ms after the onset of the FCW warning to ensure that the accelerator pedal was released at the correct time and remained off for the duration of the CIB event. For false positive runs a green dot, rather than a green envelope is displayed. The green dot indicates that at the end of the run the accelerator pedal had not been released. If the accelerator had been released a red asterisk would appear.

Color Codes

Color codes have been adopted to easily identify which data correspond to which vehicle, as well as to indicate the types of envelopes and thresholds used in the plots.

Color codes can be broken into four categories:

- 1. Time-varying data
- 2. Validation envelopes and thresholds
- 3. Individual data points
- 4. Text
- 1. Time-varying data color codes:
 - Blue = Subject Vehicle data
 - Magenta = Principal Other Vehicle data
 - Brown = Relative data between SV and POV (i.e., TTC, lateral offset and headway distance)
- 2. Validation envelope and threshold color codes:
 - Green envelope = time varying data must be within the envelope at all times in order to be valid
 - Yellow envelope = time varying data must be within limits at left and/or right ends
 - Black threshold (Solid) = time varying data must cross this threshold in the time period shown in order to be valid
 - Black threshold (Dashed) = for reference only this can include warning level thresholds, TTC thresholds, and acceleration thresholds
- 3. Individual data point color codes:
 - Green circle = passing or valid value at a given moment in time
 - Red asterisk = failing or invalid value at a given moment in time
- 4. Text color codes:
 - Green = passing or valid value
 - Red = failing or invalid value

Other Notations

- NG Indicates that the value for that variable was outside of bounds and therefore "No Good".
- No Wng No warning was detected.
- POV Indicates that the value for the Principal Other Vehicle was out of bounds.
- SV Indicates that the value for the Subject Vehicle was out of bounds.
- SR Shows the speed reduction value.
- Thr Indicates that the requirements for the throttle were not met.

The minimum (worst) GPS fix type is displayed in the lower right corner of each page. The only valid fix type is RTK fixed (displayed in green). If the fix type during any portion of the test was anything other than RTK fixed, then "RTK Fixed OR LESS!" is displayed in red.

Examples of time history plots for each test type (including passing, failing and invalid runs) are shown in Figure D1 through Figure D9. Figures D1 through D6 show passing runs for each of the 6 test types. Figures D7 and D8 show examples of invalid runs. Figure D9 shows an example of a valid test that failed the CIB requirements.

Time history data plots for the tests of the vehicle under consideration herein are provided beginning with Figure D10.

