Development of the integrated New Jersey Safety and Health Outcomes (NJ-SHO) data warehouse: catalysing advancements in injury prevention research

Allison E Curry , ^{1,2} Melissa R Pfeiffer, ¹ Kristina B Metzger, ¹ Meghan E Carey, ^{1,3} Lawrence J Cook⁴

ABSTRACT

Additional material is

published online only. To view

please visit the journal online

¹Center for Injury Research and

Prevention, Children's Hospital

of Philadelphia, Philadelphia,

Pennsylvania Perelman School

Drexel University, Philadelphia,

Medicine, Salt Lake City, Utah,

⁴Department of Pediatrics.

Division of Critical Care, University of Utah School of

Correspondence to

Dr Allison E Curry, Center

Prevention, Children's Hospital of Philadelphia, Philadelphia, PA

19146, USA; currya@chop.edu

Received 23 November 2020

Revised 5 February 2021

Accepted 13 February 2021

for Injury Research and

of Medicine, Philadelphia,

Pennsylvania, USA ²Division of Emergency

Pennsylvania, USA ³AJ Drexel Autism Institute,

Pennsylvania, USA

USA

Medicine, University of

(http://dx.doi.org/10.1136/

injuryprev-2020-044101).

Objective Our objective was to describe the development of the New Jersey Safety and Health Outcomes (NJ-SHO) data warehouse—a unique and comprehensive data source that integrates state-wide administrative databases in NJ to enable the field of injury prevention to address critical, high-priority research questions.

Methods We undertook an iterative process to link data from six state-wide administrative databases from NJ for the period of 2004 through 2018: (1) driver licensing histories, (2) traffic-related citations and suspensions, (3) police-reported crashes, (4) birth certificates, (5) death certificates and (6) hospital discharges (emergency department, inpatient and outpatient). We also linked to electronic health records of all NJ patients of the Children's Hospital of Philadelphia network, census tract-level indicators (using geocoded residential addresses) and state-wide Medicaid/Medicare data. We used several metrics to evaluate the quality of the linkage process.

Results After the linkage process was complete, the NJ-SHO data warehouse included linked records for 22.3 million distinct individuals. Our evaluation of this linkage suggests that the linkage was of high quality: (1) the median match probability—or likelihood of a match being true—among all accepted pairs was 0.9999 (IQR: 0.9999–1.0000); and (2) the false match rate—or proportion of accepted pairs that were false matches— was 0.0063.

Conclusions The resulting NJ-SHO warehouse is one of the most comprehensive and rich longitudinal sources of injury data to date. The warehouse has already been used to support numerous studies and is primed to support a host of rigorous studies in the field of injury prevention.

Check for updates

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: Curry AE, Pfeiffer MR, Metzger KB, et al. Inj Prev Epub ahead of print: [please include Day Month Year]. doi:10.1136/ injuryprev-2020-044101

INTRODUCTION

There have been recent calls for public health researchers to adopt more holistic life-course approaches that consider health as part of an 'integrated lifespan continuum' and as being influenced by a complex web of inter-relationships between contributing factors, interventions and individuals.^{1–3} However, there is a dearth of injury studies—and in particular studies of motor vehicle crashes (MVCs)—that effectively adopt

this approach. In the USA, the National Highway Traffic Safety Administration (NHTSA) and some state jurisdictions provide de-identified crash data sets to researchers for analyses; however, these data are substantially limited in a number of ways. First, crash events can only be studied in isolation. Therefore, multiple events experienced by an individual driver cannot be connected, limiting our ability to understand context and characteristics of our most frequently crash-involved drivers. Second, crash reports contain data only on the events occurring just prior to the crash, the crash event itself and the conditions of involved individuals in the moments just after the crash. This essentially limits the study period to just a few minutes. Third, the vast majority of pedestrians and pedalcyclists injured in a crash (as identified via hospital records) are not found on crash reports,⁴ limiting the capability of crash report data to support studies of these vulnerable road users. Although there are several linkages of crash data to either pre-crash data or to immediate crash-related injury data in the USA and internationally,^{4–7} few if any existing traffic safety data sources span the continuum from underlying contributing factors to short-term and long-term outcomes. Thus, we are severely limited in our ability to conduct in-depth, holistic studies to identify targets for intervention or evaluate the effect of interventions on long-term outcomes.

Similarly, the injury prevention field lacks rich data sources to support studies that examine contributing pre-injury factors or post-injury health outcomes. Several existing data sources enable researchers to estimate the incidence or prevalence of injuries—for example, the CDC's Web-based Injury Statistics Query and Reporting System,⁸ the National Electronic Injury Surveillance System,⁹ the National Vital Statistics System¹⁰ and the National Poison Data System.¹¹ However, these sources are less suitable for conducting longitudinal studies, identifying underlying risk factors, or evaluating local public health programmes and interventions.

