

Atlanta Regional Commission – MSAA

 System Design Document
09/30/2017

Document Number: 10.0

Federal Award ID Number: GA-26-0008-01

James Hunter III FAA AIRPORT TENANT
PREVIOUS?

System Design Document Table of Contents

SDD Version 4.0 ii ARC SGT SDD>

Table of Contents

1. Introduction .. 6

1.1 Purpose of the SDD .. 7
1.2 Audience ... 8

1.3 Executive Summary .. 8
1.3.1 System Overview Summary ... 8
1.3.2 Design Constraints ... 10
1.3.3 Future Contingencies .. 10
1.3.4 Document Organization .. 11

2. General Overview and Design Guidelines/Approach ... 12

2.1 General Overview ... 12
2.2 Current .. 12

2.2.1 Proposed Solution - Statement of Need ... 13
2.3 Stakeholder Roles/Responsibilities/Concerns .. 13

2.3.1 Roles .. 14

2.3.2 Responsibilities ... 15
2.3.3 Concerns .. 18

2.4 System Assumptions/Constraints/Dependencies/Risks 18
2.4.1 Assumptions ... 18
2.4.2 Constraints ... 18

2.4.3 Dependencies ... 18

2.4.4 Risks ... 18
 Alignment with National/Regional ITS Architectures 18

3. Design Considerations .. 18

3.1 Goals and Guidelines .. 19

3.2 Operational Environment .. 19
3.3 Development Methods & Contingencies ... 20
3.4 Architectural Strategies ... 20

3.5 Performance Engineering ... 23

4. System Architecture and Architecture Design .. 24

4.1 System Architecture Diagrams.. 24

4.1.1 External Systems diagram .. 24
4.1.2 Functional/Logical diagram ... 24

4.2 Hardware Architecture .. 25
4.2.1 Security Hardware Architecture .. 28
4.2.2 Performance Hardware Architecture ... 28

4.3 Software Architecture .. 29
4.3.1 Software Elements .. 30
4.3.2 Security Software Architecture ... 31
4.3.3 Performance Software Architecture .. 32

4.4 Information Architecture .. 33

System Design Document Table of Contents

SDD Version 4.0 iii ARC SGT SDD>

4.4.1 Records Management .. 34
4.5 Internal Communications Architecture .. 35

4.6 Security Architecture ... 35
4.7 Performance ... 35

5. System Design ... 36

5.1 Business Requirements .. 36
5.1.1 Priorities ... Error! Bookmark not defined.

5.2 Database Design .. 37
5.2.1 Data Objects and Resultant Data Structures .. 37

5.2.2 File and Database Structures ... 45
5.3 Data Conversion ... 47

5.4 User Machine-Readable Interface .. 47
5.4.1 Inputs .. 47
5.4.2 Outputs ... 47

5.5 User Interface Design ... 47

5.5.1 Section 508 Compliance ... 48

6. Operational Scenarios ... 49

1.1 Major Operational Scenarios .. 49

1.2 Major Use Cases .. 50

1.2.1 Customer Resources .. 50

1.2.2 Vehicle Resources .. 55

1.2.3 Driver Resource .. 58

1.2.4 Reservations ... 60
1.2.5 Scheduling .. 63

1.2.6 Dispatch .. 66
1.2.7 Analytics ... 69

7. Detailed Design .. 72

7.1 Hardware Detailed Design .. 72
7.2 Software Detailed Design ... 72
7.3 Security Detailed Design ... 73

7.4 Performance Detailed Design ... 74
7.5 Internal Communications Detailed Design .. 74

8. System Integrity Controls ... 75

9. External Interfaces ... 76

9.1 ATL Transit ... 76
9.2 Google Maps .. 76

9.3 OpenTripPlanner... 76
9.4 Rideshare ... 76
9.5 Taxi Fare Finder.. 76
9.6 Transportation Network Companies (TNC) ... 77

System Design Document List of Figures

SDD Version 4.0 iv ARC SGT SDD>

9.7 GTFS Real Time ... 77
9.8 GTFS Flex .. 77

9.9 Emerging Business Models .. 77
9.10 Third Party Commercial Application Integration .. 77
9.11 Transportation Clearinghouse ... 78

9.11.1 Adapter API .. 78
9.12 Points of Interest ... 78

9.13 Public Transit .. 78
9.14 GTFS .. 79
9.15 Agencies ... 79
9.16 Specialized Service Providers .. 79
9.17 Providers ... 79

9.18 Services .. 80
9.18.1 Geocoding .. 80

9.18.2 Maps ... 81
9.18.3 Google Street View ... 82

9.19 Interface Architecture .. 82
9.20 Interface Detailed Design .. 82

10. Appendix A: Record of Changes .. 85

List of Figures

Figure 1: SGT Roles .. 15

Figure 3: Amazon Web Services model .. 21

Figure 4: External systems diagram .. 24

Figure 5: Hardware architecture .. 25

Figure 6: Security architecture .. 28

Figure 7: Software architecture tiers.. 29

Figure 8: SGT high level architecture .. 30

Figure 9: Security authentication ... 32

Figure 9: Performance architecture scalability .. 33

Figure 11: Example of a database design ... 37

Figure 12: Example of balsamiq mockup .. 48

Figure 13: Example of web application hosting ... 72

Figure 14: Security detail design ... 74

System Design Document List of Tables

SDD Version 4.0 v ARC SGT SDD>

Figure 14: Sample uber API responses ... 77

List of Tables

Table 1: Project members contact information .. 14

Table 2: System design roles .. 15

Table 3: Software descriptions .. 23

Table 4: Systems descriptions .. 25

Table 5: Server requirements .. 27

Table 6: Software elements and descriptions .. 30

Table 7: SGT future enhancements .. 36

Table 8: Data objects and schemas .. 37

Table 9: Major operational scenarios .. 49

Table 10: Customer use cases .. 50

Table 11: Vehicle use cases ... 55

Table 12: Driver resource use cases ... 58

Table 13: Reservation use cases .. 60

Table 14: Schedule use cases .. 64

Table 15: Dispatch use cases ... 67

Table 16: Report use cases .. 70

Table 17: 1-Click Points of Interest File Format .. 78

Table 18: Public Transit Agency Attributes .. 79

Table 19 - Specialized Services Provider Attributes .. 79

Table 20: Provider Services attributes... 80

Table 21: Map API pros & cons ... 81

Table 22: Record of changes .. 85

Page 6 System Design Document

SDD Version 4.0 6 ARC SGT SDD>

1. Introduction
ARC serves as the Metropolitan Planning Organization (MPO), the Area Agency on Aging (AAA) serving
as the Aging and Disability Resource Center (ADRC), the Workforce Board (for a 7-county area) and the
Regional Transit Committee (RTC). This structure facilitated collaboration between the AAA and the MPO
regarding the need to increase transportation access for older adults and persons with disabilities and the
development of the region’s first Human Services Transportation (HST) Plan. In 2008, ARC successfully
administered the Federal Transit Administration’s (FTA) Mobility Services for All Americans (MSAA) grant
for a feasibility study for the Atlanta Regional Transportation Management Coordination Center (TMCC).
Findings from the 2008 TMCC study supported the development of an HST Advisory Committee and an
update of the HST Plan to facilitate greater coordination of HST transportation services throughout the
region.

Many Americans have difficulty accessing some of their basic needs, particularly seniors, persons with
disabilities and the economically disadvantaged, because they must rely on human service transportation
systems which are often fragmented, unreliable, and inefficiently operated. Lack of coordination is the
leading obstacle to meeting the mobility needs of the people who need the services most.

In 2015, the MSAA Initiative funded additional deployment planning projects to further improve HST
coordination and delivery. The purpose of this deployment planning effort is to replicate and advance the
success of TMCC phased-implementation by providing “seed” funding to leverage other federal, state and
local resources to build up coordinated community transportation services. MSAA’s focus on enhanced
coordination supports the realization of USDOT’s strategic focus on developing Mobility on Demand
(MOD).

Goals are to use service coordination and technology integration to:

• Increase mobility and transportation accessibility for the transportation disadvantaged and the
general public.

• Achieve more efficient use of federal transportation funding resources (i.e., do more with less).

Simply Get There Overview

Simply Get There.org is a trip-planning resource for anyone and everyone who lives in or visits metro
Atlanta. Users can compare different travel options and costs especially if they needspecialized
transportation services. It is a relatively new service developed and hosted by the ARC and its Atlanta
Area Agency on Aging (AAA). The web-based application uses a comprehensive listing of public and
private sector transportation providers in the Atlanta region to help individuals, especially older adults and
persons with disabilities, identify available transportation options. It also provides regional fixed route trip
planning options as well as biking and for hire options.

SGT Summary:

• VTCLI one-call, one-click award

• “Trip discovery” tool for public, private, specialized and volunteer transportation services

o Similar to kayak.com

• Software application developed with Cambridge Systematics

o Pulls from two ARC-developed databases, ESP and atltransit.org

• Responsive design for use on computers, tablets, and smartphones

• Unique to the Atlanta region

• Includes specialized transportation

• Does not have scheduling capabilities

Page 7 System Design Document

SDD Version 4.0 7 ARC SGT SDD>

The project was funded through a Veterans Transportation and Community Living Initiative (VTCLI) grant
of the Federal Transportation Administration (FTA) as part of their “One-Click/One-Call” initiative.
Launched on March 2015, Simply Get There became the first comprehensive online trip planner for HST
populations in the Atlanta region.

1.1 Purpose of the System Design Document (SDD)
The SDD documents and tracks the necessary information required to effectively define architecture and
system design in order to give the development team guidance on the architecture of the system to be
developed. Design documents are incrementally and iteratively produced during the system development
life cycle, based on the particular circumstances of the information technology (IT) project and the system
development methodology used for developing the system.

Cambridge Systematics is the original developer of the current solution.

The intent of the solution was to provide a “one call one click” solution. This was not achieved in the
initial implementation. The initial vision of the Regional Mobility One-click software application was to link
multiple existing call centers to one centralized database with a multi-functional web interface. This
concept would maximize staff resources and make transportation information accessible to a wider range
of consumers. Transportation resources would be available to the general public and to participating call
center operators. Call center staff would have access to a secure client component of the application to
register consumers and assist them in accessing/scheduling services. The system would provide an
interface for existing client and transportation resource databases from ESP and atltransit.org.

The proposed solution will simply add additional features and functionality to the existing solution to meet
the original scope and vision of the Regional Mobility One Click Software application. These features will
extend SFT to be a real and integrated one call – one click mobility management solution.

Key points that relate to the design and architecture of the proposed system.

1) No major changes to existing architecture

2) No major changes to system design

3) Major positive impact to the user community

4) Major feature extensions to automate operational functions

5) Major feature extensions to coordinate multiple call centers and transportation providers

6) Regional Coordination API Middleware development

Based on extensive user interviews conducted during the concept of operations phase, it was revealed
that the current solution is lacking in key features. It provides strong multi-modal trip planning functions
but is limited in back office operational features and lacks one call one click functionality for the
consumer. Simply Get There will be expanded to include to create a true one call one click center. The
following additional major functionality that users requested to be added or improved include:

• Web-Based Reservations

• Automated Scheduling

• Provider Management

• Trip – Provider Assignment

• Automated Dispatching

• Regional Transportation Coordination

• Regional Cost Allocation

Page 8 System Design Document

SDD Version 4.0 8 ARC SGT SDD>

• Automated Fare Payment

• Mobility on Demand Mobile App for consumers and operators

1.2 Audience

The intended audience for the SDD is the project manager, project team, and the future development
team. The audience or users for this system design document include the following:

• ARC Project Management Team

• ARC Information Technology Team

• Future application development team

• FTA Project Managers and Oversight Team

• Internal Consulting Team

1.3 Executive Summary

1.3.1 System Overview Summary

ARC has entered a cooperative agreement with FTA to create system specifications for a web-based
application that will bring the system forward from “trip discovery” (pinpointing options) to “trip transaction"
(centralized booking, scheduling, and dispatching). ARC staff will work with Ride Connection and the third
party consultants to design this application. ARC plans to issue an RFP for competitive procurement.

As with websites like kayak.com that aggregate airline data, the long-range vision is for residents to book
trips through one online web application, ideally supplemented with phone services. This concept and
application design will include the entire process of establishing eligibility, scheduling a trip, finding the
right transportation mode and provider, executing the trip, and invoicing the client and paying the
provider, as applicable. The application must be designed to be intuitive, supportable, scalable, cost
effective, and have the foundation to support future growth. It should also be user-friendly for the general
public, transportation and service providers, and ARC staff. ARC has developed an extensive network of
external partners and may want to grow or extend the network over time. These partners may wish to
access the information directly through a user interface or through an API into their own client system.
ARC must have a hierarchy of access points within the application’s administrative functions so that ARC
may select the level of access for various external partners.

Project goals include:

1) Integration with Simply Get There trip discovery web application

2) Ability to create client profiles with permissions to use multiple providers, records of current

eligibility, trip accommodations needed, and indication of other programs they might join

3) "Trip triaging” capabilities to find ideal cost/accommodations match

4) Ability to schedule a trip

5) Ability to pay for a trip

6) Ability for ARC or a provider to charge a user and for ARC to pay a provider

7) Information on and ability to schedule travel coaching/training assistance

8) Cross-modal trip booking and connections to manifest creation and scheduling systems as well as

route optimization across modes

9) Payment and billing - Cost sharing calculated on back-end
10) Data analysis/monitoring to find efficiencies and influence planning/future implementation in a

system-wide feedback loop
11) Modular system (“plug and play” system that users could adapt to local needs)
12) Integration with third party systems, including Computer- Aided Dispatched /Automatic Vehicle

CAD AVL software, Google, Google Maps, RouteMatch, and Trapeze
13) Ability to track trips by the funding source
14) Ability to generate invoices

Page 9 System Design Document

SDD Version 4.0 9 ARC SGT SDD>

15) Web-based application that can be hosted or deployed locally on ARC servers or a location of
ARC’s choosing

16) A robust API to map data from other ARC and partner systems
17) Ability to house some transportation provider information on this application, rather than pulling all

information from two external databases
18) Ability to be 508 compliant

The major new functional modules and extensions to support the goals above may include:

▪ Coordinated Eligibility Determination

▪ Coordinated Resource Management

▪ Automated Web Reservations

▪ Electronic Payment

▪ Automated Scheduling and Provider Assignment

▪ Route Planning and Optimization

▪ Multi Modal Transportation Coordination

▪ Real Time Vehicle Tracking and Dispatching

▪ Transportation Verification

▪ Transportation Data Analytics

▪ Customer Mobile App

▪ Driver Mobile App

▪ Regional Coordination API Middleware

ARC requires a design with specific functionality to model internal business processes, workflows, partner
needs, and integration requirements. ARC requires a design that allows ARC to own the application but
may become open source that can be available for use in other parts of the U.S.

User Types

SGT is designed to serve the needs of many different types of users, with features and functions
appropriate for each one:

▪ Travelers are individuals in need of transportation services. Registered Travelers have a user

account and travel profile, while anonymous Travelers do not have an account and can use the

system without logging in.

▪ Buddies are friends, family members, or other caregivers who assist Travelers in creating trip plans

and managing account settings.

▪ Agents are customer service representatives who assist Travelers in creating trip plans and

managing account settings.

▪ Agency Administrators are the managers of Agents, who perform maintenance functions related to

their Agency.

▪ Provider Administrators are representatives of organizations that provide transportation services,

who need to manage and maintain information on the services they provide.

▪ System Administrators are the “super-users” who manage the SGT software.

Modes Currently Supported in SGT

▪ Bicycle;

▪ Drive;

▪ Paratransit from local providers;

▪ Taxi;

▪ Transit (Bus, Rail) based on General Transit Feed Specification; and,

▪ Walk;

▪ UberX

Page 10 System Design Document

SDD Version 4.0 10 ARC SGT SDD>

1.3.2 Design Constraints

The proposed solution will utilize the current architecture and system design of the current solution. The
current solution is hosted in an industry leading application hosting and data center. Performance,
storage, security, and access can be easily scaled using to meet the minimal amount of additional
resources the proposed solution will require. This will be a financial constraint that must be considered.

Financial

The largest design constraint for the implementation of the project is financial. The full implementation of
the project could be financially significant. ARC intends to implement a phased approach to manage this
constraint.

Technical

The development and integration of the new software components into the existing open source software
application is a major constraint. Specifc skills and technical understanding of mobility management and
demand response management and optimization will be required. This knowledge and skillset is very
specific and narrow. Detailed business requirements and use cases will assist in minimizing this
challenge.