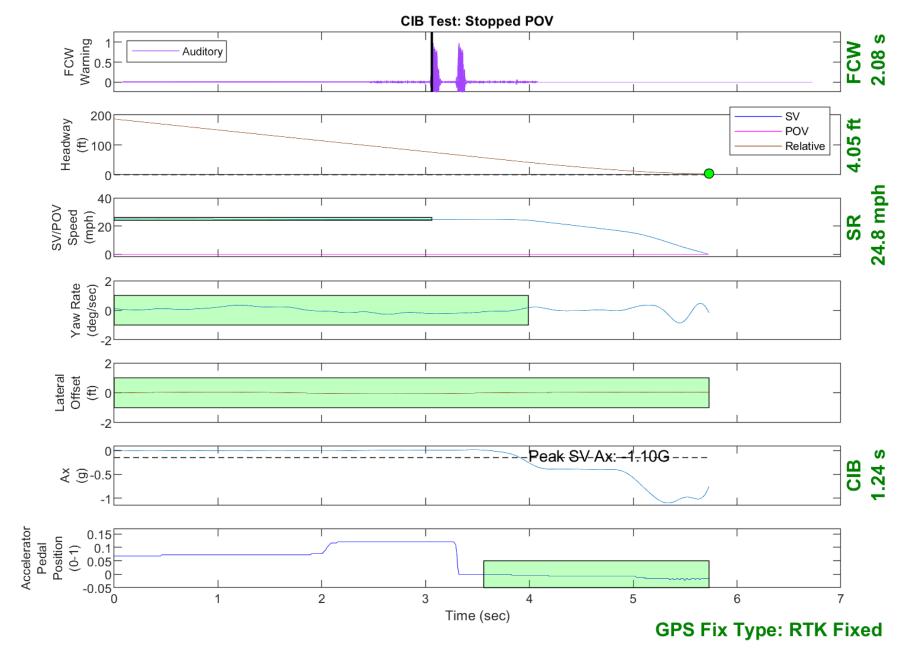


Figure D1. Example Time History for Stopped POV, Passing

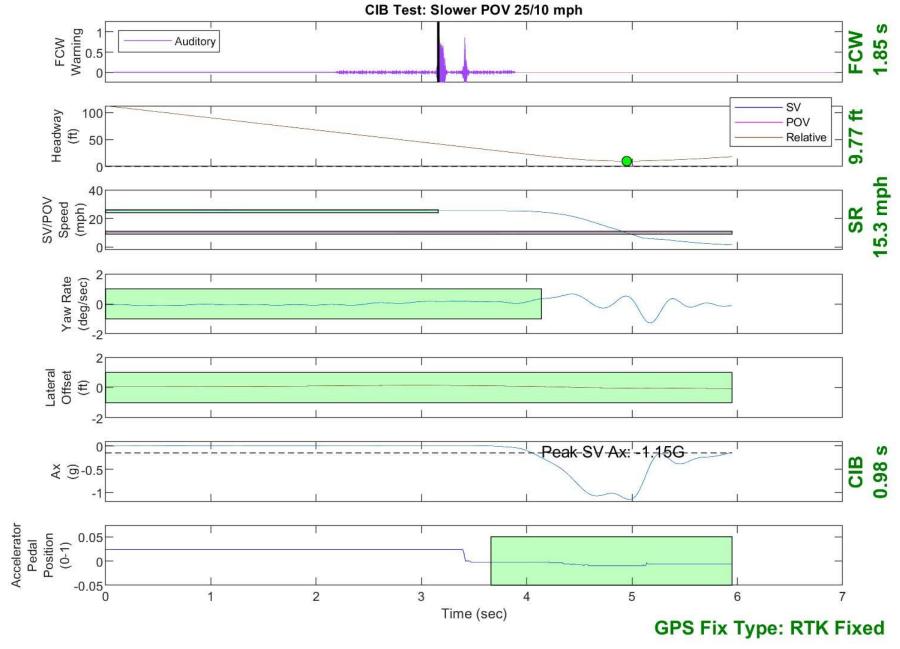


Figure D2. Example Time History for Slower POV 25 vs. 10, Passing

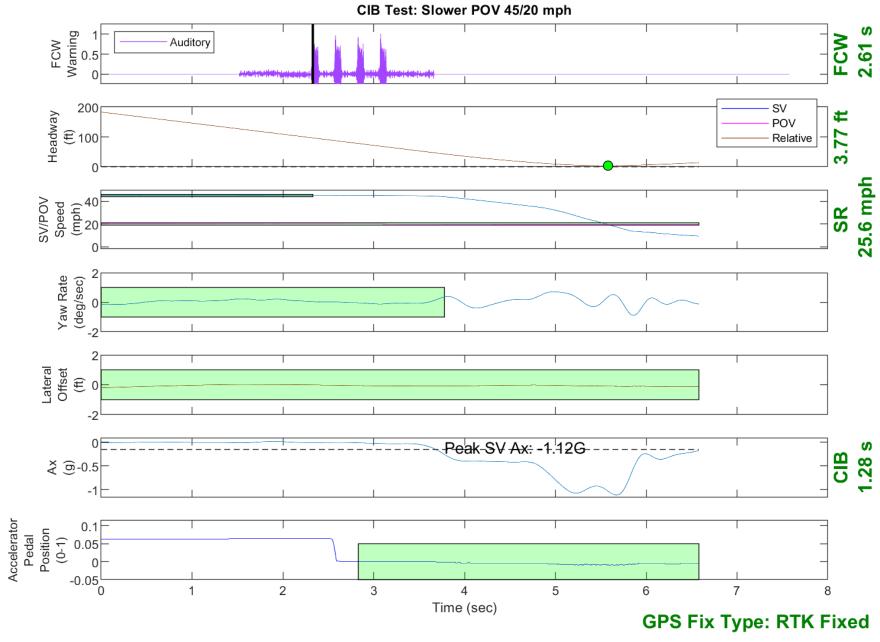


Figure D3. Example Time History for Slower POV 45 vs. 20, Passing

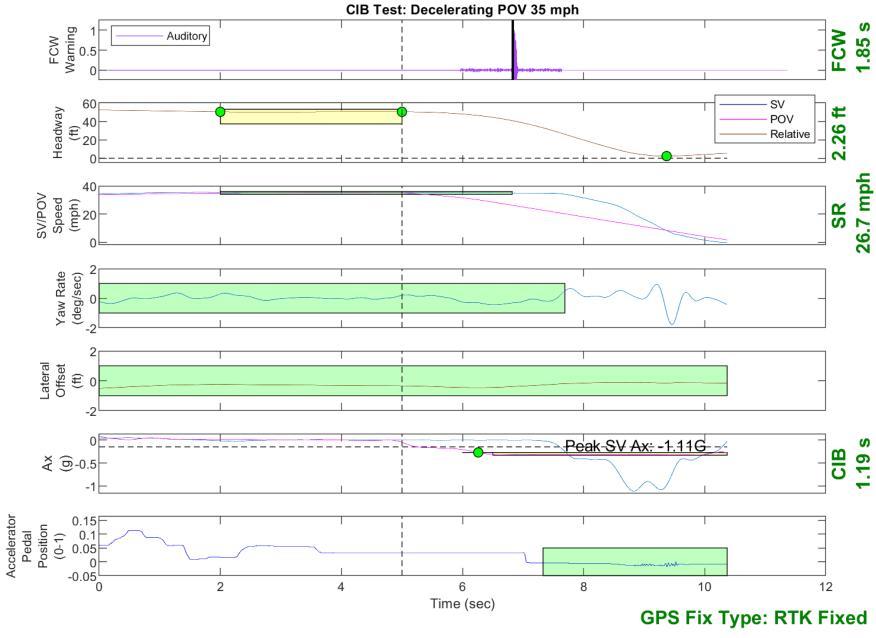


Figure D4. Example Time History for Decelerating POV 35, Passing

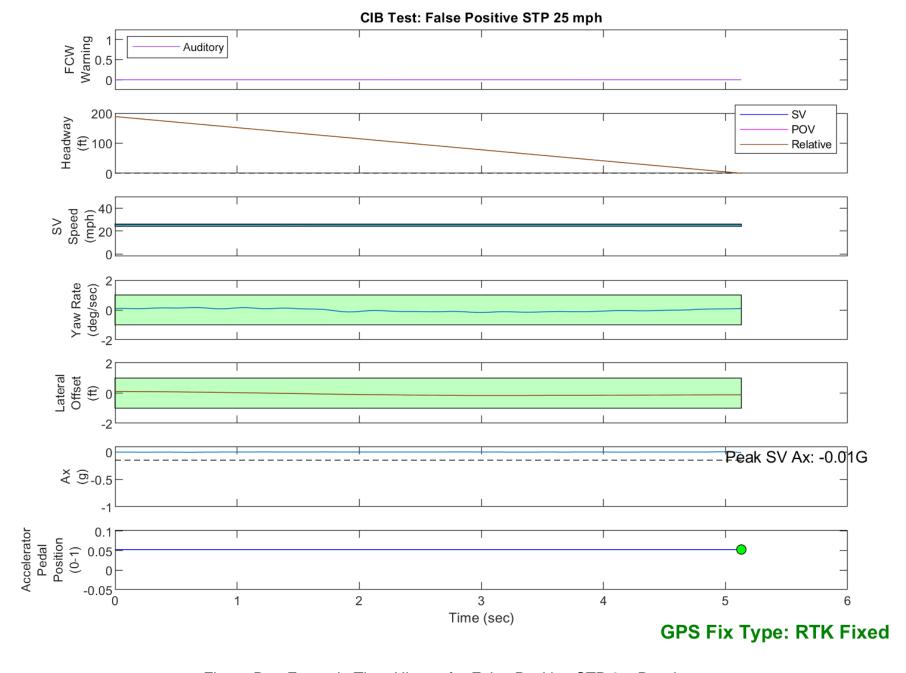


Figure D5. Example Time History for False Positive STP 25, Passing

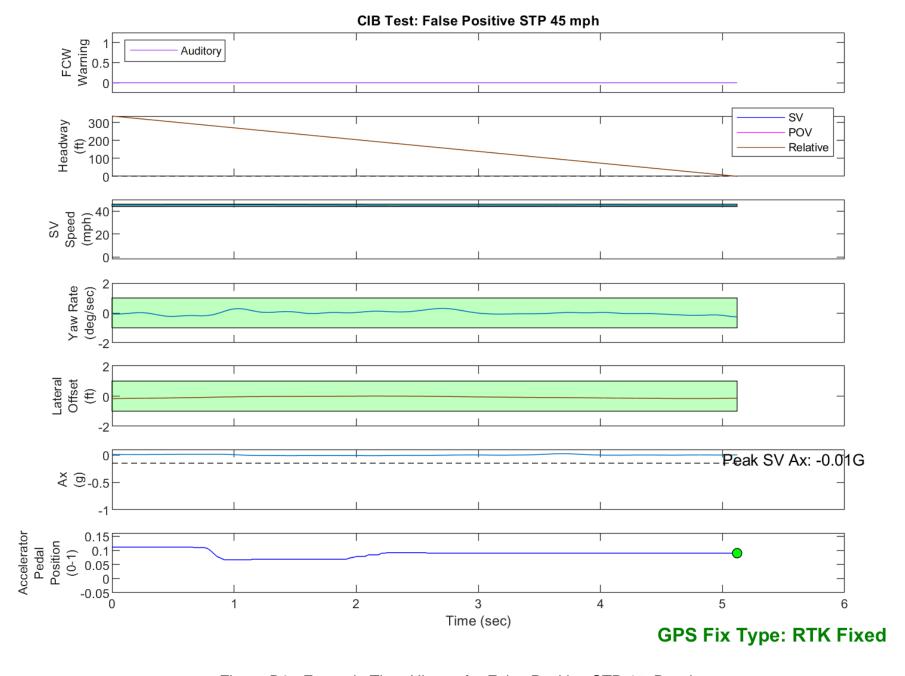


Figure D6. Example Time History for False Positive STP 45, Passing

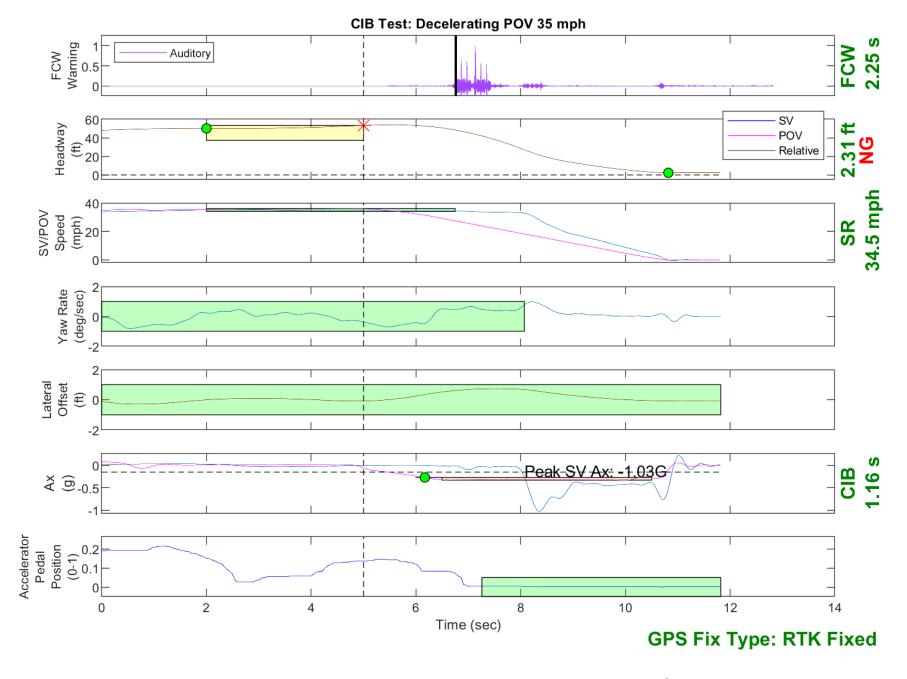


Figure D7. Example Time History Displaying Invalid Headway Criteria

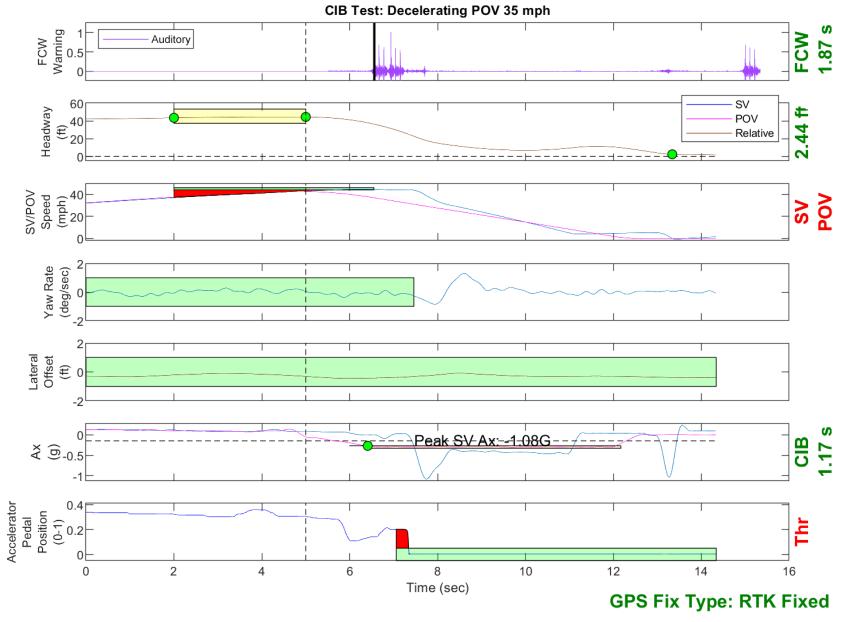