The scientific premise of our research programme is that by linking crash data to other large, administrative data sources—in particular those preceding and subsequent to a crash event—we can essentially extend the study time period of a crash event from a few minutes to decades, while also characterising important factors among different

Table 1	Description of data sources that have been integrated into (¹) or linked with (²) the New Jersey Safety and Health Outcomes (NJ-SHO)
warehous	e

Data source	Contains	Years	# of records in final warehouse	Data obtained from
(1) NJ Driver Licensing ¹	Detailed data on every driver licensed in the state of NJ at some point during study period	2004–2018	≈11 million drivers	NJ Motor Vehicle Commission
(2) NJ Administration of the Courts (AOC) events (eg, citations, suspensions, restorations) ¹	Date and type of all licence-related events in NJ; was directly populated by AOC into the NJ Driver Licensing Database	2004–2018	≈86 million events	NJ Motor Vehicle Commission
(3) NJ Crash Report ¹ *	Crash-level, vehicle-level, driver-level, passenger-level and pedestrian/pedalcyclist-level data for all police- reported crashes in NJ	2004–2017	≈8 million drivers, ≈2.7 million passengers, ≈120 000 pedestrians/ pedalcyclists	NJ Motor Vehicle Commission
(4) NJ Birth Certificate ¹ †	Birth certificate data for all births occurring in NJ	Birth years 1979–2000	\approx 2.5 million births	NJ Department of Health
(5) NJ Death Certificate ¹ ‡	Death certificate data for all NJ deaths	2004–2016	≈940 000 deaths	NJ Department of Health
(6) NJ Hospital Discharge Data Collection System ¹	Detailed utilisation data on all NJ inpatient, outpatient and emergency department discharges; files are derived from hospital uniform billing information	2004–2017	≈63 million visits	NJ Department of Health
(7) CHOP electronic health record (EHR) ¹	EHR data on all CHOP healthcare network patients who were NJ residents at last CHOP visit	2005–2018§	≈200 000 patients	СНОР
(8) Geographical-level sources (eg, US Census, American Community Survey) ¹	Age-specific, sex-specific and race/ethnicity-specific population data; census tract-level indicators are assigned to individuals based on geocoded residential addresses	2004–2018		US Census Bureau website
(9) National Highway Traffic Safety Administration (NHTSA) Catalog and Vehicle platform ¹	Decodes VIN of a specified vehicle and provides detailed vehicle information (eg, model year, vehicle type, presence of safety features)	Crash years 2004–2017	Varies by year; 2017 data: 95% of vehicles	NHTSA
(10) Medicaid ²	Insurance enrolment; demographics; medical conditions; medication use; all inpatient and outpatient encounters with a healthcare provider	2007–2012	>500 000 beneficiaries/year	Centers for Medicare and Medicaid Services
(11) Medicare Fee-for-Service Claims ²	Insurance enrolment; demographics; medical conditions; medication use; all inpatient and outpatient encounters with a healthcare provider	2007–2017	≈1.5 million NJ beneficiaries/ year	Centers for Medicare and Medicaid Services

*A crash is reportable to police if it results in injury to or death of any person, or damage to property of any one person in excess of \$500.

+Subsequent linkages will include a much wider range of birth years (through the most recent year available).

‡Note that this is expected to be a more complete reporting of crash-related fatalities than NHTSA's Fatality Analysis Reporting System, which is restricted to fatalities occurring ≤30 days of crash.

§Currently, EHR data for patients born from 1987 to 2000 (ie, driving-eligible ages) are integrated into the NJ-SHO.

CHOP, Children's Hospital of Philadelphia; VIN, vehicle identification number.

subgroups and within populations over time. To this end, we began to develop the New Jersey Safety and Health Outcomes (NJ-SHO) data warehouse in 2011 with the goal of catalysing our ability to address critical, high-priority research questions in traffic safety. As we expanded the warehouse, we intentionally designed it to support novel research on other injury mechanisms. In this paper, we describe the data sources included in the NJ-SHO warehouse; detail our process of linking and evaluating the quality of the warehouse; and comment on its previous and future uses.