Transportation coordination and trip sharing will be a major technical consideration. The proposed
system must support regional coordination features and provide the ability to integrate trip data into other
scheduling and dispatching systems. The coordination function must allow for easy integration and
provide open published API’s.

Due to the fact that the application is currently hosted and managed by ARC staff, we do not envision any
technical computer hardware, network, internet, or database maintenance challenges.

Institutional

The proposed system will be utilized by multiple third party agencies and organizations. This will require
coordination and collaboration across the region. Stakeholders that currently have automated
scheduling systems may have to integrate into the proposed system via a “reginonal trip coordination”
API or comparable solution.

1.3.3 Future Contingencies

The current application has multiple third party dependencies. These third party dependencies are
mission critical to the application. Failures or service stoppage severely impacts the applications
capabilities.

SGT utilizes existing third party dependencies. These are currently availalble and published.
The dependencies include:

• Google Maps API – Utilized as mapping and geocoding engine for the application.

• Enhanced Services Program (ESP) Database Connector – Serves as data source for
HHS and demand response service providers.

• OpenTrip Planner API – Utilized to calculate fixed route trip itinerary.

Fixed Route Trip Planning API

The fixed route trip planning functionality utilizes Open Trip Planner (OTP). If OTP becomes unavailable
or the service stops, SGT will fail. Google Maps would be a viable alternative for trip planning
functionality. OTP is open source which would allow ARC to maintain the service themselves. This
would require a minimal level of effort to maintain and manage.

Demand Response Options API

Page 11 System Design Document

SDD Version 4.0 11 ARC SGT SDD>

The current application incorporates demand response data from an in-house custom application – ESP.
ESP is maintained and managed by the Aging Resources staff and utilize the system for information and
referral. SGT is dependent on the transportation provider database. If not available, an alternative
source would need to be developed, purchased, or integrated. This would be a major effort and not a
good alternative. The risk of ESP becoming unavailable is minimized. ARC owns and manages this
application directly.

Due to the lack of major architectural and system design changes associated with the proposed solution,
contingency risks are very minimal.

1.3.4 Document Organization

This document completely describes the system at the architecture level, including subsystems and their
services, hardware mapping, data management, access control, global software control structure, and
boundary conditions. The document is organized into nine major sections. Each section provides detailed
sub-sections relevant to the major section. Charts, tables, and graphics have been inserted to explain or
clarify content.

Page 12 System Design Document

SDD Version 4.0 12 ARC SGT SDD>

2. General Overview and Design Guidelines/Approach

2.1 General Overview
The current solution was built by Cambridge Systematics through funding from the Federal Transit
Administration’s Veterans Transportation and Community Living Initiative grant program. ARC has
privately labeled this application Simply Get There (SGT). SGT is an open source mobility management
and cross-modal trip planning software that connects people who need transportation to education, work,
health care, and other vital services in their communities.

SGT is built on an open source framework. Source code is available using standard open source
management tools such as Git. All source code is stored in a Github repository. Any developer can
contribute to the application.

SGT utilizes an open-source web server, Nginx. Nginx is a free open source web server. Nginx is
focused on high performance, high concurrency and low memory usage. Additional features on top of the
web server functionality, like load balancing, caching, access and bandwidth control, and the ability to
integrate efficiently with a variety of applications, have helped to make Nginx a good choice for modern
website architectures. Currently Nginx is the second most popular open source web server on the
Internet.

SGT is hosted on Heroku. Heroku is a cloud Platform-as-a-Service (PaaS) supporting several
programming languages that is used as a web application deployment model. Heroku, one of the first
cloud platforms, has been in development since June 2007, when it supported only the Ruby
programming language, but now supports multiple other languages.

SGT’s development language is Ruby. Ruby is commonly integrated with Rails, a software library that
extends Ruby’s capabilities. This framework is commonly referred to as “Ruby on Rails”. Software
developers must be familiar with this framework in order to maintain or build additional functionality into
the application.

SGT’s database is Postgres. Postgres is also open source and it is very popular and utilized across
many open source applications. Postgres is an object-relational database (ORDBMS). It has an
emphasis on extensibility and standards compliance.

Github is used as the software development platform. Github provides version control and source code
management. Github is the largest host of soure code in the world.

In summary, the existing system design includes the following sub-systems:

• SGT Web Application

• Postgres Database

• Ngenx Web Server

• Heroku Development Platform

• Heroku

• Github Version and Source Code Control

There is no expectation that any of these systems will be changed or modified with the proposed system.

2.2 Current
A Statement of Need explains why the system is being developed, what purpose it serves, and why it is
necessary.

Page 13 System Design Document

SDD Version 4.0 13 ARC SGT SDD>

SGT was designed to meet the transportation needs of human service transportation clients such as
Veterans, military families, elderly, disabled, other transportation disadvantaged.

SGT is a trip planning system designed to meet the transportation needs of human service clients
including veterans, military families, elderly, disabled and other transportation disadvantaged groups. It:

▪ Provides unified trip planning for public, private and volunteer services;

▪ Works on computers, tablets, and smartphones;

▪ Is tailored to an individuals’ trip planning needs; and

▪ Empowers call center staff to deliver improved services.

Veterans and their families are often in need of transportation services to enable them to attend medical
appointments, receive physical therapy or mental health counseling, seek jobs or education, and access
various veterans and related community services. Some veterans and family members have disabilities –
mental, physical, or developmental – that exacerbate the challenge of obtaining these services.
Numerous other populations experience similar challenges, including the elderly, transit-dependent
populations, and other nonveterans with disabilities.

SGT enables these target populations to quickly and easily identify the most appropriate options for
making a particular trip, evaluating and identifying options that include fixed-route transit, demand-
responsive transit (DRT), taxi and other private transportation services, paratransit, volunteer
transportation service networks, carpools, and vanpools. 1-Click also provides call center or social service
agency staff with a single, centralized source of this information to use on behalf of their clients.

SGT tailors trip plan options to the needs, preferences, and schedules of each individual, based on
factors such as Medicaid eligibility, veterans’ transportation eligibility (which depends on Veteran status
and trip purpose), age, physical mobility limitations, and other preferences regarding tradeoffs of time,
cost, and convenience.

SGT also stores data that can be used to generate a variety of reports on system usage, mobility impacts,
trips planned and made, and unmet transportation needs.

2.2.1 Proposed Solution - Statement of Need

The current solution does not provide call center operational support nor does it provide the ability to
coordinate other regional call centers and transportation resources. The solution must be extended to
support these functional needs. The proposed system will dramatically improve call center operations,
regional coordination, and, most importantly, the customer experience. Customers will be able to plan
and reserve transportation online. Transportation providers will be able to connect to the one click
system in real time to schedule the trip. Operations will have the ability to assign trips and to monitor
performance in real time. Automated scheduling and routing will be available to optimize transportation
resources. Automate dispatching tools will be available to the call center and to providers. This will
create a single coordinated system for HST and demand response transportation. Transportation
Network Companies (TNC) will also be integrated into the solution for a true multi-modal application.
Transportation data analytics will be available at a regional level. Ultimately, the proposed system will
execute the intended vision and requirements of a “one click” mobility management solution.

2.3 Stakeholder Roles/Responsibilities/Concerns

System design can cross many different groups within an organization to ensure requirements are
gathered and met for all stakeholders. As such, the roles and responsibilities section may be necessary
to provide the team with clarification on who performs various roles. This section also serves as a list of
points of contact for the team and stakeholders should issues and concerns arise which need to be
addressed.

Regional Stakeholders

1. ARC Aging and Disability Resource Connection (ADRC)
2. ARC Transportation Access and Mobility Services Division

Page 14 System Design Document

SDD Version 4.0 14 ARC SGT SDD>

3. ARC Area Agency on Aging
4. Center for Visually Impaired (CVI)
5. City of Atlanta, Vehicles for Hire/Taxi Management
6. Cobb Community Transit (CCT)
7. DeKalb Office of Senior Affairs
8. Disability Link, the Center for Independent Living (CIL)
9. Goodwill Industries
10. Georgia Commute Options (GCO)
11. Georgia Department of Community Health (DCH)
12. Georgia Department of Human Services (DHS)
13. Georgia Department of Transportation (GDOT)
14. Georgia Governor’s Development Council (GDC), Rural and Human Services Transportation

(RHST)
15. Georgia Transit Association (GTA)
16. Gwinnett County Senior Services
17. Lifespan Resources (volunteer driver program)
18. Metropolitan Atlanta Rapid Transit Authority (MARTA)
19. Ride Connection of Portland, Oregon
20. Atlanta United Way 211
21. Veterans Affairs (VA), Veterans Transportation Program (VTP)

Additional support is provided by Kevin Chambers, IT Director of Ride Connection in Portland, OR.

Technical / Project Stakeholders

The following table provides the role and contact information for the key technical and project
stakeholders associated with the system design.

Table 1: Project members contact information

Name Role Email

Mary Blumberg Executive Sponsor mblumberg@atlantaregional .com

Cynthia Burke Project Manager Cburke2@atlantaregional.com

Leslie Caceda Application Owner lcaceda@atlantaregional.com

Ray Randolph IT Director rrandolph@atlantaregional.com

Tim Quinn Technical Lead Tim.quinn@thingtech.com

Carly Harper Business Consultant Carly.harper@thingtech.com

2.3.1 Roles

SGT is designed to serve the needs of many different types of users, with features and functions
appropriate for each one:

▪ Travelers are individuals in need of transportation services. Registered Travelers have a user

account and travel profile, while anonymous Travelers do not have an account and can use the

system without logging in.

▪ Buddies are friends, family members, or other caregivers who assist Travelers in creating trip plans

and managing account settings.

▪ Agents are customer service representatives who assist Travelers in creating trip plans and

managing account settings.

mailto:Cburke2@atlantaregional.com
mailto:Tim.quinn@thingtech.com

Page 15 System Design Document

SDD Version 4.0 15 ARC SGT SDD>

▪ Agency Administrators are the managers of Agents, who perform maintenance functions related to

their Agency.

▪ Provider Administrators are representatives of organizations that provide transportation services,

who need to manage and maintain information on the services they provide.

▪ System Administrators are the “super-users” who manage the SGT software.

Figure 1: SGT Roles

The following table identifies the system design roles. This matrix also serves as the list of points of
contact for issues and concerns relating to the system design.

Table 2: System design roles

Name Role Phone Email

Not Identified Project Manager

Not Identified Lead Designer – User
Interface

Not Identified System Architect

Not Identified Software Developer

Not Identified Quality Assurance Lead

2.3.2 Responsibilities

Development team has not been selected to design and build the extended functionality to the current
system. However, the items below define the roles for the project.

Project Manager

Page 16 System Design Document

SDD Version 4.0 16 ARC SGT SDD>

Project management responsibilities include delivering every project on time within budget and scope.
Project managers should have a background in business skills, management, budgeting and analysis.

Responsibilities:

• Coordinate internal resources and third parties/vendors for the flawless execution of projects

• Ensure that all projects are delivered on-time, within scope and within budget

• Developing project scopes and objectives, involving all relevant stakeholders and ensuring
technical feasibility

• Ensure resource availability and allocation

• Develop a detailed project plan to track progress

• Use appropriate verification techniques to manage changes in project scope, schedule and costs

• Measure project performance using appropriate systems, tools and techniques

• Report and escalate to management as needed

• Manage the relationship with the client and all stakeholders

• Perform risk management to minimize project risks

• Establish and maintain relationships with third parties/vendors

• Create and maintain comprehensive project documentation

Lead Designer – User Interface

UI designer is responsible for creating intuitive user experiences. The ideal candidate should have an
eye for clean and artful design, possess superior UI skills and be able to translate high-level requirements
into interaction flows and artifacts, and transform them into beautiful, intuitive, and functional user
interfaces.

Responsibilities

• Collaborate with product management and engineering to define and implement innovative
solutions for the product direction, visuals and experience

• Execute all visual design stages from concept to final hand-off to engineering

• Conceptualize original ideas that bring simplicity and user friendliness to complex design
roadblocks

• Create wireframes, storyboards, user flows, process flows and site maps to effectively
communicate interaction and design ideas

• Present and defend designs and key milestone deliverables to peers and executive level
stakeholders

• Conduct user research and evaluate user feedback

• Establish and promote design guidelines, best practices and standards

Software Architect

Responsible for initial design and development of new software or extensive software revisions; products
may be for use internally or for resale. Defines product requirements and creates high-level architectural
specifications, ensuring feasibility, functionality, and integration with existing systems/platforms. Requires
a bachelor's degree and may be expected to have an advanced degree in area of specialty and at least 7
years of experience in the field or in a related area.

• Demonstrates expertise in a variety of the field's concepts, practices, and procedures.

Page 17 System Design Document

SDD Version 4.0 17 ARC SGT SDD>

• Relies on extensive experience and judgment to plan and accomplish goals.

• Performs a variety of complicated tasks.

• May provide consultation on complex projects and is considered to be the top level
contributor/specialist.

• May guide a team of developers through the project to completion. Typically reports to a head of
a unit/department or top management.

Software Engineer

The software engineer builds high-quality, innovative and fully performing software in compliance with
coding standards and technical design. Software engineer responsibilities will include development,
writing code, and documenting functionality.

• Execute full lifecycle software development

• Write well designed, testable, efficient code

• Produce specifications and determine operational feasibility

• Integrate software components into a fully functional software system

• Develop software verification plans and quality assurance procedures

• Document and maintain software functionality

• Tailor and deploy software tools, processes and metrics

• Serve as a subject matter expert

• Comply with project plans and industry standards

Quality Assurance Lead

QA engineer responsibilities include designing and implementing tests, debugging and defining corrective
actions. You will also review system requirements and track quality assurance metrics (e.g. defect
densities and open defect counts.)

Responsibilities

• Review requirements, specifications and technical design documents to provide timely and
meaningful feedback

• Create detailed, comprehensive and well-structured test plans and test cases

• Estimate, prioritize, plan and coordinate testing activities

• Design, develop and execute automation scripts using open source tools

• Identify, record, document thoroughly and track bugs

• Perform thorough regression testing when bugs are resolved

• Develop and apply testing processes for new and existing products to meet client needs

• Liaise with internal teams (e.g. developers and product managers) to identify system
requirements

• Monitor debugging process results

• Investigate the causes of non-conforming software and train users to implement solutions

• Track quality assurance metrics, like defect densities and open defect counts

• Stay up-to-date with new testing tools and test strategies

Page 18 System Design Document

SDD Version 4.0 18 ARC SGT SDD>

2.3.3 Concerns

Due to the fact that the proposed system is simply additional features and will not require any design or
architectural changes, there are no technical concerns.

2.4 System Assumptions/Constraints/Dependencies/Risks

2.4.1 Assumptions

The largest assumption is that the existing SGT trip planning application will be extended to support the
proposed new features. The existing architecture and system design will be used including all existing
components and sub-systems. It is certain that additional functionality will be added to the proposed
solution.

2.4.2 Constraints

There are no hardware, software, or software technical constraints identified with this project. Financial
constraints are a potential constraint since funding has not been identified to build the proposed solution.
Institutional constraints mays exist due to the systems need for regional coordination, participation, and
interoperability.

2.4.3 Dependencies

The current application is dependent on many third party systems. These include:

• Open Trip Planner

• Google Maps

• ESP

• Uber (if shared ride mode is enabled)

The current application is also dependent on accurate GTFS data. ARC is currently responsible for
maintaining the GTFS data for the regional fixed route providers.

2.4.4 Risks

Minimal risk is associated with the system design. This is primarily due to the fact that the existing
system design and architecture will not be modified to meet the needs of the proposed solution. Financial
risks are a concern. Funds have not been identified to fund the proposed project. Ongoing maintenance
of the system will also be a concern.

Alignment with National/Regional ITS ArchitecturesThe current and proposed solution aligns
with the National and Regional ITS architecture. The proposed solution, if implemented, will
adhere to all appropriate federal ITS architecture mandates.

Design Considerations

SGT is a trip planning system designed to meet the transportation needs of human service clients
including veterans, military families, elderly, disabled and other transportation disadvantaged groups. It:

▪ Provides unified trip planning for public, private and volunteer services;

▪ Works on computers, tablets, and smartphones;

▪ Is tailored to an individuals’ trip planning needs; and

▪ Empowers call center staff to deliver improved services.