Figure D8. Example Time History Displaying Various Invalid Criteria

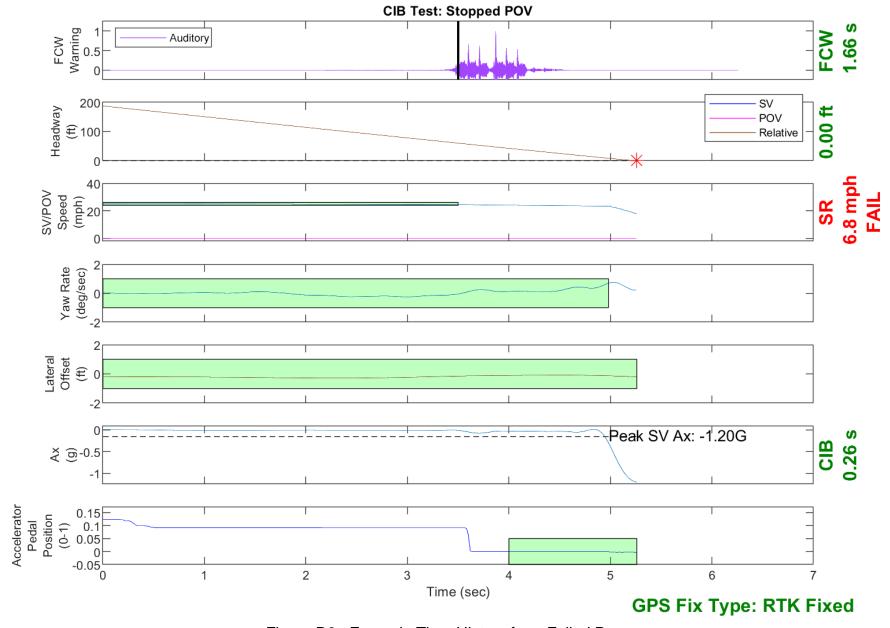


Figure D9. Example Time History for a Failed Run

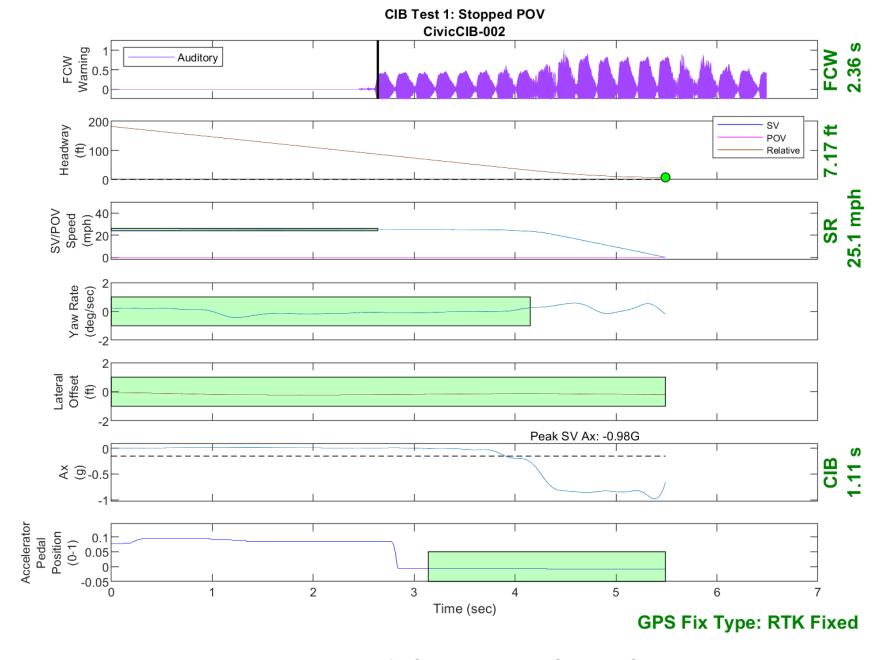


Figure D10. Time History for CIB Run 2, Test 1 - Stopped POV

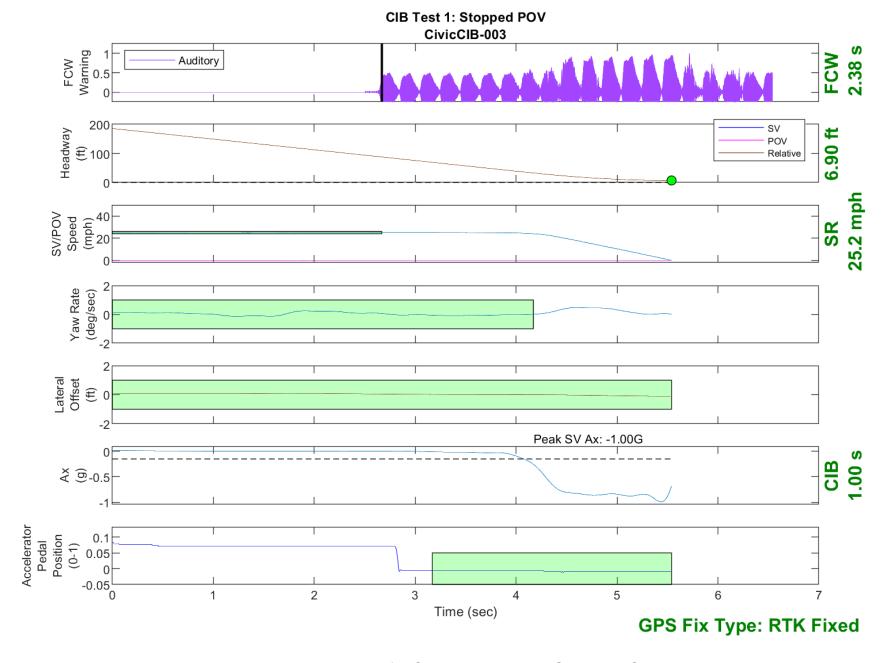


Figure D11. Time History for CIB Run 3, Test 1 - Stopped POV

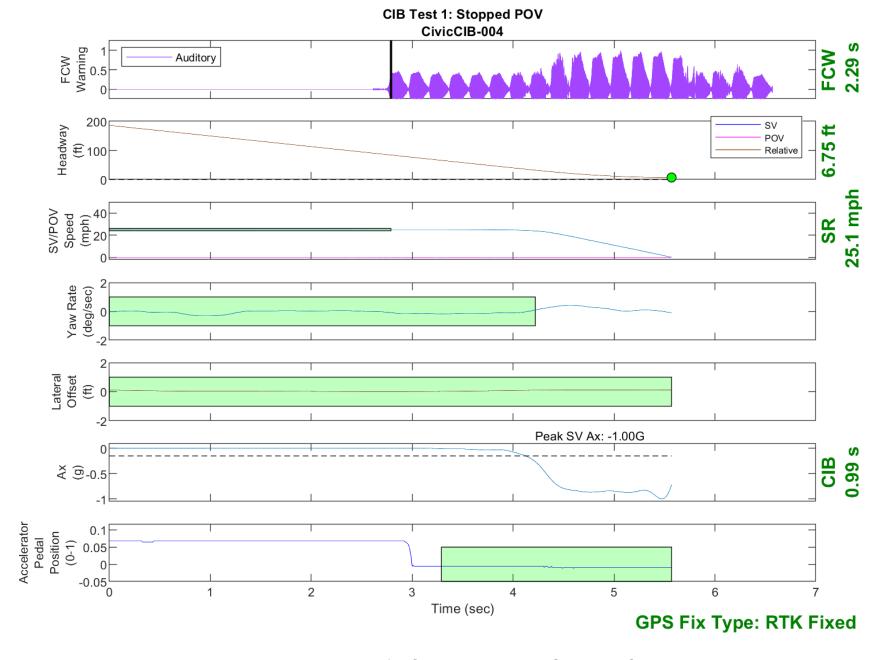


Figure D12. Time History for CIB Run 4, Test 1 - Stopped POV

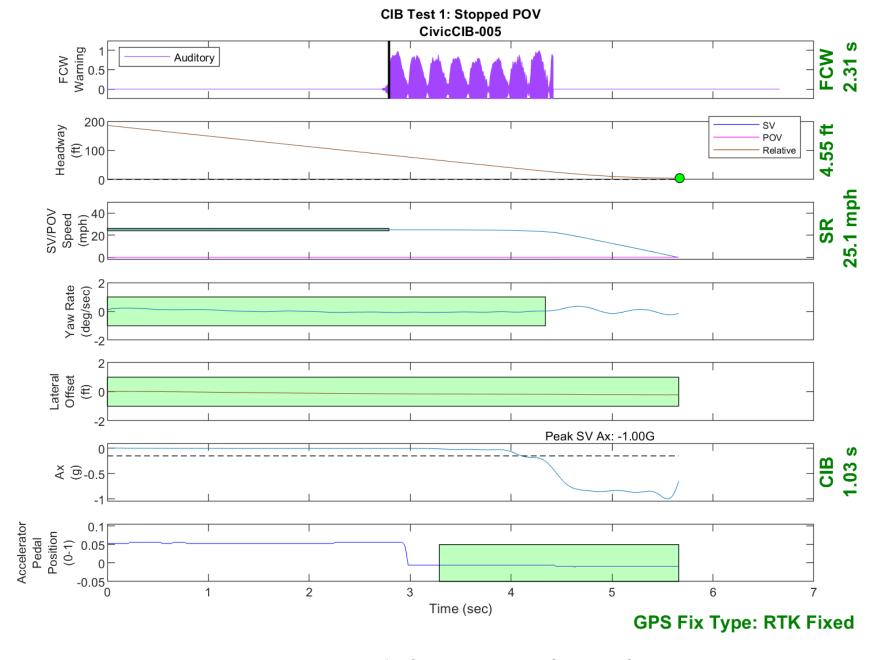


Figure D13. Time History for CIB Run 5, Test 1 - Stopped POV



Figure D14. Time History for CIB Run 6, Test 1 - Stopped POV

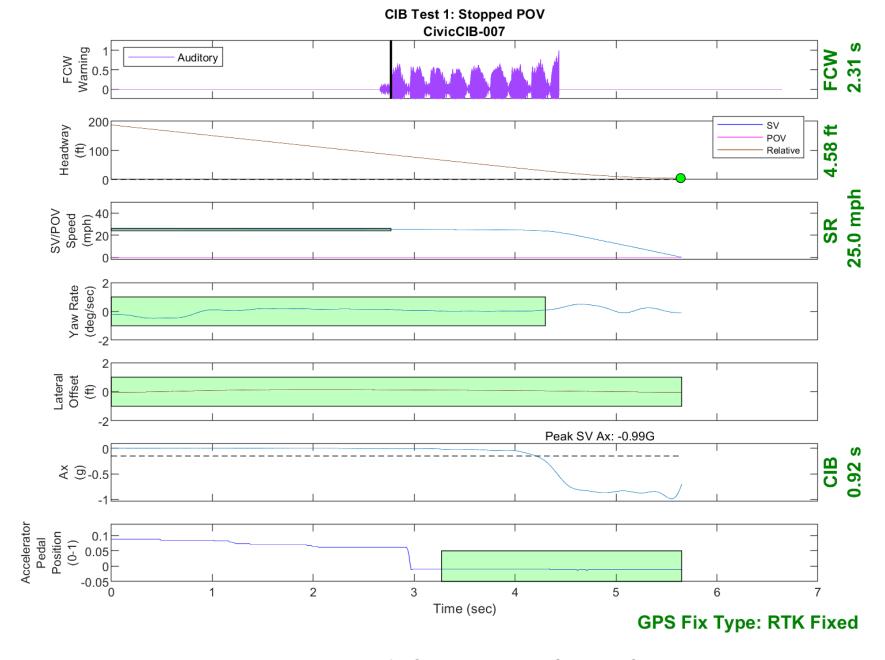


Figure D15. Time History for CIB Run 7, Test 1 - Stopped POV

Figure D16. Time History for CIB Run 8, Test 1 - Stopped POV