METHODS

2

Data sources

As shown in table 1, we obtained in-depth data from numerous state-wide administrative databases. (1) NJ's driver licensing database contains full licensing records for all individuals licensed in NJ at any point from January 2004 through December 2018. It includes full names, 15-digit driver licence numbers, residential addresses, and dates of birth, death, and issuance of a learner's permit and/or driver's licence. (2) NJ's traffic-related citation database includes dates and types of all moving violations, traffic citations and licence suspensions/restorations. (3) NJ's crash database includes detailed crash-level, vehicle-level, driver-level, passenger-level and pedestrian/pedalcyclist-level

data collected on the NJ Police Crash Investigation Report for all police-reported crashes from 2004 to 2017. A crash is reportable in NJ if it results in an injury or >\$500 in property damage.¹² The NJ Department of Transportation geocoded crash locations, with completeness by year ranging from 78% through 86%. (4) NJ's birth certificate and (5) death certificate databases include data collected on vital statistics collection forms. (6) NJ's Hospital Discharge Data Collection System contains data from all hospital inpatient, outpatient and emergency department (ED) visits in the state, including ICD-9/10-CM diagnosis codes and procedure codes. For each data source, we obtain raw files from the relevant organisation listed in table 1 through secure File Transfer Protocols on an annual basis.

In addition to these databases, we incorporated several other data sources into the NJ-SHO warehouse. (7) We included the full electronic health records (EHRs) for all NJ patients of the Children's Hospital of Philadelphia (CHOP) network—which encompasses >50 locations in southeastern Pennsylvania and southern New Jersey. (8) We obtained census tract-level indicators (eg, median household income, population counts, availability of healthcare providers, employment accessibility, walkability) from a variety of geographical-based data sources (eg, US Census, American Community Survey, EPA Smart Location database). (9) Using NHTSA's Catalog and Vehicle Listing

Table 2 List of data elements used in linkage process, by data source

	Data source						
Data element	Driver licensing	Crash-involved drivers/ pedestrians/pedalcyclists	Crash-involved passengers*	Birth certificate	Death certificate	Hospital discharge	CHOP EHR
Name (first, middle initial, last)	Х	Х	Х	Х	Х	Х	Х
Date of birth	Х	Х	Х	Х	Х	Х	Х
Residence street name	Х	Х	Х	Х	Х	Х	Х
Residence ZIP code	Х	Х		Х	Х	Х	Х
Sex	Х	Х	Х	Х	Х	Х	Х
Social Security Number					Х	Х	
Driver licence number	Х	X (drivers only)					
Date of death	Х				Х	Х	Х
Event date†	Х	Х	Х		Х	Х	
Event municipality†		Х	Х		Х		
Race				Х	Х	Х	Х

*Identifiable data elements for passengers are only available beginning with 2009 crashes.

†Depending on data source, represents exact date or location of crash, death or hospitalisation.

CHOP, Children's Hospital of Philadelphia; EHR, electronic health record.

platform, we decoded the vehicle information number (VIN) of each crash-involved vehicle and obtain detailed vehicle information, including model year, vehicle type, and the presence of safety features such as front and side air bags. Data from each source were imported into a common structure, and we identified and standardised data elements in each source that could be included in a probabilistic linkage (table 2). Although not described in this paper, as noted in table 1, we also recently linked licence and crash-involved driver records with (10) Medicaid healthcare claims data and (11) Medicare health claims data (parts A and D) for NJ beneficiaries in collaboration with Brown University and Centers for Medicare and Medicaid Services.

Data governance and security

All NJ-SHO activities are bound by legal agreements (eg, Data Use Agreement, Memorandum of Agreement) between CHOP and data owners, which establish approved uses of these data as well as stringent security measures, including data transfer, storage, sharing and release; interested parties should contact the corresponding author. Within the USA, release of traffic safety data is supported by the 1994 federal Driver's Privacy Protection Act, which exempts restrictions on release of data when used for research purposes; as we discuss in a previous paper, data accessibility varies by state.¹³ Further, linkage and research activities have been reviewed and approved by the Institutional Review Boards at CHOP and the NJ Department of Health. Immediately upon receipt of data, we separate data elements that are considered protected health identifiers (eg, name, residential address, Social Security Number, driver licence number) and used for linkage purposes; these data are stored on a secure drive separate from other data and accessible only to research staff who were integral to the linkage process.