Page 19 System Design Document

SDD Version 4.0 19 ARC SGT SDD>

The major design considerations for the proposed extended features are related to system performance
and scalability of the solution. Data center is hosted in AWS which provides a tremendous amount of
flexibility in terms of scaling the performance. Processor speed, memory, peripherals, and stakeholder
support will be factored in the design.

2.5 Goals and Guidelines

The following goals must be addressed in the execution of the proposed solution.

Leverage Existing Architecture

The proposed solution must leverage the current architecture and system design used by current
solution. This minimizes negative impacts on usability, user experience, and financials. The proposed
solution will simply extend the current application to support additional features, functionality, and use
cases.

Development Environment

The application development environment must remain consistent. This minimizes negative impacts to
interoperability and quality. ARC does not wish to re-write or re-engineer the existing application unless
absolutely necessary.

Ease of Use

The new features must be easy to use and provide a strong user experience. New features cannot
impact existing functionality from a user perspective.

Extensibility

The proposed features must be extensible. Features can be enabled as needed or required by the users.

API Enabled

Regional coordination support is a key driver of the project. The application must be API centric and
support an open and published API architecture.

RESTful Framework

The application and underlying architecture must be a REST framework.

2.6 Operational Environment
▪ Ruby on Rails Development

▪ Git Version Control

▪ Github Repository

▪ PostgreSQL Database

▪ Apache Web Server

▪ NGINX Server

Functional goals of the proposed system includes:

• Extending functionality of the existing web application

• Improving application performance

• Sharing and coordinating data via a distributed model

• Completing the one-call one click deployment model

Page 20 System Design Document

SDD Version 4.0 20 ARC SGT SDD>

2.7 Development Methods & Contingencies

The basics of a good architecture is to layer the application into multiple autocratic and autonomous
applications that can be replaced individually and allow us to keep the application running while we are
working on a specific layer. The communication between each layer should be a RESTful API call with
JSON content.

Scalability

Ensure that the architecture can be scaled horizontally, across multiple servers and across multiple
regions. That means that once your traffic goes up, you should be able to add and remove new servers
as the solution requires.

Availability

The architecture should support a high availability environment. Infrastructure redundancy is required.
This ensures the solution is available if multiple servers or an entire data center fail. The current
availaibility of the solution per the hosting providers service level agreement is 99.999% availability.

Security

Solution architecture should expose only the minimal amount of code possible. Most of the back-end
pieces should be hidden away. In addition to that, security of each system should be multi-layered.

Extensibility

Architecture must be able to swap out modules, change layers, and add pieces to the application without
having to worry about the underlying data contracts in place.

Separation of responsibility

System should be modular enough that each piece of code has a set of responsibilities and not more.
The back-end should not create front end code nor should the front-end code include business logic.

RESTful Framework

The reason for a RESTful API is plain and simple flexibility. Framework does not want to be tied or
dependent on a specific programming language and architecture (Java or C#). Architecture needs to be
able to replace each layer independently and even use different languages that might be better suited for
a certain layer.

2.8 Architectural Strategies

The Cloud trend is one of the most disruptive and challenging forces impacting customers’ applications
and infrastructure, requiring new business models and new architecture decisions, which impact how
organizations deploy, manage, maintain, and protect and manage their data.

Amazon Web Services offers multiple options for provisioning IT infrastructure and the deployment of
web-based applications. The deployment model varies from customer to customer. Below are the key
strategies associated with this model.

Infrastructure On Demand

In a non-cloud environment: (i) infrastructure assets require manually configured, (ii) capacity requires
manual tracking, (iii) capacity predictions are based on the guess of a theoretical maximum peak, and (iv)
deployment can take weeks. Within the cloud, these building blocks that represent the Infrastructure are
not only provisioned as required, following actual demand and allowing pay-as-you-go, but can also be
programmed and addressed by code. This greatly enhances flexibility for both Production/Dev/Test
environments as well as Disaster Recovery scenarios. Resources can be provisioned as temporary,
disposable units, freeing users from the inflexibility and constraints of a fixed and finite IT infrastructure.

Page 21 System Design Document

SDD Version 4.0 21 ARC SGT SDD>

Infrastructure can be automated through code, allowing for greater self-service and more automated
delivery of desired business and technical outcomes. Consumption is measured by what you consume,
not what you could consume, drastically changing the DR cost modelling challenges experienced today.
This represents a major, disruptive reset for the way in which you approach Disaster Recovery, testing,
reliability and capacity planning.

Figure 2: Amazon Web Services model

Cloud Computing

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service provider
interaction. Cloud computing has become the primary engine driving IT as a service. With cloud
computing, you don’t need to make large upfront investments in hardware and spend a lot of time
managing that hardware. Instead, you can provision exactly the right type and size of computing
resources you need to power your newest bright idea or operate your IT department. As the cloud has
become mainstream and adoption has garnered momentum, you have access to state-of-the-art
technology at a fraction of the cost and with greater speed than ever before.

AWS offers global infrastructure available to Customers on a pay-as-you-go model, allowing for more
flexibility in meeting requirements for Data Protection and Disaster Recovery. Resources, bandwidth and
their availability can now be localized to your corporate assets and human resources, allowing for a more
distributed footprint that reduces backup windows and simplifies data protection that otherwise would be
cost prohibitive with a physical datacenter or co-located approach, all while maintaining a simplified,
unified pay-as-you-go billing approach.

Disaster Recovery

Page 22 System Design Document

SDD Version 4.0 22 ARC SGT SDD>

Physical DR environments have less capacity than their Production, or Dev/Test counterparts, resulting in
degraded service in the event of a failover. Even more so, hardware is often re-purposed to fulfill the DR
environment’s requirements, resulting in higher than expected maintenance costs. With the Public Cloud
model, this hardware availability and refresh aspect is disrupted by removing the need to maintain a
hardware fleet that can meet both your DR requirements and sustain your service level agreements. You
can provision instances to meet your needs, when you need them, and for specific DR events – both real
and test – and the underpinning hardware is maintained and upgraded by the Cloud provider without any
need for technical input, and no upgrade costs are incurred by the organization. This dynamic shift allows
you to begin costing per DR event, instead of paying for availability, improving your level of Disaster
Recovery Preparedness through the application of flexible, unlimited resources to stage both DR tests
and execute actual DR events.

Mobility

Mobility has fundamentally changed the way businesses operate. Information is available in multiple
devices, in real time, and with greater accuracy than ever before. Mobility and the cloud together make it
easier for workers to be productive from anywhere—not just the office. The mobile tools they use must be
secured to meet tough industry standards.

Social

Social media has had a significant impact on the way people work. Employees can share information in
real time, with multiple inputs and transparency.

In a non-cloud environment you would have to provision capacity based on a guess of a theoretical
maximum peak. This can result in periods where expensive resources are idle or occasions of insufficient
capacity.

Scalability

Applications grow over time, and a Data Management solution needs to adapt with the change rate to
protect the dataset quickly and efficiently, while maintaining an economy of scale that continues to
generate business value out of that system.

Backup/Archive to the Cloud

Protecting data at the primary on-premise location by writing directly to an external cloud provider’s
storage solution, or retaining a local copy and replicating the backup/archive data (either in full, or only
selective portions of that data) into an external cloud provider’s storage service

Platform

Platform as a Service (PaaS) is the next step down from Software as a Service (SaaS) in the Cloud
Computing Stack.

PaaS provides the platform for developing SaaS applications and services.

Includes software development tools, network connectivity, application servers, database management,
enterprise service buses, analytics, etc…

• OpenShift

• Heroku

• Amazon

The current application utilizes a platform as a service (PaaS). Below is the summary of this service.

• Heroku Platform as a Service (PaaS): Cedar -14 Stack using Ubuntu 14.04 Linux as a basis

• Polyglot Platform – native support for development with :
o Ruby or Rails
o Node.js, Angular
o Java, Spring or Play
o Python or Django
o Clojure

Page 23 System Design Document

SDD Version 4.0 23 ARC SGT SDD>

o Scala

• Process Model with OS Kernel, Web Server Configured on Dyno Spin-Up

Development Environment

Table 3: Software descriptions

Software Description

Github Version control repository

Heroku / Amazon Web Services Cloud computing platform

Force.com Cloud computing platform

Postgres SQL Database

Bootstrap UI Framework / Theme

Node / Node.js Programing Language

ReactJS Programming Framework for Web UI

React Native Programming Framework for Mobile

APEX Force.com Programming Language

Open API Centric

APIs allow for the creation of a minimal interface that is relatively stable that can be used by other
software systems to access or manipulate the underlying systems or data. This allows for enhancements
to the underlying systems or data without disturbing the software systems that use the API Usually
implemented using REST, SOAP, or JSON. Third party application and database integration is simplified
as long as all parties support the published API.

2.9 Performance Engineering

AWS provides multiple options to configure and procure related services to eliminate potential
performance issues.

Page 24 System Design Document

SDD Version 4.0 24 ARC SGT SDD>

3. System Architecture and Architecture Design
This section outlines the system and hardware architecture design of the system.

3.1 System Architecture Diagrams

This section provides the conceptual view of the system and its functionality.

Simply Get There currently provides the following major components.

• Trip Discovery

• Eligibility

• Trip Review

• Trip Plans

3.1.1 External Systems diagram

Instructions: Provide an external systems diagram model of the interaction of the system with other
external systems in the relevant contexts, thus providing a definition of the system’s boundary in terms of
the system’s inputs and outputs.

Figure 3: External systems diagram

3.1.2 Functional/Logical diagram

Instructions: Insert any related functional/logical views or provide a reference to where they are stored. A
functional architecture is a logical model of the functional decomposition. The logic model provides a
depiction of the flow of inputs and outputs and it provides a tracing of inputs and output to specific
functions and items representing the system.

Page 25 System Design Document

SDD Version 4.0 25 ARC SGT SDD>

3.2 Hardware Architecture

Different deployments can use different server configurations, but SGT is typically deployed on four
servers:

1. A web server running Apache to host the web application;

2. Storage for various application configuration files (e.g., CSS, images, etc.);

3. An OpenTripPlanner server to respond to trip planning requests; and

4. A PostgreSQL database server to host the 1-Click database.

Figure 4: Hardware architecture

Table 4: Systems descriptions

 SYSTEM NOTE

PROGRAMMING LANGUAGE Ruby Ruby is a programming language. It was
created 20 years ago by Yukihiro “Matz”
Matsumoto. By most measures of
programming language popularity, Ruby
ranks among the top ten, though usually as
tenth (or so) in popularity, and largely due to
the popularity of Rails. Like Java or the C
language, Ruby is a general-purpose
programming language, though it is best
known for its use in web programming.

Page 26 System Design Document

SDD Version 4.0 26 ARC SGT SDD>

APPLICATION FRAMEWORK Rails Rails is a software library that extends the
Ruby programming language. Rails
combines the Ruby programming language
with HTML, CSS, and JavaScript to create a
web application that runs on a web server.
When Rails is plugged into Ruby, it is often
referred to as “Ruby on Rails”.

DEVELOPMENT AND
VERSION CONTROL
ENVIRONMENT

Git Git is a version control system that is used
for software development and other version
control tasks. As a distributed revision
control system. Git is free software
distributed under the terms of the GNU
General Public License version 2.

HOSTING SERVICE GitHub GitHub is a web-based Git repository hosting
service. It offers all of the distributed revision
control and source code management (SCM)
functionality of Git as well as adding its own
features. Unlike Git, which is strictly a
command-line tool, GitHub provides a Web-
based graphical interface and desktop as
well as mobile integration. It also provides
access control and several collaboration
features such as bug tracking, feature
requests, task management, and wikis for
every project.

GitHub offers both plans for private
repositories and free accounts, which are
usually used to host open-source software
projects

DATABASE PostgreSQL PostgreSQL is an object-relational database
management system (ORDBMS) with an
emphasis on extensibility and standards-
compliance. As a database server, its
primary function is to store data securely,
and to allow for retrieval at the request of
other software applications. It can handle
workloads ranging from small single-machine
applications to large Internet-facing
applications with many concurrent users.

WEB SERVER NGINX NGINX is a free, open-source, high-
performance HTTP server and reverse
proxy, as well as an IMAP/POP3 proxy
server. NGINX is known for its high

Page 27 System Design Document

SDD Version 4.0 27 ARC SGT SDD>

performance, stability, rich feature set,
simple configuration, and low resource
consumption

WEB SERVER SOFTWARE Apache Apache HTTP Server is the world’s most
used web server software. Apache is an
open-source project. Runs on all major
server operating systems.

Due to the variation in size between different deployments of 1-Click, load testing on specific
configurations is required to give accurate assessments of hardware requirement. However, for
comparison purposes, the 1-Click demonstration and quality assurance deployments are hosted at
Heroku.com and Amazon Web Services with the following specifications:

Table 5: Server requirements

Device Web Server Storage OTP Server Database Server

Type Heroku 2X Dyno AWS S3 AWS m3.xlarge Heroku 2X Dyno

CPU 8-core Intel Xeon
E5-2680 v2 (Ivy
Bridge)

2 virtual cores 13 virtual cores 8-core Intel Xeon E5-
2680 v2 (Ivy Bridge)

Memory 2 GB 4 GB 15 GB 2 GB

Storage 100 GB+ 100 GB 80 GB 512 GB

OS Ubuntu v12.04 LTS
(or later)

Ubuntu v12.04
LTS (or later)

Ubuntu v12.04 LTS
(or later)

Ubuntu v12.04 LTS
(or later)

Software Apache - OpenTripPlanner PostgreSQL 9.x (or
later)

AWS Best Practice

1) Failover - Elastic IPs: Elastic IP is a static IP that is dynamically re-mappable. You can quickly
remap and failover to another set of servers so that your traffic is routed to the new servers. It
works great when you want to upgrade from old to new versions or in case of hardware failures.

2) Utilize multiple Availability Zones: Availability Zones are conceptually like logical datacenters. By
deploying your architecture to multiple availability zones, you can ensure highly availability. Utilize
Amazon RDS Multi-AZ] deployment functionality to automatically replicate database updates
across multiple Availability Zones.

3) Maintain an Amazon Machine Image so that you can restore and clone environments very easily
in a different Availability Zone; Maintain multiple Database slaves across Availability Zones and
setup hot replication.

4) Utilize Amazon CloudWatch (or various real-time open source monitoring tools) to get more
visibility and take appropriate actions in case of hardware failure or performance degradation.
Setup an Auto scaling group to maintain a fixed fleet size so that it replaces unhealthy Amazon
EC2 instances by new ones.

5) Utilize Amazon EBS and set up cron jobs so that incremental snapshots are automatically
uploaded to Amazon S3 and data is persisted independent of your instances.

Page 28 System Design Document

SDD Version 4.0 28 ARC SGT SDD>

6) Utilize Amazon RDS and set the retention period for backups, so that it can perform automated
backups.

3.2.1 Security Hardware Architecture

Figure 5: Security architecture

3.2.2 Performance Hardware Architecture

The current and proposed solution utilizes AWS S3 for hardware performance and reliability. Amazon S3
is storage for the Internet. It’s a simple storage service that offers software developers a highly-scalable,
reliable, and low-latency data storage infrastructure at very low costs.

Amazon S3 provides a simple web service interface that you can use to store and retrieve any amount of
data, at any time, from anywhere on the web. Using this web service, developers can easily build
applications that make use of Internet storage. Since Amazon S3 is highly scalable and you only pay for
what you use, developers can start small and grow their application as they wish, with no compromise on
performance or reliability.

Amazon S3 is also designed to be highly flexible. Store any type and amount of data that you want; read
the same piece of data a million times or only for emergency disaster recovery; build a simple FTP
application, or a sophisticated web application such as the Amazon.com retail web site. Amazon S3 frees
developers to focus on innovation, not figuring out how to store their data.

Page 29 System Design Document

SDD Version 4.0 29 ARC SGT SDD>

Amazon S3 gives any developer access to the same highly scalable, reliable, fast, inexpensive data
storage infrastructure that Amazon uses to run its own global network of web sites. S3 Standard is
designed for 99.99% availability and Standard - IA is designed for 99.9% availability. Both are backed by
the Amazon S3 Service Level Agreement.

3.3 Software Architecture

The three-tier architecture is a popular pattern for user-facing applications. The tiers that comprise this
architecture include the presentation tier, the logic tier, and the data tier. The presentation tier represents
the component that users directly interact with (such as a web page, mobile app UI, etc.). The logic tier
contains the code required to translate user actions at the presentation tier to the functionality that drives
the application’s behavior. The data tier consists of storage media (databases, object stores, caches, file
systems, etc.) that hold the data relevant to the application.