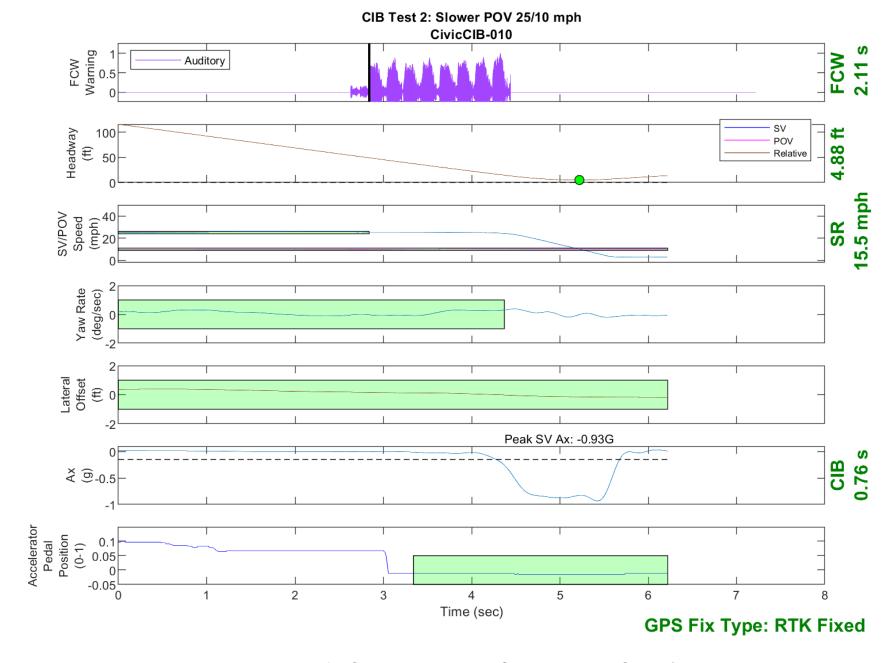


Figure D17. Time History for CIB Run 10, Test 2 - Slower Moving POV, 25/10 mph

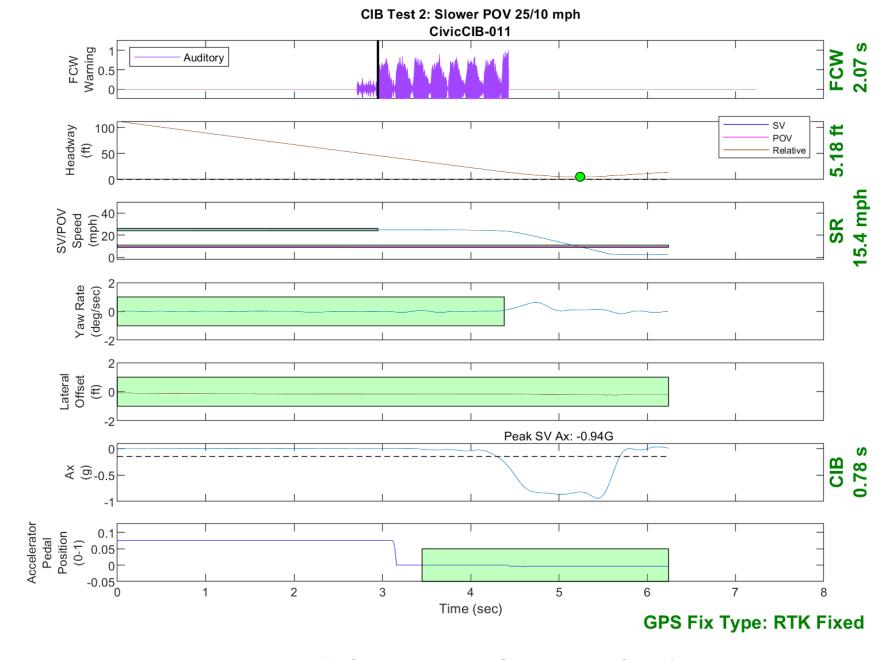


Figure D18. Time History for CIB Run 11, Test 2 - Slower Moving POV, 25/10 mph

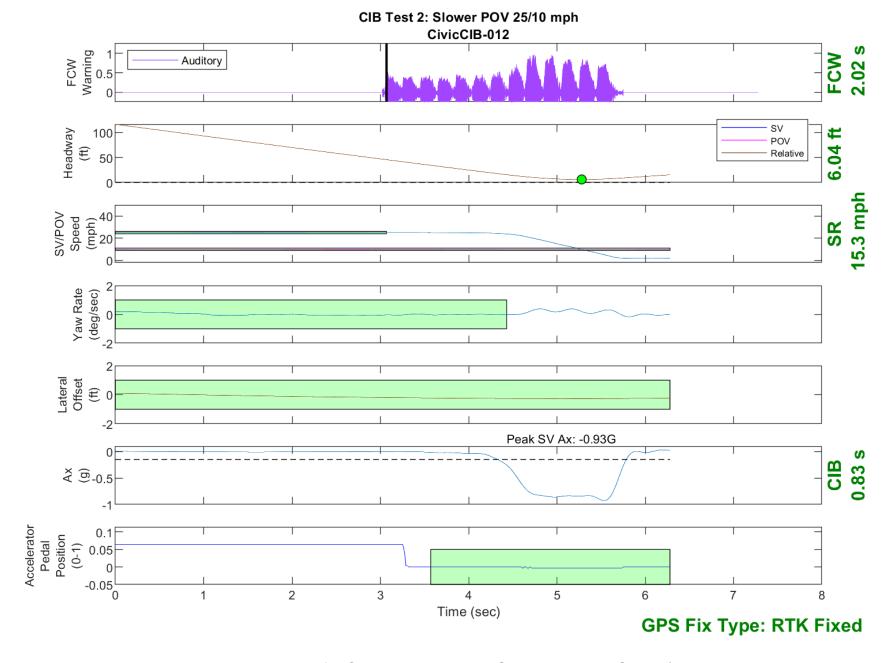


Figure D19. Time History for CIB Run 12, Test 2 - Slower Moving POV, 25/10 mph

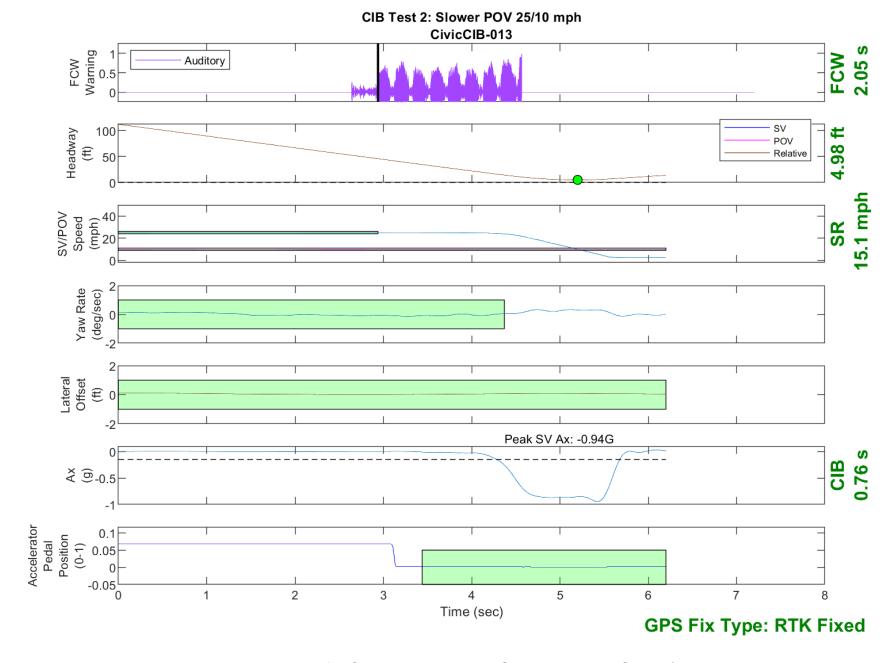


Figure D20. Time History for CIB Run 13, Test 2 - Slower Moving POV, 25/10 mph

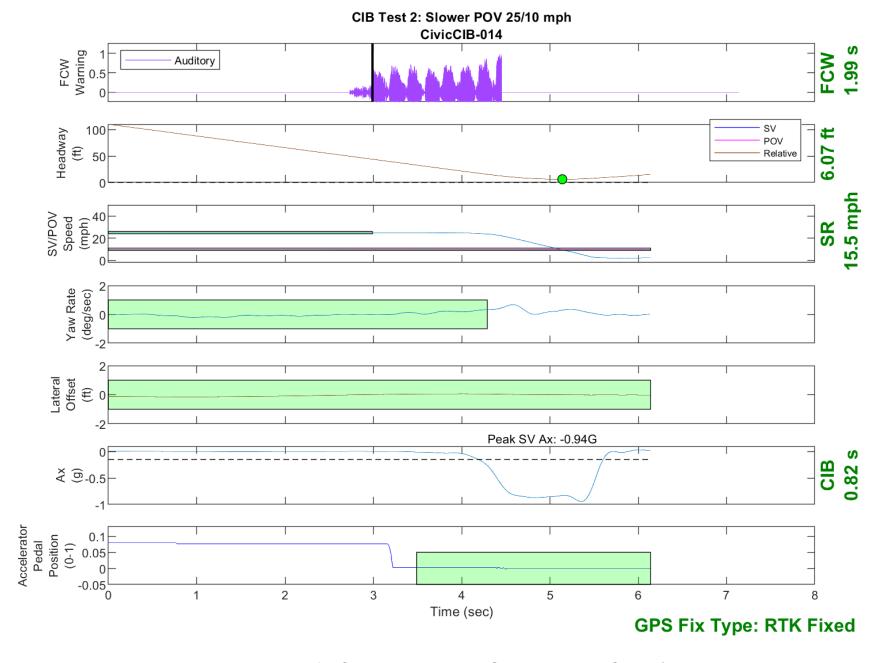


Figure D21. Time History for CIB Run 14, Test 2 - Slower Moving POV, 25/10 mph

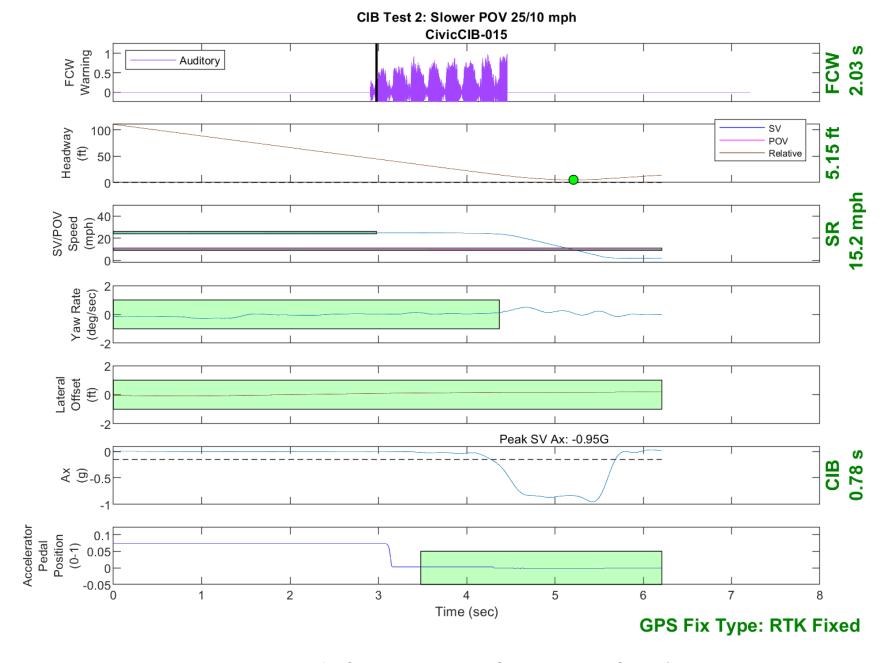


Figure D22. Time History for CIB Run 15, Test 2 - Slower Moving POV, 25/10 mph

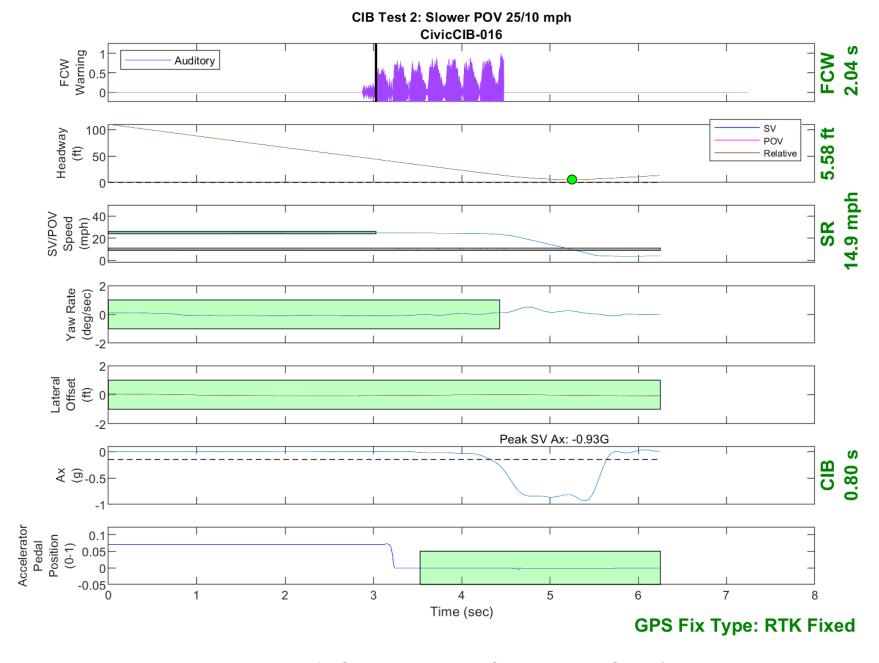