Linkage process

This section describes the linkage process we undertook to construct the NJ-SHO warehouse; online supplemental table 1 includes definitions of italicised linkage-related terms. We first conducted a *probabilistic linkage* in LinkSolv V.9.0 (2015 Strategic Matching) to link sources 1–7 above. (As described below,

crash-involved vehicle passengers were not included in the probabilistic linkage.) Briefly, LinkSolv uses Bayes' rule to calculate posterior probabilities of a true match between two records based on agreements (within a specified tolerance) and disagreements (outside the specified tolerance) between examined data elements.^{14 15} Comparisons across multiple *data elements* result in the generation of a match probability, or the likelihood that the pair is a true match. Match probabilities incorporate both the *discriminating power* of data elements (agreement on common values has less impact than agreement on rare values) and their *reliability* (disagreement on data elements thought to be less error-prone provides more evidence against a match than disagreement on data elements thought to be more error-prone). A full linkage process involves several passes, each of which brings together pairs of records with exactly the same values on selected criteria (join criteria, also commonly called block criteria) and subsequently evaluates those pairs based on additional criteria (match criteria). Match criteria are the same for each pass, but join criteria differ, thereby ensuring that disagreement on a single data element will not prevent the identification of a true match.

To prepare data for the probabilistic linkage, we reduced the number of records by de-duplicating hospital records based on exact agreement for all data elements (table 2) and combined records from all of the sources into one file so that we could execute a single file match. Then, using an iterative process, we developed and executed a linkage algorithm that ultimately consisted of two passes (table 3). We used two criteria to control the quality of our process: (1) we rejected any pair of records with a match probability < 0.60 and (2) selected 0.01 as the highest acceptable threshold for the *false match rate*. To determine the false match rate, we first calculated the false match probability for each pair as 1 minus the match probability. Then we ranked all matched pairs from the lowest to highest false match probability. The false match rate was then calculated iteratively as the sum of the false match probabilities for the ranked pairs divided by the number of pairs. Matched pairs were included in the calculation, one at a time in ranked order, until either all pairs were added or the false match rate was 0.01,

.

.

Table 3 Details of pro	babilistic linkage proces	ss in LinkSolv V.9.0		
Linkage specifications				
Construct	Set at:			
False positive rate	0.01			
Cut-off probability	0.60			
Join criteria	Pass 1 data elements	Pass 2 data elements		
	Date of birth	Age		
	Initial letter of first name	Initial letter of first name		
	Sex	Soundex of last name*		
		Sex		
Match criteria				
Data element	Comparison method			
First name, soundex	InList†			
Last name, soundex	InList			
Middle initial	InList			
Month and day of birth	Exact			
Residential street name, soundex	InList			
Residential ZIP code	InList			
Sex	Exact			
Social Security Number (SSN)	Typos, 1‡			
Driver licence number	InList			
Age at death	Exact			
Event date	InList			
Event municipality	InList			
Race	Exact			

*Soundex is a phonetic algorithm for indexing names by sound, as pronounced in English. $^{\rm 26}$

†The InList comparison method (LinkSolv V.9.0 (2015 Strategic Matching)) allows a single value in one record to be compared with multiple, concatenated values in another record. For example, crash-involved driver records had a single driver licence number listed, while the licensing records contained multiple driver licence numbers per person. With this comparison method, the single driver licence number in the crash-involved driver record was compared against each driver licence number in the licensing record.

*The typos comparison method (LinkSolv V.9.0) allows up to X differences between two values to be considered a match; for example, with X=1 typo specified, the SSN values of 123 456 789 and 723 456 789 would be considered a match.

whichever occurred first. The linkage algorithm identified all records that pertained to a single individual and combined them into a *set*. Importantly, records in each data source were linked independently of all other data sources (eg, birth records were linked to EHRs regardless of driver licence status, crash-involved driver records were linked to other crash-involved drivers even if the individual did not appear in any other source). Additionally, using a single file match method allowed us to maximise all information and connections. For instance, an individual may have had sufficient matching information to connect record A to B and record B to C, but not record A to C; because of the single file methodology, records A, B and C were identified as a single individual or set.

We evaluated this probabilistic linkage in three primary ways. First, we determined the median and interquartile range (IQR) of the match probabilities for all accepted pairs, as well as the lowest match probability among all of the pairs in each set. Second, we estimated the false match rate, as described above. Third, we determined the proportion of records from each data source that matched with a record from one of the other sources (eg, licence record with a birth record) or the same source (eg, two birth records).

Identifiable data elements for crash-involved vehicle passengers began being collected in 2009 but fewer elements are complete or collected (eg, street name without city or ZIP code). Consequently, including passengers in the above-described linkage created too many false matches. Thus, we conducted a subsequent hierarchical deterministic linkage using SAS software, V.9.4 (SAS Institute) to link crash-involved passenger records to records from all other data sources. As shown in table 4, this linkage included 16 passes with varying match criteria. Passenger records had to include first and last name and either age (or date of birth) or street address to be included in the process. To evaluate the deterministic linkage process, we estimated the true match proportion-the proportion of matches that are indeed true matches-by hand reviewing 505 passenger records (a random sample of at least 5 records from each of 16 passes) that matched with a record from one of the other sources. To estimate the false non-match proportion-the proportion of unmatched passengers who should have been matched to another recordwe randomly sampled 350 unmatched passengers and, for each, hand reviewed the five most likely matches.