Figure 6: Software architecture tiers

The Serverless Logic Tier

The logic tier of the three-tier architecture represents the brains of the architecture. The features of the
two services allow you to build a serverless production application that is highly available, scalable, and
secure.

Page 30 System Design Document

SDD Version 4.0 30 ARC SGT SDD>

Figure 7: SGT high level solution architecture

3.3.1 Software Elements

Table 6: Software elements and descriptions

FUNCTION DESCRIPTION

GENERAL ACCESS User can access generally available website using any browser.
www.simplygetthere.org

TRIP PLANNING / DISCOVERY User can select multiple options to plan or discover a trip. Trip
options include:

• Bike

• Drive

• Specialized Services

• Vehicle for Hire

• Public Transit

ELIGIBILITY If user selects the specialized service options, an eligibility form is
displayed.

TRIP PLAN REVIEW Based on user inputs a single or multiple trip plans will be
displayed. Trip segments are listed by BUS, SPECIALIZED
SERVICES, SUBWAY, WAIT, and WALK. Trip Options filters are
provided.

App Services
Workflows
Components
Entities

http://www.simplygetthere.org/

Page 31 System Design Document

SDD Version 4.0 31 ARC SGT SDD>

TRIP DETAILS Based on trip plan review and selected trip plan, the system will
display the trip plan detail. If specialized transportation plan was
selected, the system will display the origin and destination and the
selected specialized transportation provider.

TRIP PLAN PRINT User can choose to print the trip plan

TRIP PLAN EMAIL User can choose to email the trip plan

TRAVEL PROFILE If registered, user can maintain and manage their user profile.

TRIP PROFILE User can view selected trip plans. Users can delete edit or
remove the trip from the profile. User can get details of the
planned trip.

PLACES User can save common origins or destinations in the Places
function to customize the planning process to their common travel
plans.

PROVIDERS Users can obtain a list of all transportation providers in the system
with hyperlink to provider detailed information.

3.3.2 Security Software Architecture

There are a number of principles applied to current and proposed system security.

• Apply security at all layers:

o Rather than running security appliances (e.g., firewalls) only at the edge of your
infrastructure, use firewalls and other security controls on all of your resources (e.g.,
every virtual server, load balancer, and network subnet).

• Enable traceability:

o Log and audit all actions and changes to your environment.

• Implement a principle of least privilege:

o Ensure that authorization is appropriate for each interaction with your AWS resources
and implement strong logical access controls directly on resources.

Page 32 System Design Document

SDD Version 4.0 32 ARC SGT SDD>

Figure 8: Security authentication

3.3.3 Performance Software Architecture

The most fundamental reason for performance concerns is that the tasks we set our systems to perform
have become much more complex over time. The performance of the system depends on much more
than the raw processing power of its hardware. The way that hardware is configured, the way resources
are allocated and managed, and the way the software is written can have significant impacts on the
system’s ability to meet its performance goals.

The scalability property of a system is closely related to performance, but rather than considering how
quickly the system performs its current workload, scalability focuses on the predictability of the system’s
performance as the workload increases.

Page 33 System Design Document

SDD Version 4.0 33 ARC SGT SDD>

3.4 Information Architecture

There are minimal additional personal data elements that will be stored in the new functionality. SGT
currently stores customer and transportation related data of the consumer. This data is classified as
personally identifiable information. Minor health related records are stored with this information. Health
information can be derived based on location information.

The proposed new features and functions of the system will include additional PII data for the trip
reservation function. This data includes:

• Trip Purpose

Figure 9: Performance architecture scalability

Page 34 System Design Document

SDD Version 4.0 34 ARC SGT SDD>

• Trip Type

3.4.1 Records Management

HIPAA is a major federal records management regulation that must be considered and adhered to

3.4.1.1 Data

Data is supplied by end user or the consumer of the system. Data is entered into the system via the web
application. Call center users will also enter data into the system via a graphical user interface. Third
party provider data may also be inserted into the data via API’s. API middleware for trip and coordination
transactions will manage the exporting and importing of any third party data elements.

3.4.1.2 Manual/Electronic Inputs

All inserts or upserts into database shall be managed using industry standard data validation tools and
triggers. Data validation is intended to provide certain well-defined guarantees for fitness, accuracy, and
consistency for any of various kinds of user input into an application or automated system. Data validation
rules can be defined and designed using any of various methodologies, and be deployed in any of various
contexts.

Types:

• Data type validation;

• Range and constraint validation;

• Code and Cross-reference validation; and

• Structured validation

Data-type validation

Data type validation is customarily carried out on one or more simple data fields. The simplest kind of
data type validation verifies that the individual characters provided through user input are consistent with
the expected characters of one or more known primitive data types; as defined in a programming
language or data storage and retrieval mechanism. As an example, telephone numbers are routinely
expected to include the digits and possibly the characters +, -, () (plus, minus, and parentheses).

Simple range and constraint validation

Simple range and constraint validation may examine user input for consistency with a minimum/maximum
range, or consistency with a test for evaluating a sequence of characters, such as one or more tests
against regular expressions.

Code and cross-reference validation

Code and cross-reference validation includes tests for data type validation, combined with one or more
operations to verify that the user-supplied data is consistent with one or more external rules,
requirements, or validity constraints relevant to a particular organization, context or set of underlying
assumptions. These additional validity constraints may involve cross-referencing supplied data with a
known look-up table or directory information service such as LDAP.

Structured validation

Structured validation allows for the combination of any of various basic data type validation steps, along
with more complex processing. Such complex processing may include the testing of conditional
constraints for an entire complex data object or set of process operations within a system.

3.4.1.3 Master Files

The following tables define the data maintained in the proposed system.

Page 35 System Design Document

SDD Version 4.0 35 ARC SGT SDD>

3.5 Internal Communications Architecture

Current and proposed solution is managed in AWS. Specific network architecture is not provided due to
security issues.

3.6 Security Architecture

Not available

3.7 Performance

Not available

Page 36 System Design Document

SDD Version 4.0 36 ARC SGT SDD>

4. System Design
The proposed system may extend the current system via the existing SGT framework or by the
development of a modular component that “plugs” into the SGT application. Proposed solution may be
commercially available or custom developed to fully meet the requirements of the project. ARC will host
the application internally but may also choose to host the solution in a third party environment. Technical
support and maintenance will be required for the transactional and mission critical components of the
system. The system must provide strong security and credentialing methods to ensure privacy and
system security.

4.1 Business Requirements

System could provide substantial functionality to the existing SGT application. ARC intends to
understand the functional requirements necessary for each component and its applicable capital and
ongoing support costs to layout a short to mid-range implementation plan.

Table 7: SGT future enhancements

WEB BASED RESERVATIONS 1

PROVIDER ASSIGNMENT 2

RESOURCE DATA MAINTENANCE 3

TRIP DATA EXCHANGE 4

CENTRALIZED ELIGIBILITY 5

TNC MODE INTEGRATION 6

REPORTING AND ANALYTICS 7

AUTOMATED SCHEDULING 8

ROUTE PLANNING AND OPTIMIZATION 9

AUTOMATED DISPATCHING 10

AUTOMATED VEHICLE TRACKING 11

Page 37 System Design Document

SDD Version 4.0 37 ARC SGT SDD>

4.2 Database Design

Data dictionary is provided as an attachment to this document.

Figure 10: Example of a database design

4.2.1 Data Objects and Resultant Data Structures

The following table defines the data objects and schema for the proposed solution.

Table 8: Data objects and schemas

ActiveRecord::Schema.define(version: 20170419145226) do

 # These are extensions that must be enabled in order to support this database

MOBILE DRIVER APP 12

CUSTOMER INFORMATION APP 13

Page 38 System Design Document

SDD Version 4.0 38 ARC SGT SDD>

 enable_extension "plpgsql"

 enable_extension "postgis"

 create_table "accommodations", force: :cascade do |t|

 t.string "code", null: false

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["code"], name: "index_accommodations_on_code", unique: true, using: :btree

 end

 create_table "accommodations_services", id: false, force: :cascade do |t|

 t.integer "service_id", null: false

 t.integer "accommodation_id", null: false

 t.index ["accommodation_id"], name: "index_accommodations_services_on_accommodation_id", using:

:btree

 t.index ["service_id"], name: "index_accommodations_services_on_service_id", using: :btree

 end

 create_table "accommodations_users", id: false, force: :cascade do |t|

 t.integer "user_id", null: false

 t.integer "accommodation_id", null: false

 t.index ["accommodation_id"], name: "index_accommodations_users_on_accommodation_id", using:

:btree

 t.index ["user_id"], name: "index_accommodations_users_on_user_id", using: :btree

 end

 create_table "cities", force: :cascade do |t|

 t.string "name"

 t.string "state"

 t.geometry "geom", limit: {:srid=>0, :type=>"geometry"}

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["geom"], name: "index_cities_on_geom", using: :gist

 t.index ["name", "state"], name: "index_cities_on_name_and_state", using: :btree

 end

 create_table "comments", force: :cascade do |t|

 t.text "comment"

Page 39 System Design Document

SDD Version 4.0 39 ARC SGT SDD>

 t.string "locale"

 t.string "commentable_type"

 t.integer "commentable_id"

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["commentable_type", "commentable_id"], name:

"index_comments_on_commentable_type_and_commentable_id", using: :btree

 end

 create_table "configs", force: :cascade do |t|

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.string "key"

 t.text "value"

 end

 create_table "counties", force: :cascade do |t|

 t.string "name"

 t.string "state"

 t.geometry "geom", limit: {:srid=>0, :type=>"geometry"}

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["geom"], name: "index_counties_on_geom", using: :gist

 t.index ["name", "state"], name: "index_counties_on_name_and_state", using: :btree

 end

 create_table "custom_geographies", force: :cascade do |t|

 t.string "name"

 t.geometry "geom", limit: {:srid=>0, :type=>"geometry"}

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["geom"], name: "index_custom_geographies_on_geom", using: :gist

 t.index ["name"], name: "index_custom_geographies_on_name", using: :btree

 end

 create_table "eligibilities", force: :cascade do |t|

 t.string "code", null: false

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

Page 40 System Design Document

SDD Version 4.0 40 ARC SGT SDD>

 t.index ["code"], name: "index_eligibilities_on_code", unique: true, using: :btree

 end

 create_table "eligibilities_services", id: false, force: :cascade do |t|

 t.integer "service_id", null: false

 t.integer "eligibility_id", null: false

 t.index ["eligibility_id"], name: "index_eligibilities_services_on_eligibility_id", using:

:btree

 t.index ["service_id"], name: "index_eligibilities_services_on_service_id", using: :btree

 end

 create_table "fare_zones", force: :cascade do |t|

 t.integer "service_id"

 t.integer "region_id"

 t.string "code"

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["service_id", "region_id"], name: "index_fare_zones_on_service_id_and_region_id",

using: :btree

 end

 create_table "itineraries", force: :cascade do |t|

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.integer "trip_id"

 t.datetime "start_time"

 t.datetime "end_time"

 t.text "legs"

 t.integer "walk_time"

 t.integer "transit_time"

 t.float "cost"

 t.integer "service_id"

 t.string "trip_type"

 t.index ["service_id"], name: "index_itineraries_on_service_id", using: :btree

 t.index ["trip_id"], name: "index_itineraries_on_trip_id", using: :btree

 end

 create_table "landmarks", force: :cascade do |t|

 t.datetime "created_at", null: false

Page 41 System Design Document

SDD Version 4.0 41 ARC SGT SDD>

 t.datetime "updated_at", null: false

 t.string "name"

 t.string "street_number"

 t.string "route"

 t.string "city"

 t.string "state"

 t.string "zip"

 t.boolean "old"

 t.decimal "lat", precision: 10, scale: 6

 t.decimal "lng", precision: 10, scale: 6

 end

 create_table "locales", force: :cascade do |t|

 t.string "name"

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 end

 create_table "purposes", force: :cascade do |t|

 t.string "code", null: false

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 end

 create_table "purposes_services", id: false, force: :cascade do |t|

 t.integer "service_id", null: false

 t.integer "purpose_id", null: false

 t.index ["purpose_id"], name: "index_purposes_services_on_purpose_id", using: :btree

 t.index ["service_id"], name: "index_purposes_services_on_service_id", using: :btree

 end

 create_table "regions", force: :cascade do |t|

 t.text "recipe"

 t.geometry "geom", limit: {:srid=>0, :type=>"multi_polygon"}

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["geom"], name: "index_regions_on_geom", using: :gist

 end

Page 42 System Design Document

SDD Version 4.0 42 ARC SGT SDD>

 create_table "roles", force: :cascade do |t|

 t.string "name"

 t.string "resource_type"

 t.integer "resource_id"

 t.datetime "created_at"

 t.datetime "updated_at"

 t.index ["name", "resource_type", "resource_id"], name:

"index_roles_on_name_and_resource_type_and_resource_id", using: :btree

 t.index ["name"], name: "index_roles_on_name", using: :btree

 end

 create_table "schedules", force: :cascade do |t|

 t.integer "service_id"

 t.integer "day"

 t.integer "start_time"

 t.integer "end_time"

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["day"], name: "index_schedules_on_day", using: :btree

 t.index ["service_id"], name: "index_schedules_on_service_id", using: :btree

 end

 create_table "services", force: :cascade do |t|

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.string "type"

 t.string "name"

 t.string "gtfs_agency_id"

 t.string "logo"

 t.string "email"

 t.string "url"

 t.string "phone"

 t.integer "start_or_end_area_id"

 t.integer "trip_within_area_id"

 t.string "fare_structure"

 t.text "fare_details"

 t.boolean "archived", default: false

 t.index ["archived"], name: "index_services_on_archived", using: :btree

 t.index ["gtfs_agency_id"], name: "index_services_on_gtfs_agency_id", using: :btree

 t.index ["name"], name: "index_services_on_name", using: :btree

Page 43 System Design Document

SDD Version 4.0 43 ARC SGT SDD>

 t.index ["start_or_end_area_id"], name: "index_services_on_start_or_end_area_id", using: :btree

 t.index ["trip_within_area_id"], name: "index_services_on_trip_within_area_id", using: :btree

 end

 create_table "translation_keys", force: :cascade do |t|

 t.string "name"

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 end

 create_table "translations", force: :cascade do |t|

 t.integer "locale_id"

 t.integer "translation_key_id"

 t.text "value"

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 end

 create_table "trips", force: :cascade do |t|

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.integer "user_id"

 t.integer "origin_id"

 t.integer "destination_id"

 t.datetime "trip_time"

 t.boolean "arrive_by"

 t.integer "selected_itinerary_id"

 t.integer "purpose_id"

 t.index ["destination_id"], name: "index_trips_on_destination_id", using: :btree

 t.index ["origin_id"], name: "index_trips_on_origin_id", using: :btree

 t.index ["purpose_id"], name: "index_trips_on_purpose_id", using: :btree

 t.index ["selected_itinerary_id"], name: "index_trips_on_selected_itinerary_id", using: :btree

 t.index ["user_id"], name: "index_trips_on_user_id", using: :btree

 end

 create_table "user_eligibilities", force: :cascade do |t|

 t.integer "user_id"

 t.integer "eligibility_id"

 t.boolean "value", default: true

Page 44 System Design Document

SDD Version 4.0 44 ARC SGT SDD>

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["eligibility_id"], name: "index_user_eligibilities_on_eligibility_id", using: :btree

 t.index ["user_id"], name: "index_user_eligibilities_on_user_id", using: :btree

 end

 create_table "users", force: :cascade do |t|

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.string "email", default: "", null: false

 t.string "encrypted_password", default: "", null: false

 t.string "reset_password_token"

 t.datetime "reset_password_sent_at"

 t.datetime "remember_created_at"

 t.integer "sign_in_count", default: 0, null: false

 t.datetime "current_sign_in_at"

 t.datetime "last_sign_in_at"

 t.inet "current_sign_in_ip"

 t.inet "last_sign_in_ip"

 t.string "authentication_token", limit: 30

 t.string "first_name"

 t.string "last_name"

 t.integer "preferred_locale_id"

 t.text "preferred_trip_types"

 t.index ["authentication_token"], name: "index_users_on_authentication_token", unique: true,

using: :btree

 t.index ["email"], name: "index_users_on_email", unique: true, using: :btree

 t.index ["last_name", "first_name"], name: "index_users_on_last_name_and_first_name", using:

:btree

 t.index ["preferred_locale_id"], name: "index_users_on_preferred_locale_id", using: :btree

 t.index ["reset_password_token"], name: "index_users_on_reset_password_token", unique: true,

using: :btree

 end

 create_table "users_roles", id: false, force: :cascade do |t|

 t.integer "user_id"

 t.integer "role_id"

 t.index ["user_id", "role_id"], name: "index_users_roles_on_user_id_and_role_id", using: :btree

 end

Page 45 System Design Document

SDD Version 4.0 45 ARC SGT SDD>

 create_table "waypoints", force: :cascade do |t|

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.string "name"

 t.string "street_number"

 t.string "route"

 t.string "city"

 t.string "state"

 t.string "zip"

 t.decimal "lat", precision: 10, scale: 6

 t.decimal "lng", precision: 10, scale: 6

 end

 create_table "zipcodes", force: :cascade do |t|

 t.string "name"

 t.geometry "geom", limit: {:srid=>0, :type=>"geometry"}

 t.datetime "created_at", null: false

 t.datetime "updated_at", null: false

 t.index ["geom"], name: "index_zipcodes_on_geom", using: :gist

 t.index ["name"], name: "index_zipcodes_on_name", using: :btree

 end

 add_foreign_key "itineraries", "services"

 add_foreign_key "itineraries", "trips"

 add_foreign_key "schedules", "services"

 add_foreign_key "services", "regions", column: "start_or_end_area_id"

 add_foreign_key "services", "regions", column: "trip_within_area_id"

 add_foreign_key "trips", "itineraries", column: "selected_itinerary_id"

 add_foreign_key "trips", "purposes"

 add_foreign_key "trips", "users"

 add_foreign_key "trips", "waypoints", column: "destination_id"

 add_foreign_key "trips", "waypoints", column: "origin_id"

 add_foreign_key "user_eligibilities", "eligibilities"

 add_foreign_key "user_eligibilities", "users"

 add_foreign_key "users", "locales", column: "preferred_locale_id"

4.2.2 File and Database Structures

The following data model represents the current solution with the proposed solution highlighted.