Figure D23. Time History for CIB Run 16, Test 2 - Slower Moving POV, 25/10 mph

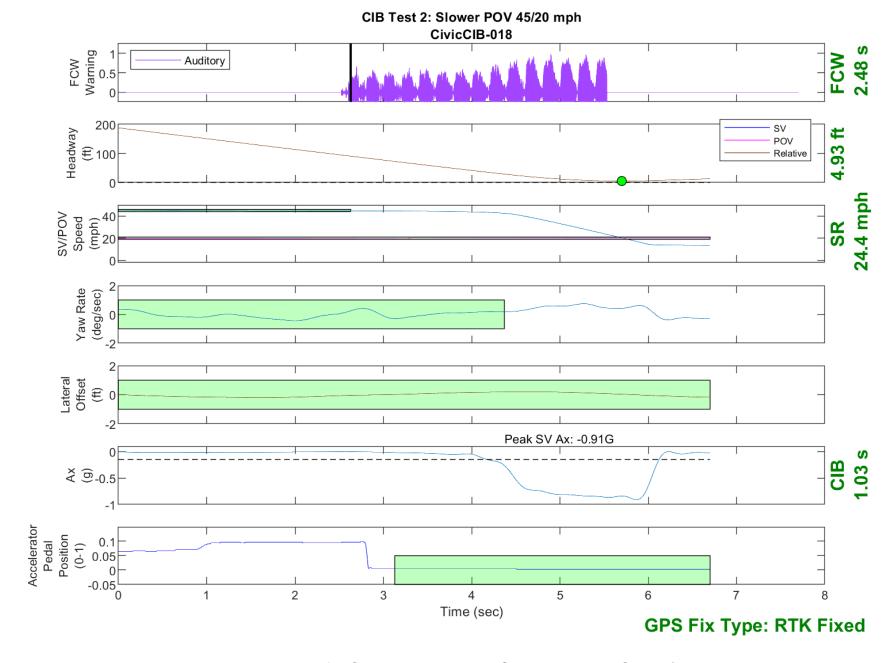


Figure D24. Time History for CIB Run 18, Test 2 - Slower Moving POV, 45/20 mph

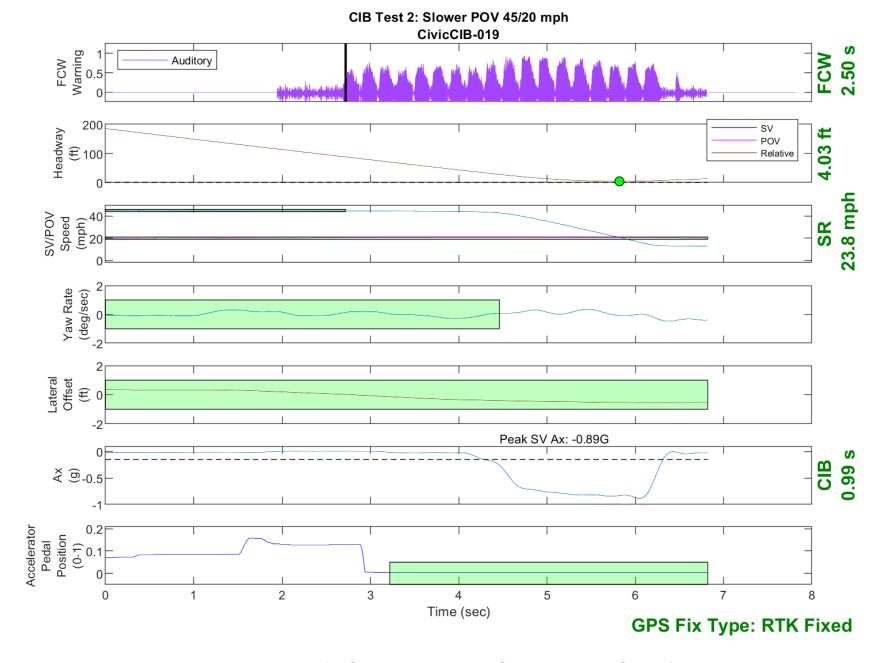


Figure D25. Time History for CIB Run 19, Test 2 - Slower Moving POV, 45/20 mph

Figure D26. Time History for CIB Run 20, Test 2 - Slower Moving POV, 45/20 mph



Figure D27. Time History for CIB Run 21, Test 2 - Slower Moving POV, 45/20 mph

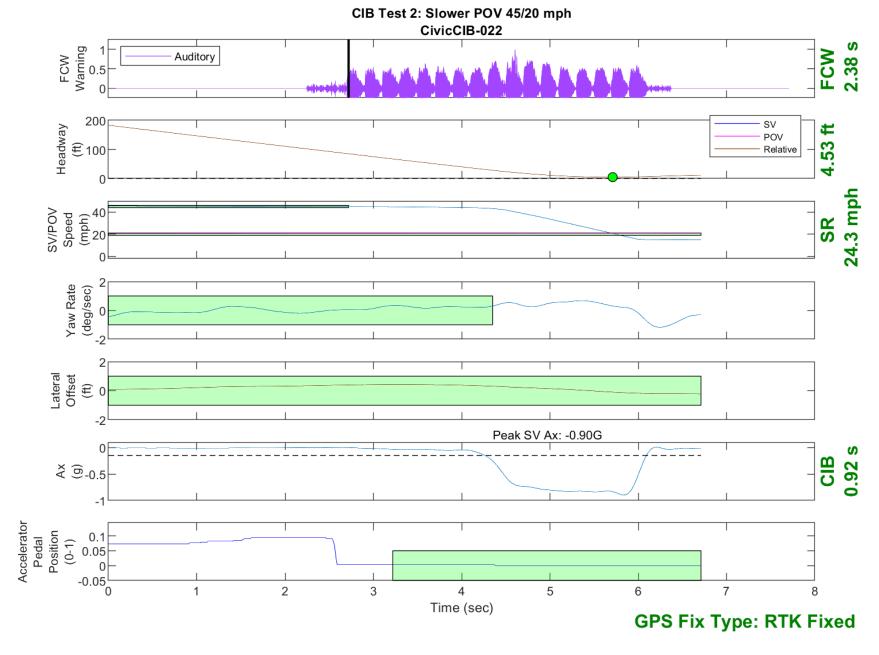


Figure D28. Time History for CIB Run 22, Test 2 - Slower Moving POV, 45/20 mph

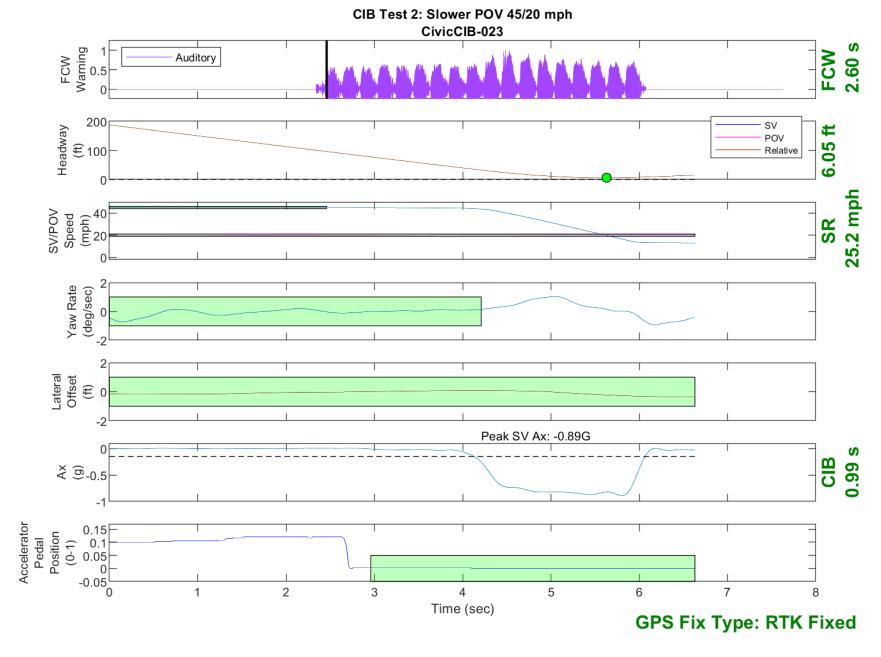


Figure D29. Time History for CIB Run 23, Test 2 - Slower Moving POV, 45/20 mph

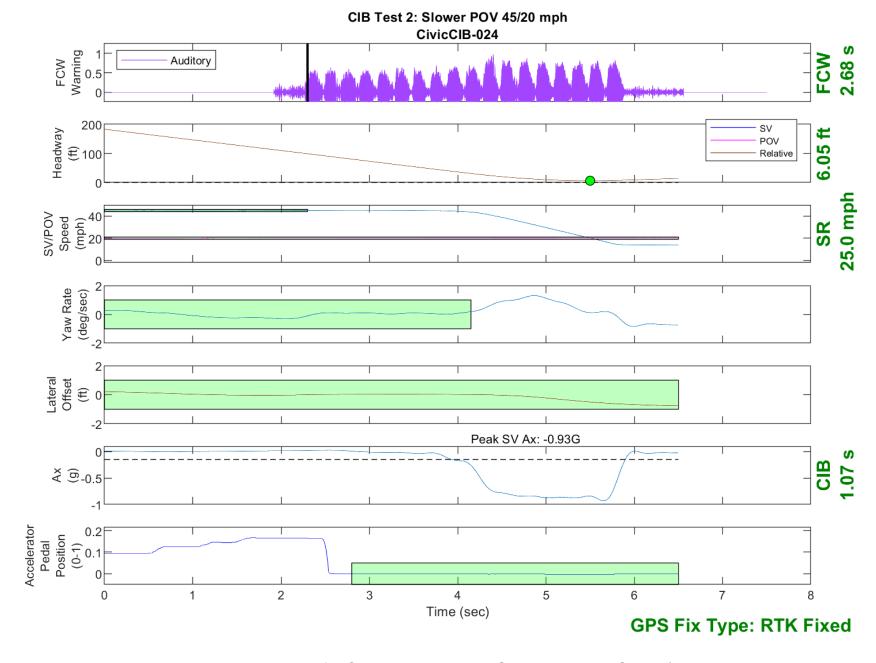