Geocoding residential addresses

Residential addresses are available in most state-wide data sources (table 2). In this paper we present our initial effort to geocode the residential addresses of all licensed NJ drivers and all crashinvolved drivers. Records were prepared for geocoding if at least one address component (ie, street, city, state, ZIP) was populated and the state was NJ or unknown. Crash-involved driver records that did not meet this threshold generally belonged to parked/driverless or hit-and-run vehicles. We conducted the geocoding process within the automated geocoding engine in ArcGIS V.10.5 (Esri, Redlands, California, USA). The default geocoding options were used and include spelling sensitivity (80), minimum candidate score (75) and minimum match score (85). Geocoding results were compared against Google Maps and included coordinate values (latitude and longitude). Linkage quality was assessed via a hand review of 500 randomly sampled records. Once each driver's address was geocoded, we obtained and incorporated census tract-level data from numerous publicly available sources (table 1). We subsequently geocoded each individual's most recent NJ residential address from other sources (when there was one).

Injury classification

We used ICD-9/10-CM diagnostic codes, including external cause of injury codes, in hospital data to identify injury-related hospital inpatient, outpatient and ED visits.¹⁶ We mapped each injury-related ICD-9/10-CM diagnosis code to a corresponding Abbreviated Injury Scale (AIS) score and Injury Severity Score (ISS).^{17–19} We identified injury deaths using specific cause of death ICD-10 codes established by the National Center for Health Statistics.²⁰

RESULTS

Linkage results and validation

The final data warehouse includes de-identified records for a total of 22.3 million distinct individuals; 48.3% had more than one record brought together during the linkage process (ie, were included in a set). Each person and event was assigned a new randomly generated identification number in order to disconnect warehouse data from the original data containing protected health identifiers. Table 1 shows the number of records from each data source included in the final data warehouse.

Table 4	Results of linkage process of crash-involved passengers (total number of records included in linkage process=1 050 182)			
Pass	Match criteria*	Cumulative number (%) of passenger records that matched to at least one other data source		
1	Exact match on first name, last name, DOB, street name soundex, sex	33 300 (4.7)		
2†	Match on first name soundex, last name soundex, DOB, street name soundex, sex, hospital element(s)	33 704 (4.8)		
3	Match on first name soundex, last name soundex, DOB, street name soundex, sex	35 754 (5.1)		
4	Exact match on first name, last name, DOB, sex	47 926 (6.8)		
5†	Match on first name soundex, last name soundex, DOB, sex, hospital element(s)	48 233 (6.8)		
6	Match on first name soundex, last name soundex, DOB, sex	49 916 (7.1)		
7	Exact match on first name, last name, street name soundex, age, sex	384 498 (54.5)		
8†	Match on first name soundex, last name soundex, street name soundex, age, sex, hospital element(s)	392 483 (55.6)		
9	Match on first name soundex, last name soundex, street name soundex, age, sex	457 345 (64.8)		
10	Exact match on first name, last name, street name soundex, sex	469 855 (66.6)		
11†	Match on first name soundex, last name soundex, street name soundex, sex, hospital element(s)	470 298 (66.7)		
12	Match on first name soundex, last name soundex, street name soundex, sex	476 687 (67.6)		
13	Exact match on first name, last name, age, sex	601 664 (85.3)		
14†	Match on first name soundex, last name soundex, age, sex, hospital element(s)	605 642 (85.9)		
15	Match on non-null first initial and last initial, age and sex. Also meets criteria related to spelling distance for the last name, first name and street name fields	656 882 (93.1)		
16	Match on first name soundex, last name soundex, age, sex	705 339 (100)		

*Soundex is a phonetic algorithm for indexing names by sound, as pronounced in English.²⁶

+Attempts 2, 5, 8, 11 and 14 were between passengers and crash-related or injury-related hospital records. Hospital elements included date of crash/admission, hospital county, and/or hospital code.

DOB, date of birth.