Page 46 System Design Document

SDD Version 4.0 46 ARC SGT SDD>

4.2.2.1 Database Management System Files

The image below represents the high level ER diagram and object model for the current system.

4.2.2.2 Non-Database Management System Files

None

Page 47 System Design Document

SDD Version 4.0 47 ARC SGT SDD>

4.3 Data Conversion

None

4.4 User Machine-Readable Interface

4.4.1 Inputs

See Concept of Operations for user inputs, forms, and user roles and permissions.

4.4.2 Outputs

Instructions: Describe the system output design relative to the user/operator. Show a mapping to the
high-level data flows. System outputs include reports, data display screens and GUIs, query results, etc.
The output files described in the section for Data Design may be referenced. The following should be
provided, if appropriate:

• Identification of codes and names for reports and data display screens

• Description of report and screen contents (provide a graphical representation of each layout and
define all data elements associated with the layout or reference the data dictionary)

• Description of the purpose of the output, including identification of the primary users

• Report distribution requirements, if any (include frequency for periodic reports)

• Description of any access restrictions or security considerations

Users did not specifiy specific outputs. They requested that an ad hoc report and dashboard design tool .
This would allow them to define and build their own reports and queries. The current application provides
standard reports that are unusable and unchangeable. This is a big area of frustration.

The report designer will expose all available objects and fields including extensions and allow admin
users to sort, group, filter, and bucket datasets. Basic and advanced statistics and data aggregration
functions will be available. Reports can be defined as tabular, summary, matrix, and joined. The report
tool will allow a basic user to build simple and/or very advanced reports. This method provides the
flexibility and scalability ARC requires.

4.5 User Interface Design

User interface designs have not been completed for this document. It is anticipated that the development
team will develop mockups based on final procurement specifications. The image below represents and
example mockup.

Page 48 System Design Document

SDD Version 4.0 48 ARC SGT SDD>

Figure 11: Example of balsamiq mockup

4.5.1 Section 508 Compliance

The current application is Section 508 Compliant. The proposed application will be designed and
developed to support Section 508 compliance.

Page 49 System Design Document

SDD Version 4.0 49 ARC SGT SDD>

5. Operational Scenarios
Section 5 describes scenarios that show how the system will be used to perform its objectives and meet
the user’s requirements. Each scenario can be illustrated by a use case. Develop sample usage
scenarios (as realistic as possible) for each user class that show what inputs, outputs, and user
interaction will be required.

1.1 Major Operational Scenarios
Table 9: Major operational scenarios

Process Purpose Description Priority Frequency

Reservations Web based trip
booking

Users can book transportation
directly from trip planning function.
Users may choose to book directly
without going through planning
process.

High Daily

Centralized
Resource
Management

Central
repository for
customer,
vehicle, and
provider data

System can leverage regional
resources more effectively.
Foundation for regional coordination
and provider assignment.

High Daily

Provider
Assignment

Trip Assignment
and Brokering

Functions to support automated trip
assignment based on least cost most
appropriate logic.

High Daily

Scheduling Schedule and
route planning

Functions to support automated,
computer assisted, and manual
scheduling and route optimization to
coordinate trips and improve
capacity.

High Daily

Dispatching Real time
dispatching and
tracking

Users can view real time location,
status, and ETA of transportation to
improve service delivery and
customer service.

High Daily

Electronic
Payment

Web or mobile
payment

Users can pay for transportation
online via credit card or, potentially, a
pre-paid transportation account.

High Daily

Cost
Allocation

Transportation
cost sharing

System can allocate costs to proper
funding source.

High Daily

Reporting Reporting and
Analytics

Users can run canned reports and
dashboards. Users can create
custom ad hoc reports.

High Daily /
Weekly /
Monthly

Page 50 System Design Document

SDD Version 4.0 50 ARC SGT SDD>

Coordination Trip
Coordination

Trip data can be exchanged
electronically via published and open
API’s for the facilitation of
coordination of resources and trips.

High Daily

1.2 Major Use Cases

1.2.1 Customer Resources

Creating and editing customer demographics including default address information (geocoded), eligibility
information, capacity and constraint related parameters (mobility needs, PCA’s, guests, etc.…), trip
related data (trip purpose, trip type), and billing information. Information below defines the core data
management requirements for customers.

Major Functions:

• SEARCH - Searching for Customers

• NEW - Creating New Customers

• EDIT - Editing Customers

• DELETE - Deleting Customers

Table 10: Customer use cases

• Them
e

I want to… so that… Use Case Notes

User Interface Access the
customer
module

I can add,
edit, or
review
customer
related
information

<given>a user with rights to
customer module needs to
launch customer
module<when>the user selects
a customer
tab/button/section<then>custo
mer module is displayed

UI design for
module
accessibility will
be important

User Interface Search for
customer

Edit an
existing
customer

<given>a user needs to quickly
search for a single or multiple
customers <when>the user
provides full or partial name
<then>the application provides
a single or multiple customers
for user to select

Search UI must
be simple and
fast. Wildcard
searches
required.
Advanced search
criteria required

User Interface Create New
Customer

I can add a
new
customer to
the
database

<given>a user has rights to
create new
customer<when>the user
selects NEW function<then>the
application provides new form
to enter required data

Page 51 System Design Document

SDD Version 4.0 51 ARC SGT SDD>

General Data Edit or enter
basic customer
demographic
data

I can store
customer
data for
future use

<given> user has rights to
create and edit customer data
<when>the user creates new or
edits a customer <then> the
application allows user to input
data in form: First Name, Last
Name, Default Pickup Address,
Mailing Address, Phone, Email,
and Birthday

User Interface Delete
customer

I can purge
customer
from
system

<given> user has rights to
delete customer <when>the
user creates selects a customer
<then> the application allows
user to delete customer

All associated
data, including
trips, must be
purged. Warning
message should
be displayed prior
to submitting
request

General Data Add Language
to customer
record

I can assign
default
language to
customer

<given> user has rights to
create and edit customer data
<when>the user creates new or
edits a customer <then> allow
user to select default
LANGUAGE from picklist
values

General Data Add RACE to
customer
record

I can assign
default race
to customer

<given> user has rights to
create and edit customer data
<when>the user creates new or
edits a customer <then> allow
user to select default RACE
from picklist values

General Data Add GENDER
to customer
record

I can assign
default
gender to
customer

<given> user has rights to
create and edit customer data
<when>the user creates new or
edits a customer <then> allow
user to select default GENDER
from picklist values

General Data Add
emergency
contact

I can assign
a default
emergency
contact to
customer

<given> user has rights to
create and edit customer data
<when>the user creates new or
edits a customer <then> allow
user to assign an emergency
contact with phone number to
record

Page 52 System Design Document

SDD Version 4.0 52 ARC SGT SDD>

Function Geocode a
customer
address
(address, city,
state, zip)

I can locate
default
customer
pickup
address on
map

<given>user has rights to
create new customer <when>
user enters a valid pickup
address <then> locate the
customer on the map and
provide user with options to
select appropriate address

Design
consideration:
Address
geocoding must
be very simple
and
straightforward.
Reducing
address
redundancy is
important (i.e.
Address
duplication)

Function Calculate
customer age

I can easily
determine
the age of
the
customer
as a
function of
AGE field

<given>user has rights to
create or edit customers
<when>user enters AGE data
<then> then application
calculates age of customer

Used in reporting
especially in
senior and social
services
transportation.
Often used to
determine eligible
programs

Function Make customer
active

I can easily
make a
customer
active or
inactive

<given>the user has rights to
create or edit customer
<when>user creates new
customer <then> automatically
make customer active

Upon NEW make
customer active.
Allow user to
change to
inactive in future.
If changed to
INACTIVE, all
future trip
reservations
should be
cancelled

General Data Add a
customer
picture to
customer
record

I can view
image of
customer

<given>the user has rights to
create or edit customer
<when>the user creates or
edits customer<then> provide
method to upload customer
image to record

Customer image
may also be
utilized for future
mobile data app
to identify
customer upon
boarding

Mobility Add customer
mobility type

I can assign
mobility
type to
customer

<given>the user has rights to
create or edit customer
<when>the user creates or
edits a customer <then> allow
user to select MOBILITY TYPE
from picklist values

Default picklist
values:
Ambulatory,
Wheelchair, Extra
Large Wheelchair

Page 53 System Design Document

SDD Version 4.0 53 ARC SGT SDD>

Mobility Add load and
unload type as
a function of
mobility type

I can assign
automaticall
y assign
load and
unload time
to a
customer
profile for
use in
reservation
and
scheduling
module

<given>the user has rights to
create or edit customer
<when>the user selects
MOBILITY Type<then> assign
default load and unload times
as function of MOBILITY TYPE
as default, but editable, values

Mobility type and
load and unload
time will populate
automatically in
RESERVATION
module upon
creating NEW
RESERVATION

Mobility Add additional
passengers

I can add a
Personal
Care
Attendant
(PCA),
Guest, or
other
passengers
travelling
with me

<given>the user has rights to
create or edit customer
<when>the user selects ADD
PASSENGERS<then> allow
user to enter additional
passenger name, type (PCA,
Guest)

Vehicle Capacity
Constraint

Mobility Add additional
passenger’s
mobility type

I can add
MOBILITY
TYPES to
any
additional
passenger
travelling
with me as
a default

<given>the user has rights to
create or edit customer
<when>the user selects ADD
PASSENGERS <then> allow
user to enter mobility types for
each passenger.

Vehicle Capacity
Constraint

General Data Add a
customer type
to customer
record

I can add a
customer
type from a
PICKLIST

<given>the user has rights to
create or edit customer
<when>the user selects TYPE
picklist <then> allow user to
enter a customer type from
default picklist values

Placeholder to
put customers in
generic "buckets"
- Elderly, Child,
etc.…

General Data Add assistance
needs to
customer
record

I can add
multiple
assistance
needs to
customer
record

<given>the user has rights to
create or edit customer
<when>the user selects ADD
ASSISTANCE <then> allow
user to add multiple
ASSISTANCE NEED items to
record

Assistance needs
will be used for
driver instructions
and will be
available on
paper manifest or
mobile device

General Data Add
COMMENTS to
customer
record

I can add
general
comments
to customer
record

<given>the user has rights to
create or edit customer
<when>the user selects
COMMENTS field <then> allow
user to enter text in
COMMENTS field

Page 54 System Design Document

SDD Version 4.0 54 ARC SGT SDD>

Function Upload
ATTACHMENT
S to customer
record

I can easily
add or
delete one
or multiple
documents
to the
customer
record

<given>the user has rights to
create or edit customer
<when>the user <then> allow

Eligibility Add
PROGRAM
ELIGIBILITY to
customer
record

I can track
which
programs
the
customer is
eligible for
and to
associate
relevant
eligibility
information
to future trip
reservation
s

<given>the user has rights to
add eligibility info to
customers<when>the user
selects ADD ELIGIBILITY
<then> allow user to add
multiple ELIGIBILITY records

Eligibility Add
PROGRAM
ELIGIBILITY
details to
ELIGIBILITY
record

I can track
various
data
elements
relating to
ELIGIBILIT
Y include:
Program
(picklist),
Start, End,
Fare

<given>the user has rights to
add eligibility info to
customers<when>the user
selects ELIGIBILITY record
<then> allow user to enter
relevant program eligibility data

Design
consideration:
Provide flexibility
to allow admins
to configure
different eligibility
criteria for each
program. ADA
has different
criteria than
Medicaid. Based
on program
selected, form is
displayed based
on configured
layout / fields.

Function Implement
Audit Trail
functions at
field level

I can track
and report
on who
created,
updated, or
deleted
customer
related data

<given>any user with Read
Only rights<when>the user
selects a customer
record<then>display AUDIT
TRAIL information

Audit trail should
display both the
user and the
date/time of edit
as well as data
changed from ->
to

User Interface Implement
inline and
online help

I can obtain
help at the
form and
field level

<given>any user with Read
Only rights<when>the user
selects HELP <then>display
help at form or field level
depending on what user
requests

Online, Inline,
and CBT will be
very important in
scaling and
streamlining
implementation

Page 55 System Design Document

SDD Version 4.0 55 ARC SGT SDD>

User Interface Create or
Cancel Trip
Reservation

I can select
a BUTTON
to create or
cancel a
reservation
directly
from
customer
module

<given>the user has rights to
create or edit customer
<when>the user <then> allow

See
RESERVATION
Module.

User Interface Add custom
fields to the
customer
module

I can track
data
elements
that are
specific to
my
organizatio
n

<given>the user is an admin
<when>the user accesses
ADMIN MODULE<then> allow
user to define custom data
elements to customer module

See
ADMINISTRATIO
N Module

User Interface Configure
picklist values

I can
configure
picklist
values
specific to
my
organizatio
n

<given>the user has rights to
create or edit customer
<when>the user <then> allow

See
ADMINISTRATIO
N Module

1.2.2 Vehicle Resources

Vehicle module simply provides users the ability to define the type of vehicles operated and their relevant
characteristics. This data is very important for the route and schedule optimization problem. Vehicle data
will be passed into scheduling tools. Much of the data below is required by FTA for National Transit
Database (NTD) annual reporting. Automated NTD reports will be critical and strong value add.