Figure D30. Time History for CIB Run 24, Test 2 - Slower Moving POV, 45/20 mph

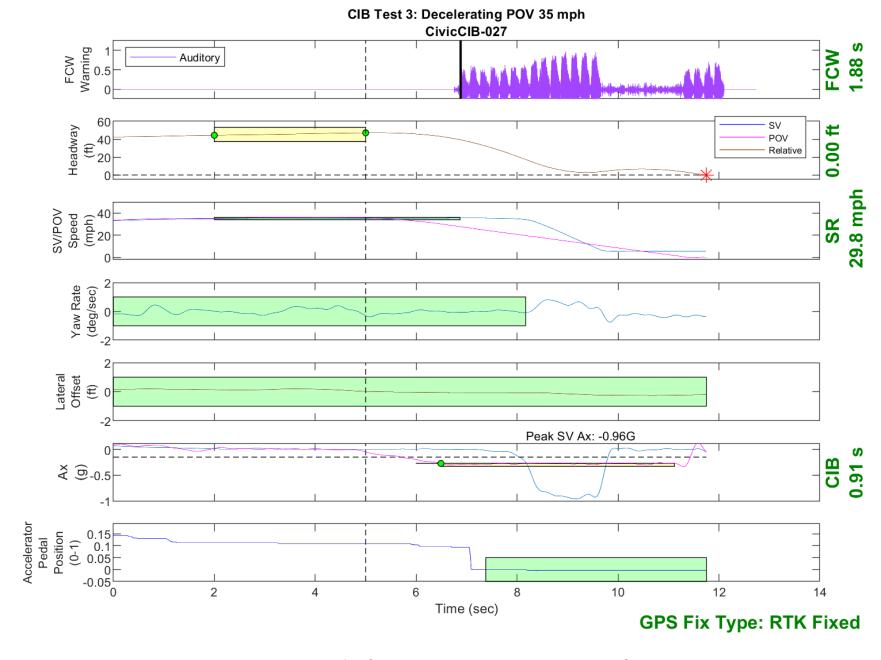


Figure D31. Time History for CIB Run 27, Test 3 - Decelerating POV 35 mph

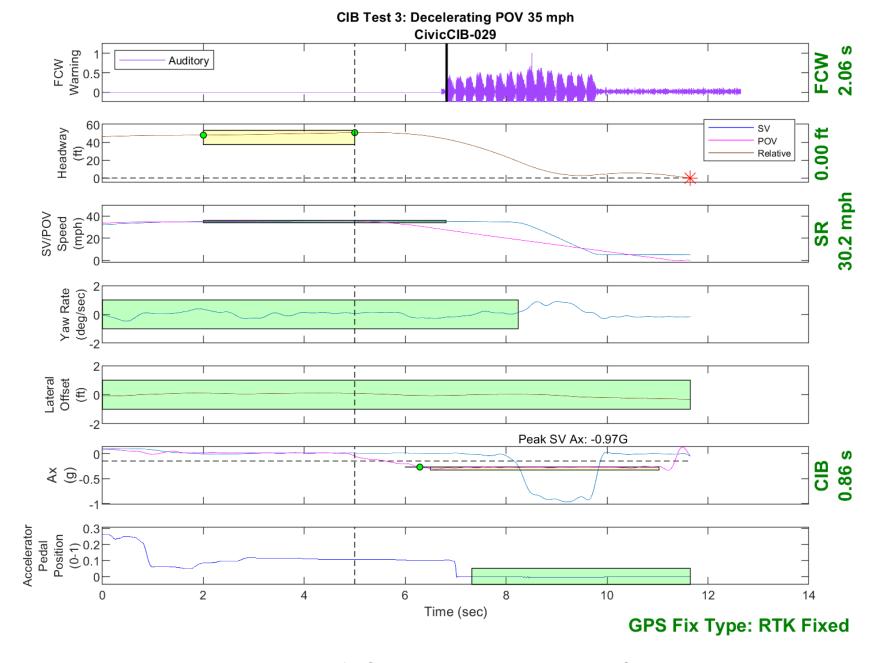


Figure D32. Time History for CIB Run 29, Test 3 - Decelerating POV 35 mph

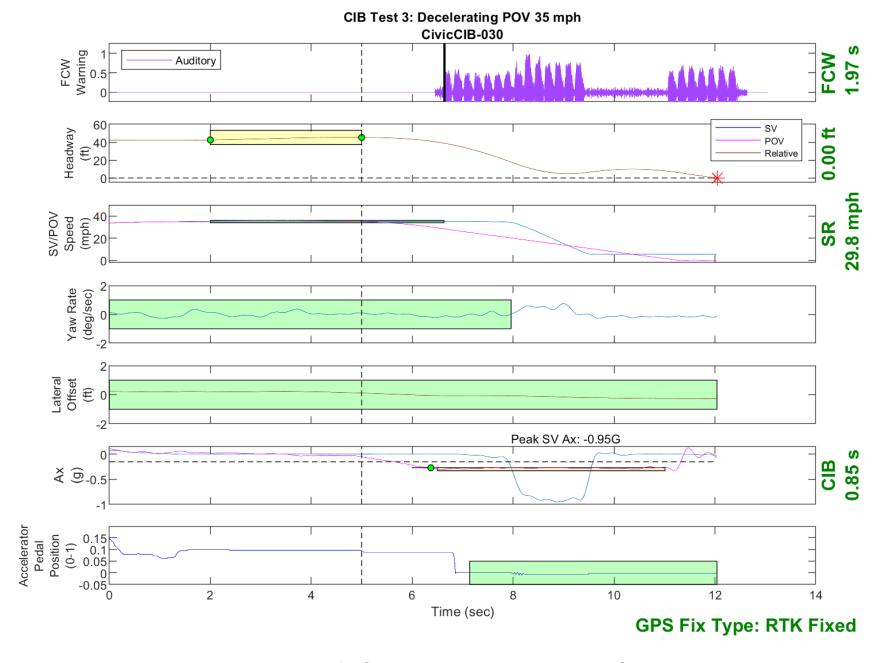


Figure D33. Time History for CIB Run 30, Test 3 - Decelerating POV 35 mph

Figure D34. Time History for CIB Run 31, Test 3 - Decelerating POV 35 mph

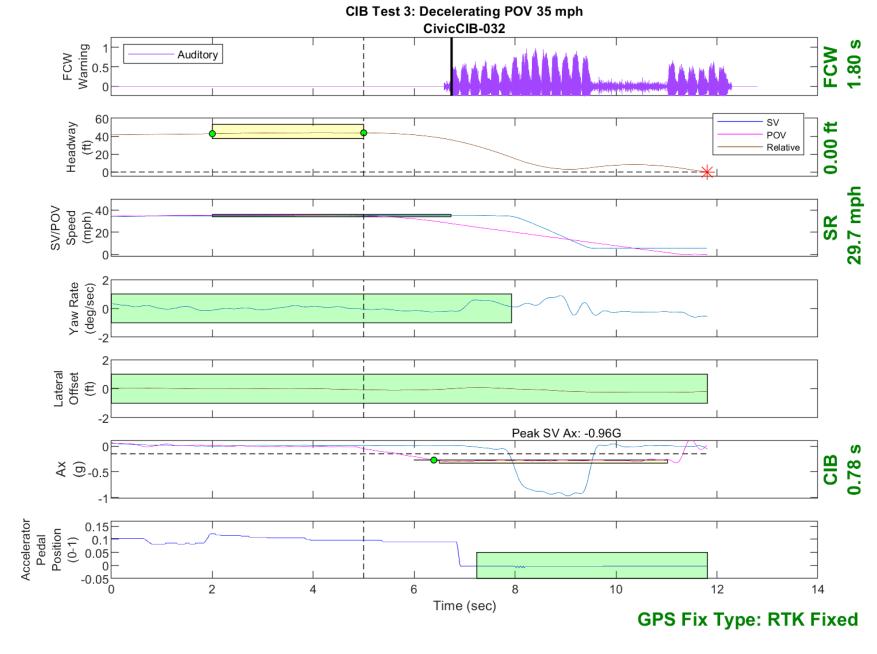


Figure D35. Time History for CIB Run 32, Test 3 - Decelerating POV 35 mph

Figure D36. Time History for CIB Run 33, Test 3 - Decelerating POV 35 mph



Figure D37. Time History for CIB Run 35, Test 3 - Decelerating POV 35 mph