We undertook several steps to evaluate the quality of the probabilistic linkage. First, we assessed the match probability for each pair of records accepted into a set. Overall, the median match probability was 0.9999991 (IQR: 0.9998636-1.0000000); figure 1 displays the cumulative distribution of match probabilities among all accepted pairs. Second, the lowest match probability for any two records within a set was 0.99 or higher for 83.7% of all sets and 0.90 or higher for 95.1% of sets. Third, our final estimated false match rate was 0.0063, well below the established threshold of 0.01. Finally, we examined the number of individuals post-linkage who had more than one record from a source expected to have only one record per individual (ie, birth, licence, EHR and death data sets). As we had anticipated, the proportions of individuals with >1 such record were very low (0.06% with > 1 birth record; 0.1% with > 1 licence record;<0.01% with >1 EHR; 0.01% with >1 death record). In all, 0.2% (n=36 277) of individuals had more than one record that should be unique.

Figure 1 Cumulative distribution of match probabilities among a accepted pairs.

A total of 1 050 182 records were processed during the hierarchical deterministic linkage of crash-involved passengers. After matching passenger records with all other non-passenger records, 67.2% of passenger records were successfully linked to one and only one individual (table 4). Based on our hand review, we estimated the true match proportion to be 93.4% and the false non-match proportion to be 6.0%.

Geocoding activities

Over 16 million addresses were processed; 94.5% were successfully geocoded to an address point or street address. When including those records that were geocoded to the ZIP code level (or a more precise unit), 98.3% of addresses were geocoded. Weighted results of the hand review estimated the true match rate to be 99.7%. For 83.3% of the 5.3 million crash-involved drivers whose residential address was geocoded, we were able to calculate distance to crash location (Euclidean distance and driving distance in miles and time).

Final warehouse structure

The warehouse is organised as more than 30 relational tables that can be connected with key variables. For example, an individual-level identifier (PersonID) can connect an individual's driver licence record to their hospital records or two hospital records to each other, while a crash-level identifier (CrashID) connects all individuals (drivers, passengers, bicyclists/pedestrians) involved in a particular crash. Data can be further linked to publicly available geographical-level data via individual-level data elements (eg, census tract of residence). To illustrate the volume of injury-related records included in the warehouse, we used CDC's external cause-of-injury framework to categorise ICD-10-CM codes for injury-related hospital visits (inpatient, outpatient, ED) in 2017, the most recent year available for these data (table 5).¹⁶ With 15 years of available data, the warehouse can easily support longitudinal analyses on a variety

Table 5	Select injury intent and mechanism categories for all 2017
hospital v	isits (ED, inpatient and outpatient), by age group ¹⁶

	Age group				
Intent and mechanism	<1	1–14	15–34	35–64	65+
Unintentional transport					
Unintentional motor vehicle traffic, occupant	288	5141	32 804	32 385	7341
Unintentional motor vehicle traffic, pedestrian	≤10	551	1625	1873	555
Unintentional motor vehicle traffic, pedalcyclist	≤10	693	934	874	133
Unintentional motor vehicle traffic, motorcyclist	≤10	88	1175	1090	93
Unintentional pedalcyclist, other	≤10	2019	1273	1376	251
Unintentional pedestrian, other	≤10	241	680	827	266
Unintentional poisoning					
Unintentional poisoning: drug	70	1122	7204	8263	1788
Unintentional poisoning: non-drug	51	687	1395	1993	473
Other unintentional					
Unintentional fall	3397	48 215	34 961	70 115	91 021
Unintentional struck by/against	558	28 752	31 002	24 410	8436
Unintentional overexertion	53	8165	18 324	18 762	3809
Unintentional cut/pierce	139	5662	17 783	18 865	4103
Unintentional bites and stings (non-venomous and venomous)	241	7383	7183	9033	2671
Unintentional other specified, foreign body	277	5707	3212	4088	1898
Unintentional fire/flame/hot object/substance	244	1648	2584	3245	712
Unintentional suffocation	29	71	117	493	1146
Unintentional firearm	≤10	13	579	265	27
Self-harm					
Self-harm poisoning: drug	≤10	231	2294	1930	282
Self-harm cut/pierce	<10	285	1318	584	84
Self-harm other specified, not elsewhere classifiable	≤10	93	583	293	28
Self-harm unspecified	≤10	53	402	296	62
Self-harm poisoning: non-drug	≤10	11	211	250	30
Self-harm fire/flame/hot object/substance	≤10	≤10	63	18	11
Self-harm suffocation	≤10	≤10	38	25	≤10
Assault					
Assault struck by/against	≤10	1212	12 745	8153	561
Assault unspecified	≤10	122	2092	1650	114
Assault other specified, not elsewhere classifiable	≤10	81	1283	986	65
Assault other specified, child/adult abuse	60	609	1099	440	108
Assault cut/pierce	≤10	28	1130	689	26
Assault other specified, classifiable	≤10	160	511	274	21
Assault firearm	≤10	≤10	687	223	≤10
Undetermined					
Undetermined poisoning: drug	≤10	42	422	412	55
Undetermined poisoning: non-drug	≤10	25	85	132	41
Undetermined drowning/submersion	≤10	173	48	44	≤10

Cells with counts of 10 or fewer have been suppressed in order to reduce the risk of the identification of individuals.