Key considerations:

• Vehicle Capacity

o Ambulatory Seats

o Wheelchair Slots

• Vehicle Availability

• Vehicle Requirements

o Drivers must have this capability in order to be assigned to it

• Vehicle Pull In / Pullout (Garage Location)

Table 11: Vehicle use cases

Theme I want to… so that… Use Case Notes

User
Interface

Access the
vehicle
module

I can add,
edit, or
review
vehicle

<given>a user with rights to vehicle
module needs to launch vehicle
module<when>the user selects a
vehicle

UI design for module
accessibility will be
important

Page 56 System Design Document

SDD Version 4.0 56 ARC SGT SDD>

related
information

tab/button/section<then>vehicle
module is displayed

User
Interface

Search for
vehicle

Edit an
existing
vehicle

<given>a user needs to quickly
search for a single or multiple
vehicles <when>the user provides
full or partial name <then>the
application provides a single or
multiple vehicles for user to select

Search UI must be
simple and fast.
Wildcard searches
required. Advanced
search criteria required

User
Interface

Create New
vehicle

I can add a
new vehicle
to the
database

<given>a user has rights to create
new vehicle<when>the user selects
NEW function<then>the application
provides new form to enter required
data

General
Data

Edit or enter
basic
vehicle data

I can store
vehicle data
for future use

<given> user has rights to create
and edit vehicle data <when>the
user creates new or edits a vehicle
<then> the application allows user to
input data in form: Vehicle Number,
Type, Fleet, VIN, Plate, Status,
Make, Model, Fuel Type, Year,
Color, Length, Ownership,
Operating cost

Multiple Generic Vehicle
fields

User
Interface

Delete
vehicle

I can purge
vehicle from
system

<given> user has rights to delete
vehicle <when>the user creates
selects a vehicle <then> the
application allows user to delete
vehicle

All associated data,
including trips, must be
unscheduled. Warning
message should be
displayed prior to
submitting request

Function Geocode a
vehicle
garage
(address,
city, state,
zip)

I can locate
default
garage
address on
map

<given>user has rights to create
new vehicle <when> user enters a
valid pickup address <then> locate
the vehicle on the map and provide
user with options to select
appropriate address

Design consideration:
Address geocoding
must be very simple and
straightforward.
Reducing address
redundancy is important
(i.e. Address
duplication)

Function Make
vehicle
active

I can easily
make a
vehicle active
or inactive

<given>the user has rights to create
or edit vehicle <when>user creates
new vehicle <then> automatically
make vehicle active

Upon NEW make
vehicle active. Allow
user to change to
inactive in future. If
changed to INACTIVE,
all future trip
reservations should be
cancelled

Page 57 System Design Document

SDD Version 4.0 57 ARC SGT SDD>

General
Data

Add a
vehicle
picture to
vehicle
record

I can view
image of
vehicle

<given>the user has rights to create
or edit vehicle <when>the user
creates or edits vehicle<then>
provide method to upload vehicle
image to record

vehicle image may also
be utilized for future
mobile data app to
identify vehicle upon
boarding

General
Data

Add vehicle
capacity

I can enter
the number
of ambulatory
and
wheelchair
seats the
vehicle has

<given>the user has rights to edit
vehicle <when>the user creates or
edits vehicle<then> allow user to
enter capacity information - 1) AMB
2) WC

General
Data

Add
equipment
types the
vehicle
supports

I can assign
multiple types
of equipment
to the vehicle

<given> user has rights to edit
vehicle data <when>the user
creates new or edits a vehicle
<then> allow user to select one or
multiple equipment types

Multi Picklist. o
Constraints used in
optimization to ensure
vehicle has proper
equipment to perform
trips assigned. For
example, a wheelchair
trip can only be
assigned to a vehicle
that has both a wheel
chair lift (equipment)
and a slot / seat
(capacity) at that given
time.

General
Data

Add vehicle
restrictions

I can assign
restrictions to
the vehicle.
This tells the
system what
the vehicle is
not allowed
to do.

<given> user has rights to edit
vehicle data <when>the user selects
vehicle and vehicle schedule tab
<then> allow user to select one or
multiple vehicle restrictions

Multi Picklist. Values
could equal - No U-
Turns, Toll Roads, Out
of State Trips, etc.…

General
Data

Assign
vehicle to a
route or run

I can assign
a vehicle to a
route for a
single day or
multiple days

<given> user has rights to edit
vehicle data <when>the user selects
vehicle and vehicle schedule tab
<then>allow user to assign the
vehicle to a defined route

NOTE: Need to define
a route object

General
Data

Assign a
pull out cost
to vehicle

I can assign
a "cost" that
weights the
vehicles pull
out
assignment

<given> user has rights to edit
vehicle data <when>the user selects
vehicle and vehicle schedule tab
<then>allow user to assign a
numeric cost to the vehicle

Cost will be used to
determine least costly
vehicles to utilize when
assigning schedules

Page 58 System Design Document

SDD Version 4.0 58 ARC SGT SDD>

1.2.3 Driver Resource

Driver module allows users to maintain a list of drivers and related information.

COMMON ACTIONS

• NEW

• SEARCH

o Easy and flexible search functions.

o Once driver is identified, user can edit record

▪ EDIT

▪ DELETE

▪ VIEW SCHEDULE

Table 12: Driver resource use cases

Theme I want
to…

so that… Use Case Notes

User
Interface

Access the
driver
module

I can add, edit,
or review driver
related
information

<given>a user with rights to
driver module needs to launch
driver module<when>the user
selects a driver
tab/button/section<then>driver
module is displayed

UI design for
module accessibility
will be important

User
Interface

Search for
driver

Edit an existing
driver

<given>a user needs to quickly
search for a single or multiple
drivers <when>the user provides
full or partial name <then>the
application provides a single or
multiple drivers for user to select

Search UI must be
simple and fast.
Wildcard searches
required. Advanced
search criteria
required

User
Interface

Create New
driver

I can add a new
driver to the
database

<given>a user has rights to
create new driver<when>the user
selects NEW function<then>the
application provides new form to
enter required data

General
Data

Edit or enter
basic driver
data

I can store
driver data for
future use

<given> user has rights to create
and edit driver data <when>the
user creates new or edits a driver
<then> the application allows
user to input data in form:
Name, Address, Phone, Email,
License, Date Hired, Date
Terminated, Training /
Certification, Schedule, Type,
Comments

Multiple Generic
driver fields

User
Interface

Delete
driver

I can purge
driver from
system

<given> user has rights to delete
driver <when>the user creates
selects a driver <then> the
application allows user to delete
driver

All associated data,
including trips, must
be unscheduled.
Warning message
should be displayed

Page 59 System Design Document

SDD Version 4.0 59 ARC SGT SDD>

prior to submitting
request

Function Make driver
active

I can easily
make a driver
active or
inactive

<given>the user has rights to
create or edit driver <when>user
creates new driver <then>
automatically make driver active

Upon NEW make
driver active. Allow
user to change to
inactive in future. If
changed to
INACTIVE, all future
trip reservations
should be cancelled

General
Data

Add a driver
picture to
driver
record

I can view
image of driver

<given>the user has rights to
create or edit driver <when>the
user creates or edits
driver<then> provide method to
upload driver image to record

driver image may
also be utilized for
future mobile data
app to identify driver
upon boarding

General
Data

Add driver
capacity

I can enter the
number of
ambulatory and
wheelchair
seats the driver
has

<given>the user has rights to edit
driver <when>the user creates or
edits driver<then> allow user to
enter capacity information - 1)
AMB 2) WC

General
Data

Add driver
capabilities

I can assign
capabilities to
the driver. This
tells the system
what the driver
is capable of
operating

<given> user has rights to edit
driver data <when>the user
selects driver and vehicle
schedule tab <then> allow user
to select one or multiple driver
capabilities

Multi Picklist.
Values could equal -
Operate Wheelchair
Lift, CPR Trained,
Operate Large Bus,
etc.…

General
Data

Assign
driver to a
route or run

I can assign a
driver to a route
for a single day
or multiple days

<given> user has rights to edit
driver data <when>the user
selects driver and vehicle
schedule tab <then>allow user to
assign the driver to a defined
route

NOTE: Need to
define a route object

General
Data

Create a
driver
schedule

I can create,
update, or
deleate a driver
schedule for a
defined period

<given> user has rights to edit
driver data <when>the user
selects driver and vehicle
schedule tab <then>allow user to
assign the driver schedule for a
period. Days of Week, Start
Time, End Time,

Page 60 System Design Document

SDD Version 4.0 60 ARC SGT SDD>

1.2.4 Reservations

Reservation module allows web users or customer service representatives (CSR) to quickly and easily
book trips. There are two types of trips:

• Demand Response (single trip)

• Standing Order (recurrence pattern)

COMMON ACTIONS

• NEW

• SEARCH

o Easy and flexible search functions.

o Once customer with trips is identified, user can edit record

▪ EDIT

▪ DELETE

▪ COPY

• SCHEDULE / ASSIGN

Table 13: Reservation use cases

Theme I want to… so that… Use Case Notes

User
Interface

Access the
reservation
module

I can add, edit, or
review
reservations
related
information

<given>a user with rights to
reservation module needs to
launch reservation
module<when>the user selects
a reservation tab/button/section
<then>reservation module is
displayed

UI design for module
accessibility will be
important

User
Interface

Search for
reservation

Edit an existing
reservation

<given>a user needs to quickly
search for a single or multiple
reservations <when>the user
provides driver ID, phone
number, name, or wildcards
<then>the application provides
a single or multiple customers
for user to select

Search UI must be
simple and fast.
Wildcard searches
required. Advanced
search criteria
required

General
Data

Create New
reservation

I can add a new
reservation to the
database

<given>a user has rights to
create new
reservation<when>the user
selects NEW function<then>the
application provides new form
to enter required data

 Trip Date Calendar to select
reservation date

 Pickup Address Pickup Location

Page 61 System Design Document

SDD Version 4.0 61 ARC SGT SDD>

 Drop-off Address Drop-off Location

 Program Eligible Program
Picklist

 Type Pickup or Drop-off

 Time Window Range to PU / DO
customer

 Mobility Type Defaults from
customer profile

 Guests Defaults from
customer profile

 Attendants Defaults from
customer profile

 Recurrence Pattern Recurring trip pattern.
If trip has a pattern, it
is considered a
standing order or
subscription trip

 Trip Type Picklist of trip type

 Trip Purpose Picklist of trip purpose

Function Geocode
addresses

I can easily
geocode PU /
DO addresses

<given>a user has rights to
create or edit new
reservation<when>the user
selects address location
function<then>the user can
enter address details in form to
find address geocode

Function Create a
return trip

I can select a
button to
automatically
create a return
trip

<given>a user has rights to
create or edit a
reservation<when>the user
selects RETURN TRIP
function<then>the PU / DO
addresses are toggled and
user is asked to enter return
time

Function Delete
reservation

I can purge
reservations from
system

<given> user has rights to
delete reservation <when>the
user creates selects a
reservation <then> the
application allows user to
delete reservation

All associated trips
deleted. Warning
message should be
displayed prior to
submitting request

Page 62 System Design Document

SDD Version 4.0 62 ARC SGT SDD>

General
Data

Make
reservation
active

I can easily make
a reservations
active or inactive

<given>the user has rights to
create or edit reservation
<when>user creates new
reservation <then>
automatically make reservation
active or inactive

Upon NEW make
reservation active.
Allow user to change
to inactive in future. If
changed to
INACTIVE, all future
trip reservations
should be cancelled

 View trip on
Map

I can easily see
the pickup and
drop-off on Map

<given>the user has rights to
create or edit reservation
<when>user selects MAP
function <then> display origin
destination on map

If fixed routes
available, display fixed
routes

 Fare
Calculation

I can view
estimated fare
and let customer
know how much
to have upon
pickup

<given>the user has rights to
create or edit reservation
<when>user selects
PROGRAM associated with
reservation<then> calculate the
estimated fare based on the
programs fare rules

Billing rules can be
complicated especially
for NEMT. Customer
Fare and total trip cost
is not necessarily the
same

 Trip
Comments

I can enter
comments about
trip that will be
displayed on
manifest

<given>the user has rights to
create or edit reservation
<when>user selects TRIP
COMMENTS text box<then>
allow user to enter
alphanumeric text into box

Make sure you
provide enough size
to enter text. 264
characters’ minimum.

 Confirmation
Number

I can view a
unique
confirmation
number and
provide to
customer on the
phone

<given>the user has rights to
create or edit reservation
<when>user SAVES
reservation <then>
automatically generate a
unique reservation confirmation
number

 Capacity
Estimation

I can ensure that
there is enough
capacity to
perform trip on
that requested

<given>the user has rights to
create or edit reservation
<when>user enters required
reservation data<then>
automatically confirm there is
capacity for the PU / DO

UI NOTE: Visual
representation of
capacity at time of
request.

 Pickup Time
Windows
Estimation

I can provide the
customer an
estimated PU
window

<given>the user has rights to
create or edit reservation
<when>user enters required
reservation data<then>
automatically display the
estimated time windows

These are also called
"promise" windows.
On Time performance
is normally calculated
based on these
windows

Page 63 System Design Document

SDD Version 4.0 63 ARC SGT SDD>

 Schedule
Reservation

I can assign the
reservation to an
available vehicle
/ route

<given>the user has rights to
create or edit reservation
<when>user selects ASSIGN
function <then> determine
most efficient vehicle/route to
assign to trip

Computer Assisted
Scheduling. Function
to bring back trip
options listed from
most efficient to least
efficient.

 Assign to
Provider

I can assign a
trip to my fleet or
a provider’s fleet

<given>the user has rights to
create or edit reservation
<when>user selects ASSIGN
function <then> determine
most efficient provider to
assign to trip

Assignment rules are
a function of cost

1.2.5 Scheduling

The most complex problem associated with this application is the scheduling and routing problem. Trips
must be automatically assigned to a route/vehicle pair that meets the customer requirements and does
not violate system constraints.

Solves a vehicle routing problem (VRP) to find the best routes for a fleet of vehicles. A scheduler or
dispatcher managing a fleet of vehicles is often required to make decisions about vehicle routing. One
such decision involves how to best assign a group of customers to a fleet of vehicles and to sequence
and schedule their visits. The objectives in solving such vehicle routing problems (VRP) are to provide a
high level of customer service by honoring any time windows while keeping the overall operating and
investment costs for each route as low as possible. The constraints are to complete the routes with
available resources and within the time limits imposed by driver work shifts, driving speeds, and customer
commitments. This service can be used to determine solutions for such complex fleet management tasks.
The goal is to come up with an itinerary for each driver (or route) such that the deliveries can be made
while honoring all the service requirements and minimizing the total time spent on a particular route by
the driver.

COMMON ACTIONS

• NEW SCHEDULE

• SCHEDULE / ASSIGN OPTIMIZATION METHODS

o Automated

o Assisted

o Manual

• EDIT EXISTING SCHEDULE

• CREATE ROUTE

o CREATE RUN

▪ Multiple runs can be assigned to a route

o ASSIGN DRIVER

o ASSIGN VEHICLE

SCHEDULE VIEWER

Scheduler requires a graphical interface to create, edit, and view:

• Schedule

• Route

• Runs

• Unscheduled Trips

Page 64 System Design Document

SDD Version 4.0 64 ARC SGT SDD>

• Unscheduled Runs

• Map View for route and unscheduled trip display

Scheduler requires ability to search for single routes / runs or view the entire day’s schedule.

• Simple and easy to use scheduling solution that incorporates drag and drop and map based editing

is recommended.

Scheduler requires ability to view daily schedules – current and in the future.

Table 14: Schedule use cases

Theme I want
to…

so that… Use Case Notes

User
Interface

Access the
scheduling
and routing
module

I can create, edit,
or review
schedule and
route related
information

<given>a user with rights to
scheduling module needs to
launch scheduling
module<when>the user selects
a scheduling tab/button/section
<then>scheduling module is
displayed

UI design for module
accessibility will be
important

User
Interface

Search for
scheduling

Edit an existing
scheduling or
route

<given>a user needs to quickly
search for a single or multiple
vehicle/routes<when>the user
provides route or vehicle
information <then>the
application finds route,
highlights results, and zooms
to extents on map

Search UI must be
simple and fast.
Wildcard searches
required. Advanced
search criteria required

General
Data

Create New
Schedule in
Automated
Mode

I can
automatically
insert
unscheduled trips
into existing
schedule

<given>a user has rights to
edit and create new
schedules<when>the user
selects SCHEDULE
function<then>the system
automatically inserts all or
subset of trips into existing
schedule

UI Note: User should
be able to easily select
ALL trips or filter out a
subset of trips.
Minimum constraints
below:
• Time windows
• On Board Travel Time
• Vehicle capacity (i.e.
does vehicle have
capacity at the given
request time)
• Vehicle capabilities
(i.e. wheel chair lift)

 Optimize
Routes

I can
automatically
route the trips in
most effective
and efficient
manner that
meets my
business rules

<given>a user has rights to
edit and create
routes<when>the user selects
SCHEDULE function<then>the
system automatically creates
optimized route

NOTE: This happens
in conjunction with the
schedule optimization
function. Point to Point
least cost minimum
path solutions are used
to generate the actual
route line.