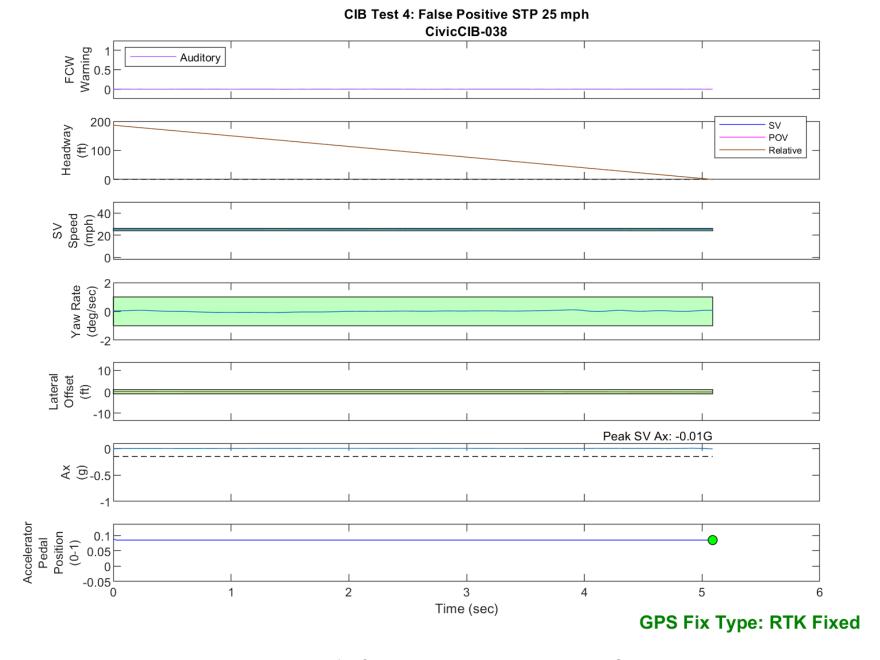


Figure D38. Time History for CIB Run 38, Test 4 - False Positive STP, 25 mph

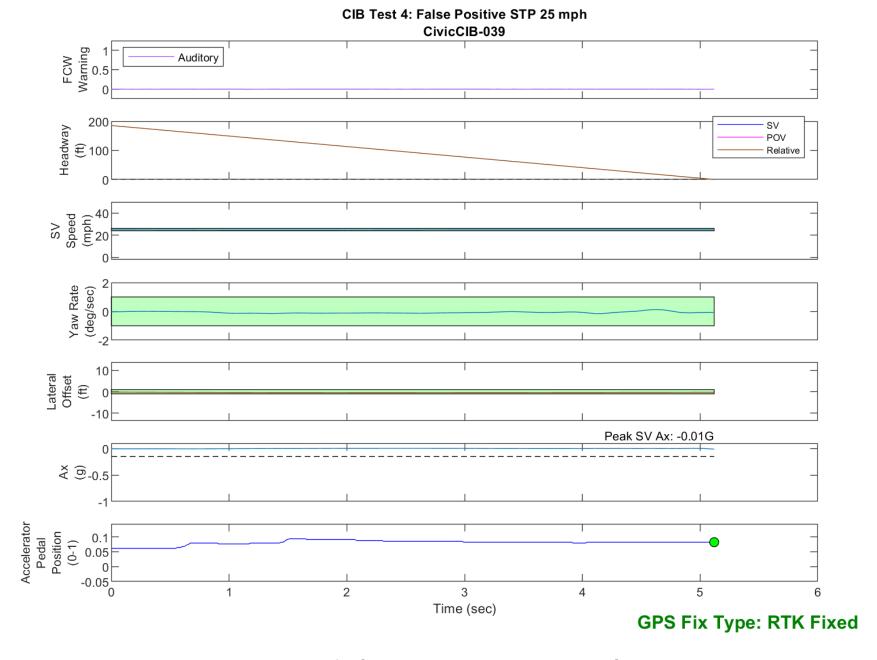


Figure D39. Time History for CIB Run 39, Test 4 - False Positive STP, 25 mph

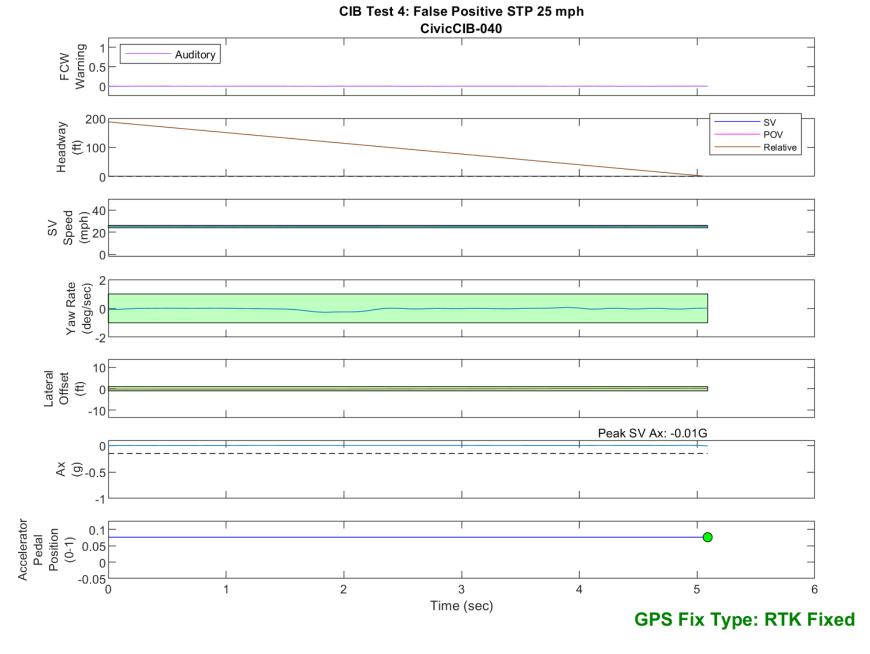


Figure D40. Time History for CIB Run 40, Test 4 - False Positive STP, 25 mph

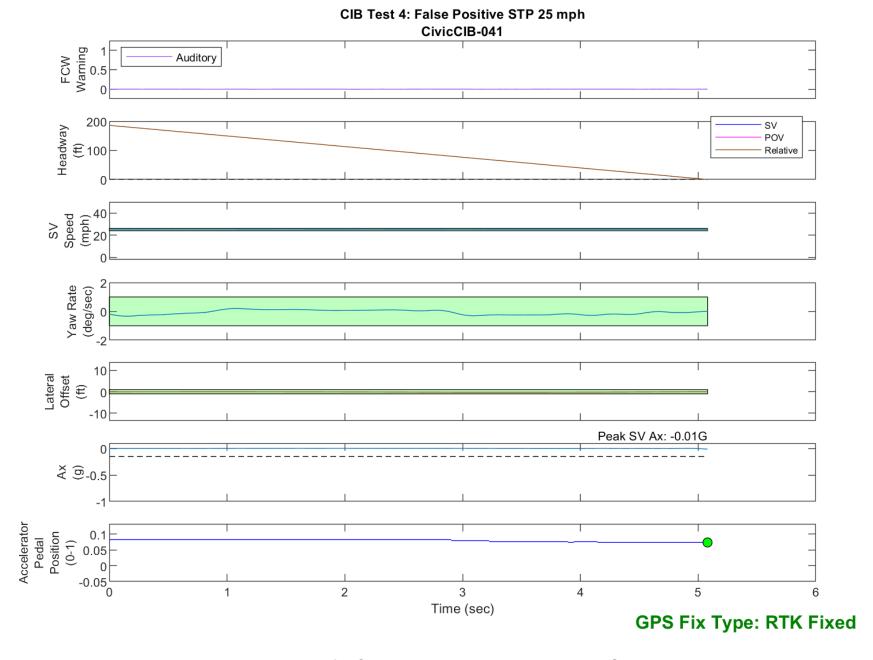


Figure D41. Time History for CIB Run 41, Test 4 - False Positive STP, 25 mph

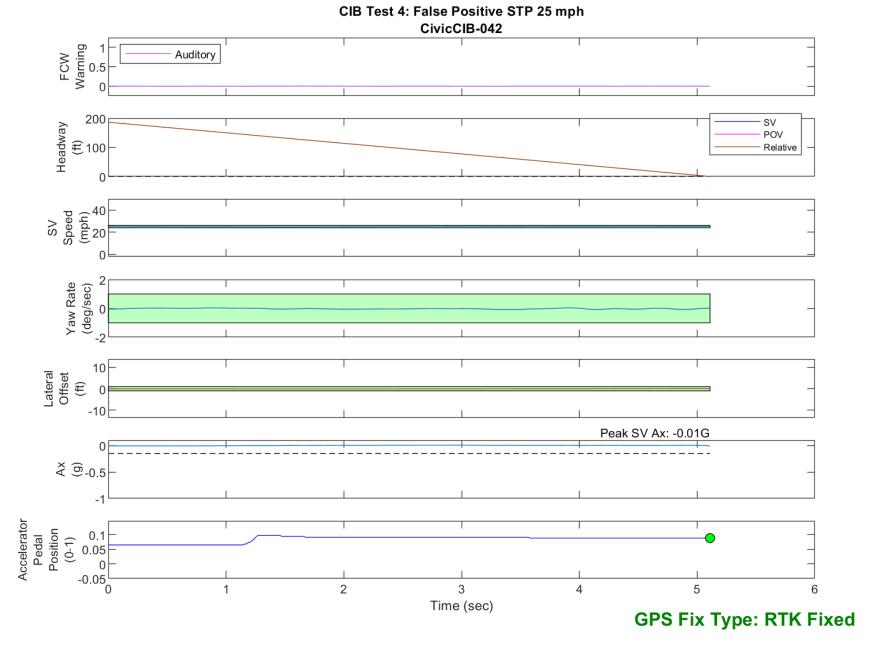


Figure D42. Time History for CIB Run 42, Test 4 - False Positive STP, 25 mph

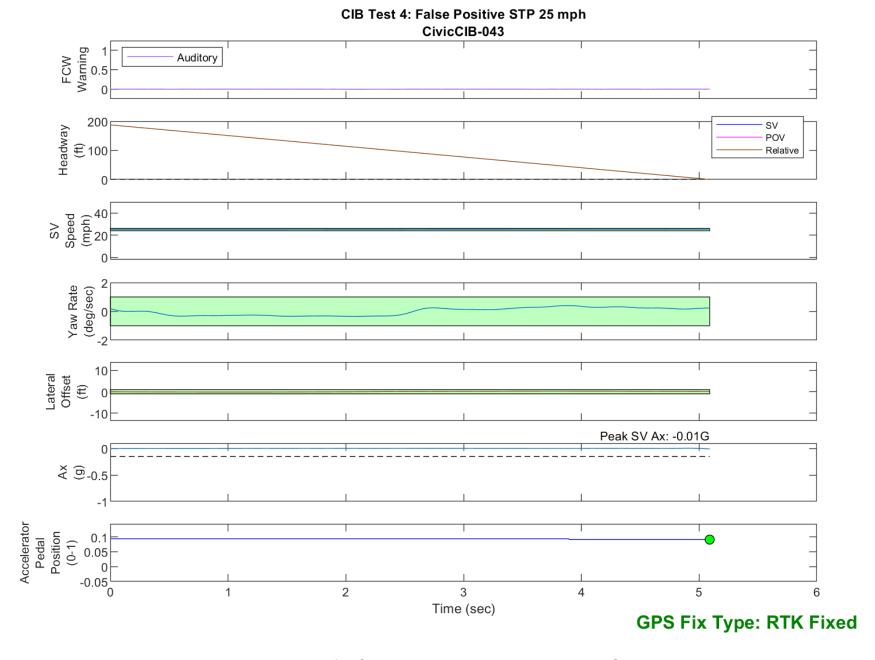


Figure D43. Time History for CIB Run 43, Test 4 - False Positive STP, 25 mph

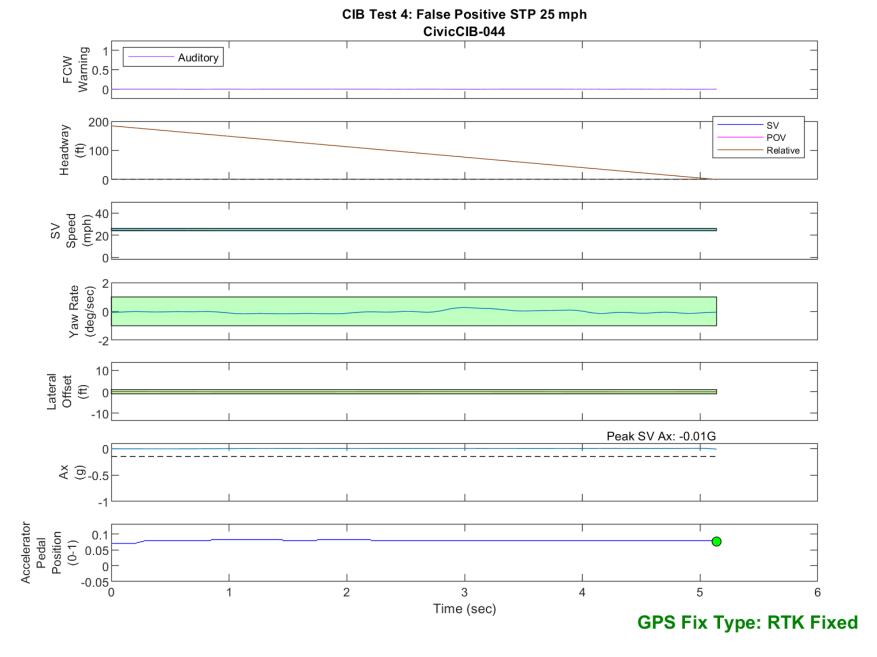


Figure D44. Time History for CIB Run 44, Test 4 - False Positive STP, 25 mph