ED, emergency department.

of injury-related topics. For example, of the 375 966 NJ drivers involved in a crash in 2017 (1) 43 936 (12%) had a hospital visit within 2 days, enabling analyses of crash-related injuries; (2) 295 108 (78%) had data on a prior hospital visit, enabling analyses of crash outcomes among drivers with specific medical conditions; and (3) 337 529 (90%) had licensing data, enabling incorporation of previous crash, citation and licence suspensions in assessment of crash risk.

DISCUSSION

The NJ-SHO data warehouse is one of the most comprehensive and rich traffic safety data sources in the USA to date; thus far, 30 scientific papers have been published using NJ-SHO

data.²¹ The warehouse has a longitudinal structure spanning 15 years (with additional years to be added); includes drivers of all ages, as well as vehicle passengers, pedestrians and bicyclists; and has several unique aspects, including geocoded residential addresses for all drivers and linkage to vehicle safety features via VIN. These features ensure it can support rigorous and innovative studies in a wide array of traffic safety topics, including impaired driving, older driver crashes, pedestrian and bicyclist injuries, and child passenger safety. The NJ-SHO is also designed to support studies on a wide variety of injury-related topics. Each data source is linked independent of all other data sources; this enables studies, for example, of injury risk among individuals with specific medical conditions, identification of subgroups and communities at higher risk for specific injuries, and examination of repeated injuries over time. Further, given strong identifiers and geocoded residential addresses, the warehouse is primed to be further linked to geographical-level data sources as well as additional individual-level databases, including emergency medical service and trauma registry data, rehabilitation data and prescription monitoring data.

A major strength of this study is that our evaluation indicates that NJ-SHO linkages were conducted with high quality, with high true match and low false non-match proportions. These rates are comparable with those reported in prior linkage studies of traffic or hospital data, which either directly reported these metrics or provided enough data to enable us to derive them.^{22–25} An important primary limitation is that we cannot reliably identify individuals who have moved out of state; however, we are able to identify when drivers' licences expire and are not renewed. Second, identifiable information for vehicle passengers was not available prior to 2009 and is weaker than for other sources; thus, the extent of undermatching is likely to be higher relative to other data sources.

CONCLUSION

The NJ-SHO is a rich and growing source of injury-related data that can be used to address in-depth questions that span the pre-injury to post-injury period. By doing so, it can support studies that look to adopt a lifespan approach to gain a broader and more comprehensive understanding of the underlying contributors to and burden of injury events.

What this study adds

- Presents a decade-long program to integrate multiple data sources to enable novel longitudinal studies in injury prevention.
- Provides in-depth description of data preparation and integration as well as methods to evaluate linkage results to provide guidance for future data integration efforts

What is already known on this subject

- Integrating multiple data sources can exponentially increase the value of injury data
- Few studies have linked data that span the pre- to post-injury continuum

Contributors AEC secured funding for the study, planned the study, interpreted results and led the development of the manuscript. MRP designed the study, conducted the data linkage and drafted the manuscript. KBM planned the study, contributed to interpretation of results and critically revised the manuscript. MEC contributed to the planning of the study, contributed to interpretation of results and critically revised the manuscript. LIC designed the study, conducted the data linkage and critically revised the manuscript. All authors approved the final version of the manuscript.

Funding This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health Awards R21HD092850 (PI: AEC) and R21HD098276 (PI: AEC).

Disclaimer The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The sponsor had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; or decision to submit the manuscript for publication.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval Children's Hospital of Philadelphia (IRB 11-008136).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID iD

Allison E Curry http://orcid.org/0000-0001-7076-3538

REFERENCES

- 1 Yu S. The life-course approach to health. *Am J Public Health* 2006;96:768.
- 2 Hosking J, Ameratunga S, Morton S, *et al*. A life course approach to injury prevention: a "lens and telescope" conceptual model. *BMC Public Health* 2011;11:695.
- 3 Association of Maternal and Child Health Programs. Making the case: a comprehensive systems approach for adolescent health and well-being. Available: http://www.amchp.org/programsandtopics/AdolescentHealth/Documents/AHWG White Paper FINAL.pdf [Accessed 6 Oct 2016].
- 4 Watson A, Watson B, Vallmuur K. Estimating under-reporting of road crash injuries to police using multiple linked data collections. *Accid Anal Prev* 2015;83:18–25.
- 5 Chapman EA, Masten SV, Browning KK. Crash and traffic violation rates before and after licensure for novice California drivers subject to different driver licensing requirements. J Safety Res 2014;50:125–38.
- 6 Foss RD, Masten SV, Martell CA. *Examining the safety implications of later licensure: crash rates of older vs. younger novice drivers before and after graduated driver licensing*. Washington D.C.: AAA Foundation for Traffic Safety, 2014.