Page 65 System Design Document

SDD Version 4.0 65 ARC SGT SDD>

 Find Best
Insertion

I can insert a
single trip into an
existing schedule

<given>a user has rights to
edit and create
schedules<when>the user
selects INSERT
function<then>the system
automatically identifies
potential insertion candidates
and presents them logically to
the user

Multiple options could
be available and must
be presented to the
user

 Create
route

I can create or
edit an existing
route

<given>a user has rights to
edit and create
routes<when>the user selects
ROUTE EDITOR
function<then>the system
presents a form to create or
edit a route

 Route
Name

Route Name ROUTE EDITOR
FORM

 Route
Number

Number of Route ROUTE EDITOR
FORM

 Route
Description

Description of
Route

 ROUTE EDITOR
FORM

 Start Time Route Start Time ROUTE EDITOR
FORM

 End Time Route End Time ROUTE EDITOR
FORM

 Operating
Days

Days that the
route operates

 ROUTE EDITOR
FORM

 Assigned
Vehicle

Picklist of
unassigned
vehicles

 ROUTE EDITOR
FORM

 Assigned
Driver

Picklist of
unassigned
drivers

 ROUTE EDITOR
FORM

 Garage Picklist of Garage
Locations

 ROUTE EDITOR
FORM

 Create
Breaks

I can insert
breaks into
existing route

<given>a user has rights to
edit and create
breaks<when>the user selects
INSERT BREAK
function<then>the system
presents a form to create or
edit new breaks for route

BREAK EDITOR
FORM

 Break Name BREAK EDITOR
FORM

 Break Duration BREAK EDITOR
FORM

Page 66 System Design Document

SDD Version 4.0 66 ARC SGT SDD>

 Break Time
Window

 BREAK EDITOR
FORM

 Break Location BREAK EDITOR
FORM

 Create
schedule
viewer

I can edit and
modify schedules
and routes

<given>a user has rights to
edit and create
schedules<when>the user
selects SCHEDULE
MANAGER function<then>the
system presents a form where
the user can select a date to
create or edit a schedules that
have been generated

Routes are listed with
assigned vehicle and
driver - Below routes
are assigned trips
sorted in time order
(ascending). Uses will
want to edit times and
move trips around
based on local
knowledge. Grid may
be considered for this
or a hierarchical
structure.

 Route
Viewer

I can graphically
view routes that
have been
generated on a
map with route
lines and stop
points

<given>a user has rights to
edit and create
routes<when>the user selects
a single or multiple routes on
SCHEDULE VIEWER <then>
routes and stops are
graphically displayed on the
MAP

UX: Simple and easy to
use scheduling solution
that incorporates drag
and drop and map
based editing is
recommended. Users
may want to edit or
move trips on map
component and quickly
see impact of map.
Statistics of the route
should be presented
(time and distance)

 Statistics
Viewer

I can easily see
relevant transport
statistics
associated with
entire schedule,
subset of
schedule, or a
single route

<given>a user has rights to
open SCHEDULE
MODULE<when>the user
selects the daily schedule,
single schedule, or multiple
schedules <then> statistics are
displayed on the map broken
down by route

Miles
Hours
Trips
Productivity
Costs
Revenue

1.2.6 Dispatch

Dispatching is the process of monitoring the performance of service delivery. Dispatchers need
easy and fast access to schedule and trip information. Views or lists of routes, trips, and
related performance data are required. Mapping of routes and trips is also important. Map /
GIS will be used in later versions to support vehicle tracking.

DISPATCH DATA ELEMENTS

• Name

• Route

• Run

Page 67 System Design Document

SDD Version 4.0 67 ARC SGT SDD>

• Vehicle

• Stop Time

• Stop Type

• Stop Address

• Scheduled Time

• Time Window

• Trip Status

o Completed

o No Show

o Late Cancelled

o Cancelled with x minutes of scheduled time

▪ User defined setting

o Missed Trip

• Other Trip, Route, run data fields should be available to add to grid / layout

Calculated Fields

• Estimated Time of Arrival (ETA)

• User Interface should visually depict project late trips

• Users must be able to sort and group data in a grid or similar component

MAP

• Display scheduled routes

• Display trip origin and destination

Table 15: Dispatch use cases

Theme I want
to…

so that… Use Case Notes

User
Interface

Access the
dispatch
module

I can add, edit, or
review dispatch
related
information

<given>a user with rights to dispatch
module needs to launch dispatch
module<when>the user selects a
dispatch tab/button/section
<then>dispatch module is displayed

UI design for module
accessibility will be
important. Accessing
information very quickly
is very important

User
Interface

Select a
date to
dispatch

I can monitor and
manage the
status of routes,
trips,
performance,
schedule for the
day

<given>a user needs view dispatch
screen <when>the user selects a
calendar function <then>the user
selects the date that they wish to
perform dispatch functions

Dispatch should default
to current date

User
Interface

Search for
data

I can easily find
customers, trips,
and routes to view
status

<given>a user needs to quickly
search for a single or multiple data
elements <when>the user provides
name, confirmation number, route,
vehicle, or wild card <then>the
system filters all data elements that
meet criteria

Fast and easy search
functions are important

Page 68 System Design Document

SDD Version 4.0 68 ARC SGT SDD>

User
Interface

View
schedules
and trips in
grid

I can easily view a
grid with related
schedule
information

<given>a user has permission to view
dispatch <when>the user open
dispatch form<then>the application
provides easy to view grid (or similar
component) to view scheduled data
elements

Grid or similar
component can be used
for dispatch list view

 Edit
schedule
and trip
data

I can edit
scheduled data
elements to
reflect actual
performance

<given>a user has permission to view
and edit dispatch <when>the user
selects a record<then>the application
allows user to update record

Need to maintain
scheduled information
and actual information
separately for
comparisons (i.e. He
was scheduled to be
picked up at 11:30;
Actual pickup was
12:15.

 View
dispatch
data
elements

I can view
relevant schedule
information in
dispatch view

<given>a user has permission to view
and edit dispatch <when>the user
open dispatch form<then>the
application displays following data
elements (minimum… there are
probably more)

UX: Allow users to
select and organize
columns to include in
dispatch view

 Customer Name

 Route

 Driver

 Vehicle

 Scheduled Stop
Time

 Actual Stop Time

 Mobility Type

 Trip Type

 Trip Purpose

 Program

 Type (PU / DO)

 Stop Address

 Stop City

Page 69 System Design Document

SDD Version 4.0 69 ARC SGT SDD>

 Early Time
Window

 Late Time
Window

 Trip Status Cancel, Late Cancel, No Show,
Completed

 Route Pullout
Time

 Route Pulling
Time

 Trip ETA Calculated field

 Route ETA Calculated field

 See routes
on Map

I can determine
status and
location of trips

<given>a user has permission to view
dispatch <when>the user selects a
MAP function<then>a map with
scheduled routes and stops is
displayed on map

Map control must have
common map tools
such as: Zoom in,
Zoom Out, Pan, Find
Address

 Sort and
Group

I can sort and
group schedule
by multiple
methods

<given>a user has permission to view
dispatch <when>user selects
dispatch data element
header<then>column can be sorted
and grouped by multiple methods and
levels

UX Note: Provide
ability to save grid
layouts for future use
(i.e. Late Trips, OTP)

1.2.7 Analytics

Reporting and data analytics is an extremely important component of the system. In fact, it could be the
biggest. Systems and users must be able to access all of the data in the system via standard and ad hoc
reports.

STANDARD REPORT THEMES

• Major Object Reports

o Customers

o Drivers

o Reservations

o Schedule

o Dispatch

• Operations

• On Time Performance

• Productivity

• Financial

Page 70 System Design Document

SDD Version 4.0 70 ARC SGT SDD>

• Exception

Samples:

• Driver Manifest

• Route Summary

• Schedule Productivity

o Route

o Run

o Driver

• Cancellation and No Shows

• Operating Statistics

• Exception Reports

• Financial Invoices

o Cost Allocation by Program

Table 16: Report use cases

Theme I want to… so that… Acceptance Criteria Notes

User
Interface

Access the
report
module

I can add, edit,
or review
dispatch related
information

<given>a user with rights to
dispatch module needs to launch
dispatch module<when>the user
selects a dispatch
tab/button/section <then>dispatch
module is displayed

UI design for module
accessibility will be
important. Accessing
information very quickly is
very important

User
Interface

Search for
reports

I can easily find
reports

<given>a user needs to quickly
search for a single or multiple data
elements <when>the user provides
name, confirmation number, route,
vehicle, or wild card <then>the
system filters all data elements that
meet criteria

Fast and easy search
functions are important

User
Interface

Access
reports

I can easily run
reports that I
have
permissions to
access

<given>a user needs to run a
report<when> the user searches or
selects a report <then> the report is
run and displayed

Administration must provide
ability to set permissions at
the report level: CRUD

User
Interface

Run reports
with
parameters

I can easily
select different
parameters for
the report

<given> the user wants to run a
report with valid
permissions<when> user selects
report <then>a parameter form is
presented that allows user to enter
various report parameters and pass
into report

Common Parameters:
Date Range, Group By, Sort
By, Filter By, Sum, Average

Page 71 System Design Document

SDD Version 4.0 71 ARC SGT SDD>

User
Interface

View
Reports in
Folders

I can easily
organize reports
by functional
area

<given>user has permissions to
access report module <when> user
selects NEW FOLDER function
<then> system allows user to
create a folder under PERSONAL
REPORTS

Standard Report Objects:
Customers, Drivers,
Operations, Productivity,
Financial, Exceptions,
Dashboards

User
Interface

Create
custom
reports

I can easily
create my own
reports and
save them to
public or private
folders

<given>user has permissions to
create ad hoc reports <when> user
selects NEW REPORT
<then>NEW REPORT FORM is
displayed that allows user to create
custom report with desired fields,
grouping, sorting, filters, graphs,
pivots, and logic

UX: Major differentiator
opportunity.

User
Interface

Export
reports

I can easily
email or export
to other formats

<given> user has permission to run
reports<when>user runs selected
report<then>user has options to
export or email to standard file
formats

CSV, PDF are two most
common

User
Interface

Standard
Reports

I can easily view
common and
industry
standard reports

<given> user has permission to run
reports<when>user can easily find
and select reports<then>user can
run desired standard reports with
various parameters

Users cannot SAVE
standard reports. Only
SAVE AS to Personal
Workspace

Page 72 System Design Document

SDD Version 4.0 72 ARC SGT SDD>

6. Detailed Design
Instructions: Provide the information needed for a system development team to actually build and
integrate the hardware components, code and integrate the software components, and interconnect the
hardware and software segments into a functional product. Additionally, address the detailed procedures
for combining separate COTS packages into a single system.

ARC will continue to utilize third party virtualization services for its physical hardware, internet
provisioning, security, and platform hosting. ARC currently utilizes both Heroku and AWS to fill this
requirement.

The current is an open source application. The proposed solution may be open source, proprietary or a
combination of both. Integration between the current solution and a COTS solution, if available and
selected, will occur at the API level using a RESTful framework.

6.1 Hardware Detailed Design

Figure 12: Example of web application hosting

6.2 Software Detailed Design

Provide a detailed description for each system software service that addresses the following software
service attributes. Much of the information that appears in this section should be contained in the
headers/prologues and comment sections of the source code for each component, subsystem, module,
and subroutine. If so, this section may largely consist of references to or excerpts of annotated diagrams
and source code. Any referenced diagrams or source code excerpts should be provided at any design
reviews.

• Service Identifier - The unique identifier and/or name of the software service

• Classification - The kind of service (e.g., application, data service, etc.)

Page 73 System Design Document

SDD Version 4.0 73 ARC SGT SDD>

• Definition - The specific purpose and semantic meaning of the service

• Requirements - The specific functional or nonfunctional requirements that the service satisfies

• Internal Data Structures - The internal data structures for the service

• Constraints - Any relevant, assumptions, limitations, or constraints for the service (this should
include constraints on timing, storage, or service state, and might include rules for interacting with
the service (encompassing pre-conditions, post-conditions, invariants, other constraints on input
or output values and local or global values, data formats and data access, synchronization,
exceptions, etc.))

• Composition - A description of the use and meaning of the subservices that are a part of the
service

• Users/Interactions - A description of the service’s collaborations with other services (what other
services use this this entity? what other services does this entity use (including any side-effects
this service might have on other parts of the system)? this includes the method of interaction, as
well as the interaction itself. Object-oriented designs should include a description of any known or
anticipated sub-classes, super-classes, and meta-classes)

• Processing - A description of precisely how the service goes about performing the duties
necessary to fulfill its responsibilities (this should encompass a description of any algorithms
used; changes or state; relevant time or space complexity; concurrency; methods of creation,
initialization, and cleanup; and handling of exceptional conditions)

• Interfaces/Exports - The set of services (resources, data types, constants, subroutines, and
exceptions) that the service provides (the precise definition or declaration of each such element
should be present, along with comments or annotations describing the meanings of values,
parameters, etc.; for each service element described, include or provide a reference in its
discussion to a description of its important software service attributes (Component Identifier,
Classification, Language, Source Lines of Code (SLOC) Estimate, Definition, Responsibilities,
Requirements, Internal Data Structures, Constraints, Composition, Uses/Interactions, Resources,
Processing, and Interfaces/Exports))

• Reporting Design and Integration - If built in, provide details on data traffic and volumes

6.3 Security Detailed Design

Instructions: Provide a graphical representation with detailed information for each of the individual
security hardware components. Specify the design for the below items as required.

• Authentication

• Authorization

• Logging and Auditing

• Encryption

• Network ports usage

• Intrusion Detection and Prevention

The design should be based on the designated system security level and provide adequate protection
against threats and vulnerabilities.

Current and proposed application utilizes AWS IAM for security and authentication.

AWS Identity and Access Management (IAM) is a web service that helps you securely control access to
AWS resources for your users. You use IAM to control who can use your AWS resources (authentication)
and what resources they can use and in what ways (authorization).

The "identity" aspect of AWS Identity and Access Management (IAM) helps you with the question "Who is
that user?", often referred to as authentication. Instead of sharing your root account credentials with
others, you can create individual IAM users within your account that correspond to users in your
organization. IAM users are not separate accounts; they are users within your account. Each user can

Page 74 System Design Document

SDD Version 4.0 74 ARC SGT SDD>

have its own password for access to the AWS Management Console. You can also create an individual
access key for each user so that the user can make programmatic requests to work with resources in
your account. In the following figure, the users Brad, Jim, DevApp1, DevApp2, TestApp1, and TestApp2
have been added to a single AWS account. Each user has its own credentials.

If you are creating a mobile app or web-based app that can let users identify themselves through an
Internet identity provider like Login with Amazon, Facebook, Google, or any OpenID Connect (OIDC)
compatible identity provider, the app can use federation to access AWS.

Amazon Cognito should be used for proposed solution security improvements. Amazon Cognito lets you
easily add user sign-up and sign-in and manage permissions for your mobile and web apps. You can
create your own user directory within Amazon Cognito, or you can authenticate users through social
identity providers such as Facebook, Twitter, or Amazon; with SAML identity solutions; or by using your
own identity system. In addition, Amazon Cognito enables you to save data locally on users' devices,
allowing your applications to work even when the devices are offline. You can then synchronize data
across users' devices so that their app experience remains consistent regardless of the device they use.

Figure 13: Security detail design

6.4 Performance Detailed Design

The AWS platform used by the current solution provides elastic and on demand capacity and availability.
Performance management and monitoring is integrated into solution. Hardware architecture scales as
needed based on demand. There are no single points of failure in current and proposed data center
architecture.

6.5 Internal Communications Detailed Design

The proposed solution utilize existing communication protocols and methods. There are no additional
components, servers, or applications to communicate with. The proposed solution will simply extend the
current capabilities.

Page 75 System Design Document

SDD Version 4.0 75 ARC SGT SDD>

7. System Integrity Controls
The following section documents security integrity controls.

• Internal security to restrict access of critical data items to only those access types required by
users/operators

o The current system is roles and permission based. Form and field level security will be
available in the proposed system. Based on user roles and permissions, system
administrators can control data access by user and provider.

• Audit procedures to meet control, reporting, and retention period requirements for operational and
management reports

o Audit logs and audit trail is proposed in the current use cases. All changes to data must
be recorded by date, time, and user. Data will be managed indefinitely or until a system
admin purges the data.

• Application audit trails to dynamically audit retrieval access to designated critical data
o See above.

• Standard tables to be used or requested for validating data fields
o Industry standard data validation rules, triggers, and process have been identified in this

document.

• Verification processes for additions, deletions, or updates of critical data
o Verification of additions, deletion, updates, etc… are controlled in the data validation

functions described in another section.

• Ability to identify all audit information by user identification, network terminal identification, date,
time, and data accessed or changed.

o Data audit trails and logging will provide detailed audit of all data. Network and
application logs identify network terminations, user terminations, bugs, and catastrophic
failures. These allow system admin to improve the application and hosting environment.