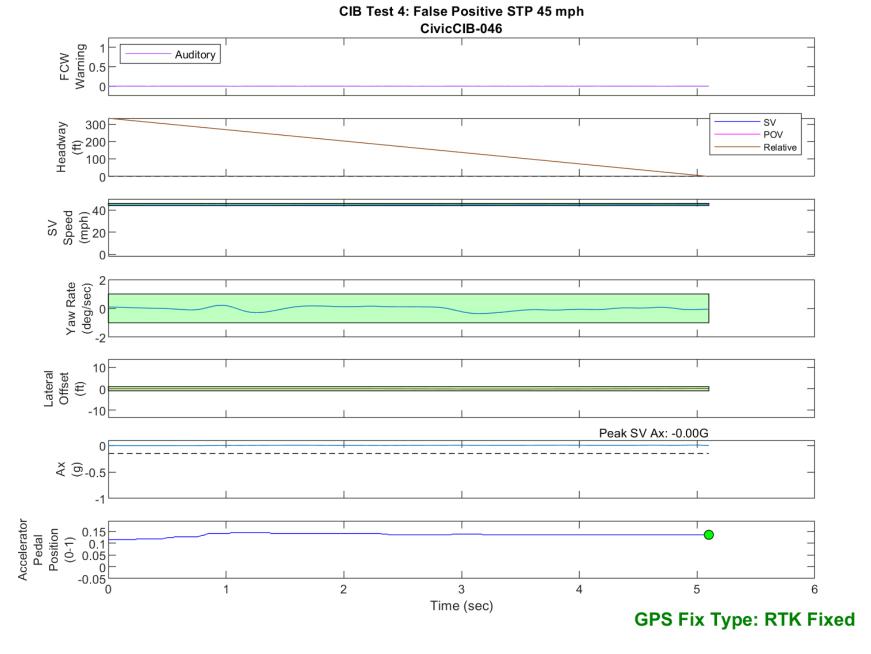


Figure D45. Time History for CIB Run 46, Test 4 - False Positive STP, 45 mph

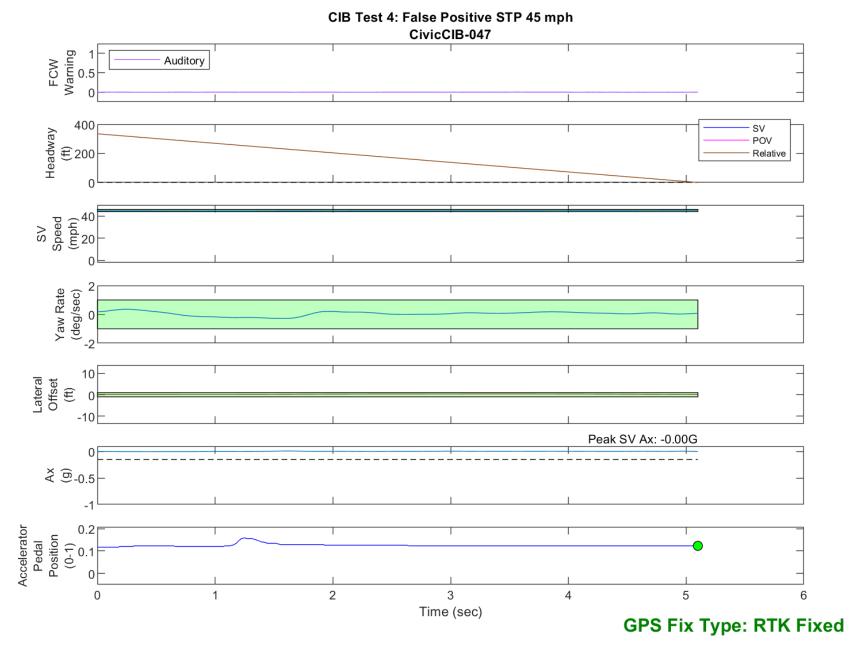


Figure D46. Time History for CIB Run 47, Test 4 - False Positive STP, 45 mph

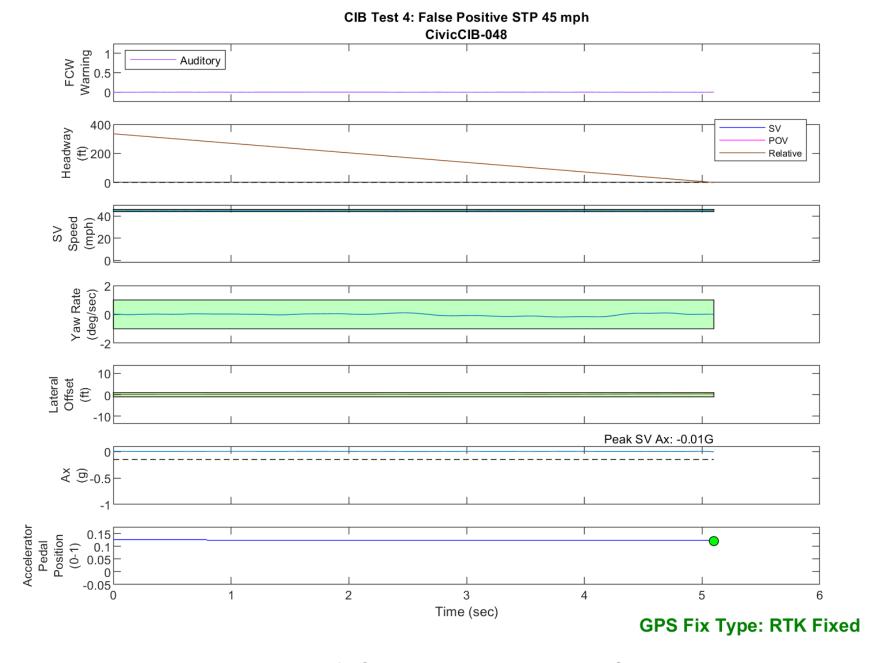


Figure D47. Time History for CIB Run 48, Test 4 - False Positive STP, 45 mph

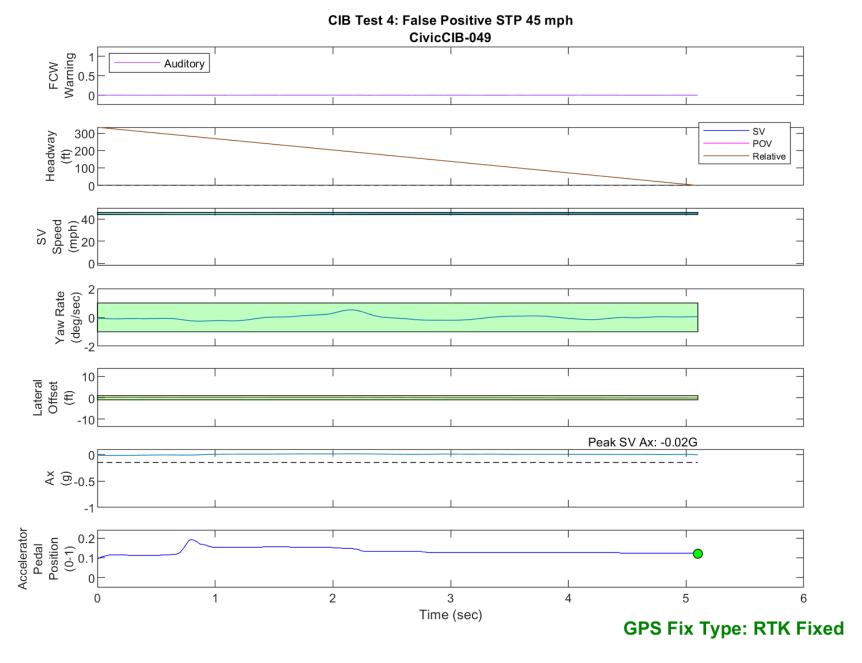


Figure D48. Time History for CIB Run 49, Test 4 - False Positive STP, 45 mph

Figure D49. Time History for CIB Run 50, Test 4 - False Positive STP, 45 mph

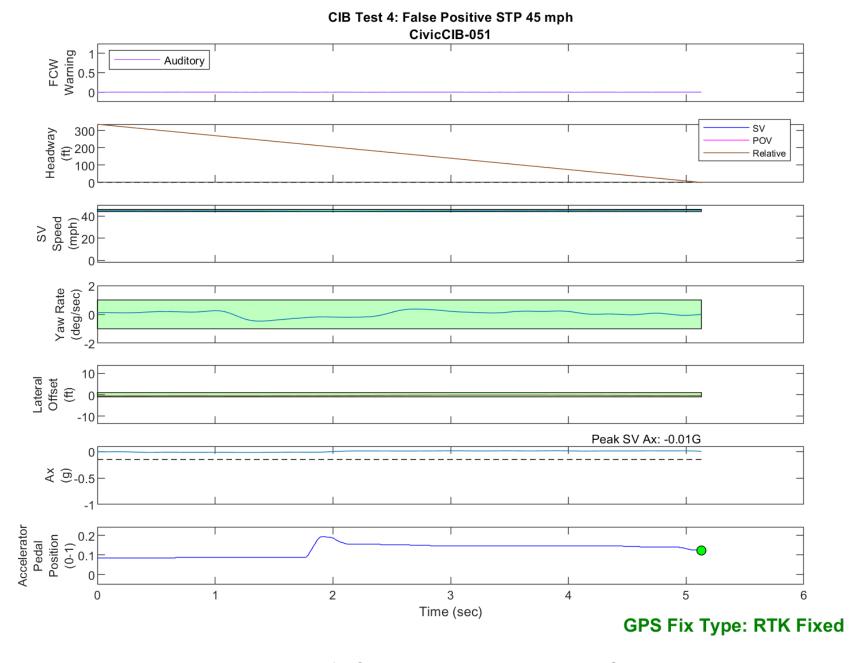


Figure D50. Time History for CIB Run 51, Test 4 - False Positive STP, 45 mph



Figure D51. Time History for CIB Run 52, Test 4 - False Positive STP, 45 mph