- 7 Cook LJ, Thomas AM, Olson C. Crash outcome data evaluation system (codes): an examination of methodologies and multi-state traffic safety applications. Washington DC: US Department of Transportation, National Highway Traffic Safety Administration, 2015. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/ 812179
- 8 National Center for Injury Prevention and Control, Centers for Disease Control and Prevention. Web-Based injury statistics query and reporting system (WISQARS), 2019. Available: https://webappa.cdc.gov/sasweb/ncipc/nfirates.html [Accessed 2 Oct 2020].
- 9 U.S. Consumer Product Safety Commission. National electronic injury surveillance system (NEISS). Available: https://www.cpsc.gov/Research--Statistics/NEISS-Injury-Data
- 10 Centers for Disease Control and Prevention. National vital statistics system. Available: https://www.cdc.gov/nchs/nvss/index.htm
- 11 American Association of Poison Control Centers. National poison data system. Available: https://www.aapcc.org/national-poison-data-system
- 12 New Jersey Motor Vehicle Commission. NJTR-1 form field manual. Available: http:// www.state.nj.us/transportation/refdata/accident/pdf/NJTR-1Field_Manual.pdf [Accessed 1 May 2020].
- 13 Carey ME, Anderson ED, Mansour R, et al. Missed opportunities to advance knowledge on traffic safety: accessibility of driver licensing and crash data for scientific research. Accid Anal Prev 2020;139:105500.
- 14 Gelman A, Carlin JB, Stern HS. Bayesian data analysis. Vol 2. Boca Raton, FL, USA: Chapman & Hall/CRC, 2014. http://amstat.tandfonline.com/doi/full/10.1080/ 01621459.2014.963405
- 15 Fellegi IP, Sunter AB. A theory for record linkage. J Am Stat Assoc 1969;64:1183–210.
- 16 Hedegaard H, Johnson RL, Thomas KE. The International classification of diseases. 10th revision, clinical modification (ICD-10-CM) external Cause-of-injury framework for categorizing mechanism and intent of injury 2019 https://www.cdc.gov/nchs/ products/index.htm
- 17 Association for the Advancement of Automotive Medicine (AAAM). The Abbreviated Injury Scale (AIS) 2005 – Update 2008. Barrington, IL: Association for the Advancement of Automotive Medicine, 2008.
- 18 Loftis KL, Price JP, Gillich PJ, et al. Development of an expert based ICD-9-CM and ICD-10-CM map to AIS 2005 update 2008. Traffic Inj Prev 2016;17 Suppl 1:1–5.
- 19 Glerum KM, Zonfrillo MR. Validation of an ICD-9-CM and ICD-10-CM map to AIS 2005 update 2008. *Inj Prev* 2019;25:90–2.
- 20 National Center for Health Statistics. Icd-10: external cause of injury mortality matrix. Available: https://www.cdc.gov/nchs/injury/ice/matrix10.htm [Accessed 18 Nov 2020].
- 21 Center for Injury Research and Prevention. NJ-SHO linkage studies. Available: https:// injury.research.chop.edu/research/research-tools/new-jersey-safety-and-healthoutcomes-data-warehouse/research-utilizing-NJ-SHO#.XqME-chKg2w [Accessed 18 Nov 2020].
- 22 Wilson SJ, Begg DJ, Samaranayaka A. Validity of using linked hospital and police traffic crash records to analyse motorcycle injury crash characteristics. *Accid Anal Prev* 2012;49:30–5.
- 23 Dean JM, Vernon DD, Cook L, et al. Probabilistic linkage of computerized ambulance and inpatient hospital discharge records: a potential tool for evaluation of emergency medical services. Ann Emerg Med 2001;37:616–26.
- 24 Lopez DG, Rosman DL, Jelinek GA, et al. Complementing police road-crash records with trauma registry data--an initial evaluation. Accid Anal Prev 2000;32:771–7.
- 25 Short J, Caulfield B. Record linkage for road traffic injuries in Ireland using police hospital and injury claims data. *J Safety Res* 2016;58:1–14.
- 26 SAS Institute Inc. Sas 9.4 functions and call Routines: reference. 5th edn. Cary, NC: SAS Institute, Inc, 2016.