Page 76 System Design Document

SDD Version 4.0 76 ARC SGT SDD>

8. External Interfaces
A number of services external to the 1-Click software can be used to provide additional fixed-route, taxi,
or ride share information to travelers.

8.1 ATL Transit

ARC has created and maintains ATLTransit, a regional transit information hub web application for
transportation options not currently offered by existing trip planning applications. ATLTransit contains
route information from all of the transit agencies in the region. ATL Transit is a regional fixed route trip
planner that leverages both Google Maps and Open Trip Planner. SGT connects to this system for fixed
route planning information. It is integrated to SGT via API.

8.2 Google Maps

Services from Google are used to display the background of the maps within 1-Click, and to geocode
street addresses to determine full addresses and the latitude/longitude location.

As such, a unique Google Maps API Key is needed for each 1-Click instance.

8.3 OpenTripPlanner

OpenTripPlanner provides fixed-route transit, walking, bicycling, and driving itineraries for the SGT
system. OpenTripPlanner requires GTFS data from each public transit agency. OpenTripPlanner also
requires a graph of the street network derived from OpenStreetMap.

An instance of OpenTripPlanner will be setup and maintained as part of the proposes system.

8.4 Rideshare

Rideshare integration is not available due to the propriety nature of these services, no standard
integration method can be implemented. If a public API is available, the proposed system may be able to
integrate this mode into system.

8.5 Taxi Fare Finder
SGT uses a taxi fare estimator known as Taxi Fare Finder to estimate taxi fares for trips. Taxi Fare Finder
does not require any additional hardware or services to be setup. Taxi Fare Finder provides a public API
that the system will query as part of the trip planning process.

Page 77 System Design Document

SDD Version 4.0 77 ARC SGT SDD>

8.6 Transportation Network
Companies (TNC)

TNC’s may be implemented in the proposed system.
Uber and Lyft both provide well published open API’s
for integration into third party systems. The system
would be able to take advantage of these business
models to complement or supplement transportation
services.

8.7 GTFS Real Time

Regional transit systems may publish real time GTFS
feeds. This allows third party systems to consume the
real time location data for fixed route buses and rail.
MARTA currently publishes this information on their
developer website. Other regional transit systems may
choose to do this in the future. If so, this dramatically
improves the same day trip planning and multi-modal
coordination capabilities of these types of systems.

Sample MARTA Real Time GTFS Feed Response:

[{ "ADHERENCE": "4", "BLOCKID": "31",
"BLOCK_ABBR": "110-4", "DIRECTION":
"Northbound", "LATITUDE": "33.8346347",
"LONGITUDE": "-84.3824637", "MSGTIME":
"5\/14\/2013 11:14:04 AM", "ROUTE": "110",
"STOPID": "900456", "TIMEPOINT": "Peachtree Hills &
Peachtree", "TRIPID": "3719918", "VEHICLE": "2853" }, ...]

8.8 GTFS Flex

GTFS flex is the newest emerging transit standard that models mobility on demand, demand response,
and flex-deviation services. As an example, CCT has recently implemented a flex service that could be
integrated into this system.

8.9 Emerging Business Models
Integration and connectivity to emerging business models must be envisioned in the TCMP. Car sharing,
bike sharing, and other emerging models should be supported via published and open API’s.

8.10 Third Party Commercial Application Integration

Many providers have implemented third party applications for customer management, eligibility,
reservations, scheduling and dispatching. Integration and connectivity support may be required to
coordinate and exchange data across multiple platforms. It is anticipated that an open and published set
of API’s will facilitate this effort. Current research projects in Portland, Oregon, are exploring the concept
of open sourced transportation clearinghouses to support this.

Major commercial providers include:

▪ Trapeze

▪ RouteMatch

▪ SimpliTransport

▪ Ecolane

Figure 14: Sample uber API responses

Page 78 System Design Document

SDD Version 4.0 78 ARC SGT SDD>

▪ Mobilitat

▪ Stratagen

8.11 Transportation Clearinghouse

The Ride Connection Clearinghouse (“Clearinghouse”) is a web site that allows ride services to share
trips that cannot be fulfilled and claim trips shared by other services. The Clearinghouse API is an
Internet-accessible programming interface that allows services and third parties to integrate other
software with the Clearinghouse to automate the sharing and claiming of trips. One such system has
already been developed: the Ride Connection Clearinghouse Adapter. This reference is intended to
assist with further work on the Adapter as well as the development of new adapter software.

8.11.1 Adapter API

The Ride Clearinghouse Adapter is a software system that simplifies back office integration with the Ride
Clearinghouse web site. The Adapter runs as a Windows Service in the background, periodically
triggering a worker process that synchronizes data with the Clearinghouse API, then imports new data
from a user’s system to send to the Clearinghouse. The Ride Clearinghouse web site supports manual
import and export (upload and download) of trip tickets via the Bulk Upload menu. Imported trip tickets
must be formatted as text files in the CSV format.

8.12 Points of Interest
Trip origins and destinations can be located interactively on a map, using the GPS of a mobile device, via
the Google geocoder that will convert a street address into a X-Y coordinate, and by selecting from a pre-
defined list of Points of Interest (POIs). These POIs often include hospitals, schools, offices of Veterans
Affairs, and other popular locations.

In order to include points of interest in the 1-Click database, a comma separated value (CSV) file is
required containing the list of POIs. For each point of interest, the following fields are needed.

Table 17: 1-Click Points of Interest File Format

Field Type Description

LONGITUDE Double Longitude (X) coordinate of the location

LATITUDE Double Latitude (Y) coordinate of the location

NAME String Name

ADDRESS_1 String Address (line 1)

ADDRESS_2 String Address (line 2)

CITY String City name

STATE String(2) State abbreviation

ZIP String(5) 5-digit zipcode

COUNTY String County name

TYPE (Optional)

8.13 Public Transit

Multiple public transit agencies may be operating within the 1-Click area. Each one needs to exist within
the 1-Click database, together with the defined fixed service routes.

Page 79 System Design Document

SDD Version 4.0 79 ARC SGT SDD>

8.14 GTFS

The General Transit Feed Services1 (GTFS) defines a common format for public transportation schedules
and associated geographic information. These GTFS files are loaded into 1-Click and are consumed by
the OpenTripPlanner server to generate public transit trip itineraries.

8.15 Agencies

Table 18: Public Transit Agency Attributes

Attribute Description

Name Name of the Public Transit Agency

Street

Contact Address
City

State

Zipcode

Phone General phone number for Public Transit Agency

Email General information email address for Public Transit Agency

Website URL of the Public Transit Agency website

Logo Image of the Public Transit Agency logo suitable for display within 1-Click

Administrator Name of the person who will be the 1-Click Public Transit Agency
Administrator. Administrator needs a 1-Click user account prior to being
assigned.

Note: Some of these attributes can be extracted from the GTFS file.

8.16 Specialized Service Providers

Demand-Response Services are provided by a number of Providers.

8.17 Providers

The following data is required about each Provider.

Table 19 - Specialized Services Provider Attributes

Attribute Description

Name Name of the Provider

Street

Provider Address
City

State

Zipcode

Phone General phone number for Provider

Email General information email address for Provider

Website URL of the Provider website

Page 80 System Design Document

SDD Version 4.0 80 ARC SGT SDD>

Logo Image of the Provider logo suitable for display within 1-Click

Administrator Name of the person who will be the 1-Click Provider Administrator.
Administrator needs a 1-Click user account prior to being assigned.

8.18 Services

The following data is required about each Service offered by a Provider.

Table 20: Provider Services attributes

Attribute Description

Provider Name Name of the Provider

Service Name Name of the Service

Contact Name

Contact details of the person responsible for this service Contact Phone

Contact Email

Schedule Daily start and end times of the services

Advanced Booking How much advanced notice is required to book a trip with this service?

Accommodations What traveler accommodations are provided for this service?

Eligibility Requirements What are the eligibility requirements to use this service?

Trip Purposed Served Is this service only for specific trip purposes? If so, what trip purposes?

Service Area The geographic area covered by this service – can be split into Origin,
Destination and Resides areas.

Fare Information Fare structure for this service

As part of the 1-Click trip planning workflow, users need to define the start and end of the trips and
display information (e.g., start/end locations, sidewalk obstructions, trip routes, etc.) on a map. To
accomplish this, 1-Click uses a number of third party application programming interfaces (API):

• Google Geocoding API2 for geocoding addresses, and reverse geocoding point locations.

• Leaflet Map API3 for rendering maps.

• Google Street View Image API 4for displaying a street view of a given location.

The pros and cons regarding the use of these APIs is discussed below with potential alternatives.

8.18.1 Geocoding

1-Click allows users to define the start and end locations of a trip by:

1. Entering a street address which is then geocoded to determine a longitude/latitude.
2. Selecting a predefined Point of Interest that has an associated longitude/latitude.
3. Clicking on the map that returns a longitude/latitude that is reverse geocoded to determine the street

address at that location.

Page 81 System Design Document

SDD Version 4.0 81 ARC SGT SDD>

To implement methods 1 and 3, the Geocoding API must allow both forward and reverse geocoding, and
be available as a web service that can be called directly from 1-Click.

There are many Geocoding APIs that could potential be used within 1-Click (e.g., Gisgraphy, Google,
Here, MapQuest, Nominatim, Yahoo!). While any of these Geocoding APIs could potentially be used
within 1-Click, the strength of the geocoder is based on the quality of the returned geocodes. Based on
research, third-party review and comparison testing, the Google Geocoder was selected due to the
quality of the returned geocodes in comparison to the competitors.

CS will be updating the geocoding implementation within 1-Click v1.2 to use client-side geocoding instead
of server-side geocoding to increase the number of daily free geocodes.

8.18.2 Maps

1-Click displays maps when defining the start and end points of a trip; displaying the trip itinerary routes;
defining Traveler Places; and displaying Provider Service coverage areas. To do this, the select Map API
must be able to:

• Zoom to a specific map extent (e.g., area around start/end of the trip, current location, extent of the
route, etc.).

• Display a map background, known as a basemap, that provides context.

• Render various graphics (e.g., start/end trip locations, trip itinerary routes, other spatial data).

• Allow users to interact with the map (e.g., zoom/pan, identify graphics, determine clicked locations,
etc.).

Based on these requirements, there are a number of Map APIs that could potential be used within the
proposed solution. The pros and cons of these different Map APIs are listed below.

Table 21: Map API pros & cons

Map API Pros Cons

Google • Widely used

• Extensive set of graphic controls

• Proprietary

• Detailed license language

• HTML4

Leaflet • Open-source

• Light-weight (i.e., small download
size that improves performance)

• Fully HTML5 compatible

• Seamless integration with multiple
formats of basemap (e.g., Esri,
Google, OpenStreetMap)

• Seamless integration with multiple
formats of feature map service (e.g.,
Open Geospatial Consortium (OGC)
WFS and WMS, Esri)

• Extensive set of graphic controls

OpenLayers • Open-source

• Seamless integration with multiple
formats of basemap (e.g.,
OpenStreetMap, Bing, MapQuest)

• HTML4

The Leaflet API was selected for displaying maps in 1-Click due to its high level of functionality,
compatibility with a modern open source HTML5 application, and flexibility to show different basemaps.

Page 82 System Design Document

SDD Version 4.0 82 ARC SGT SDD>

The Google Maps API license that states that Google Geocodes must be displayed on a Google
basemap. As such, the Leaflet implementation within 1-Click uses a plugin5 that uses the Google Maps
API v3 to display the Google basemap. CS believes that 1-Click complies with the Google Maps license,
and will take responsibility as part of Maintenance and Support services for resolving any claims by
Google to the contrary.

8.18.3 Google Street View

Google Street View pages are displayed by passing the longitude/latitude coordinates as URL
parameters to the Google Street View Image API.

Use of Google Street View is considered separate from the use of other Google Map APIs, with the
license stating “As another example, you must not display Street View imagery alongside a non-Google
map, but you may display Street View imagery without a corresponding Google map because the Maps
APIs Documentation explicitly permits you to do so.”

8.19 Interface Architecture

The current and proposed solutions utilize a services oriented architecture. The proposed system will
utilize the existing interface architecture by implementing a REST framework.

Representational State Tranfser (REST)

This is a style or framework for designing integrated applications or services over HTTP. The proposed
solution will implement a true RESTful API for interapplication integration and regional coordination. This
achieves the following results from an interface architecture perspective:

• Uniform interface

• Client–server

• Stateless

• Cacheable

• Layered system

• Code on demand

Data Exchange

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for developers to
read and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript
Programming Language. JSON is a text format that is completely language independent but uses
conventions that are familiar to programmers of the C-family of languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and many others. These properties make JSON an ideal data-interchange
language.

8.20 Interface Detailed Design

All third party applications and integrations will utilize a RESTful API that will be designed in the
application development phase. The API will be open and published. This means that any developer or

Page 83 System Design Document

SDD Version 4.0 83 ARC SGT SDD>

third party, if provide the proper security credentials, can access application, database, and published
functions.

REST Model Clients make standard HTTP requests over an SSL channel and should always validate the
certificate of the endpoint with which the client is communicating.

Resources

Clients make requests against enStratus resources, either in aggregate or a specific resource.

The format of the URL is:

• endpoint/version/namespace/resource[?query_parameters] •
endpoint/version/namespace/resource/resource_id

Operations

API requests are standard HTTP requests against SGT published resources. GET queries for a list of a
class of resources or the details of a specific resource. POST creates a new resource instance
and will provide either a job or a resource tance in the response body. PUT updates an existing
resource with the specified parameters. DELETE removes or terminates or deactivates a
resource. In general, there is no such thing as permanent deletion of anything in enStratus.
Resources are instead “deactivated” via the DELETE call. HEAD provides response headers,
including a count of matching resources.

Request Headers

When making a request, there are three authentication headers the third party must specify plus an
optional authentication header for preventing replay attacks.

In addition, the API must support the following optional request headers:

• Accept

• x-es-details

• x-es-with-perms

Third parties may specify an “Accept” header to define whether you wish to receive responses as XML or
JSON. The default response is XML. The values you may specify for “Accept” are:

• application/xml

• application/json

Response Codes

API will respond with standard HTTP response codes appropriate to the result of the request. While the
exact meaning of the code varies depending on the request, the general rules are:

200

A response code of 200 means the request was successful and details about the response can be found
in the body of the response.

201

The requested POST operation was successful and an object was created in the system.

202

The requested operation has been accepted and the body contains information about an

asynchronous job you can query to check on the progress of the request.

204

Page 84 System Design Document

SDD Version 4.0 84 ARC SGT SDD>

The requested operation was successful and there is no response body.

307

Please repeat the request using the provided URI. Subsequent requests can use the old URI.

400

Your request was improperly formatted. You should verify that your request conforms to this specification
and re-issue the request in a properly formatted manner.

404

The requested resource does not exist.

409

An operational error occurred. The most common reason is an error with the cloud provider itself, but it
can also result from any number of cloud state issues.

418

A request was made to create a resource, but the resource was not created and no job was returned.

500

API failed to process the request because of an error inside the system.

501

You requested an action against a resource in a cloud that does not support that action.

503

API undergoing maintenance or is otherwise temporarily unavailable for API queries.

Response Entities

All GET methods respond with the JSON or XML of the resource(s) being requested. HEAD methods
have no response entity.

POST methods may respond with a 201 CREATED or 202 ACCEPTED response code depending on
whether the creation completed immediately or is an asynchronous operation. If the resource was created
immediately, API should provide a JSON or XML entity that includes the new resource’s unique ID. If the
creation operation takes time, however, the response body will include a Job resource that can be tracked
to completion.

PUT and DELETE methods generally respond with 204 NO CONTENT unless the operation is a long-
lived operation. In those scenarios, the PUT will respond with a 202 ACCEPTED response code and
include a Job resource in the response entity

Page 85 System Design Document

SDD Version 4.0 85 ARC SGT SDD>

9. Appendix A: Record of Changes

Table 22: Record of changes

Version Number Date Author/Owner Description of Change

1.0 02/26/2017 Tim Quinn Draft document

2.0 03/12/2017 Carly Harper Revisions

3.0 04/26/2017 Cyndi Burke Feedback / Process

4.0 5/02/2017 Tim Quinn Final Draft

5.0 05/05/2017 Cyndi Burke Review

6.0 05/05/2017 Carly Harper Modifications

7.0 05/08/2017 Tim Quinn Final Draft (v1)

8.0 06/22/2017 Tim Quinn / Carly Harper Comments from FTA / Modifications

