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Abstract-This paper focusses on choice models in which individuals (a) determine which of the 
many available products are worthy of detailed consideration. We refer to the resulting smaller 
set of products as the individual’s choice set; (b) choose among products in the choice set using a 
fairly simple logit model. The nested logit model (McFadden, 1978; 1983) is one common example 
of this model in which choice sets are mutually exclusive and collectively exhaustive. Unfortu- 
nately, there is strong empirical evidence suggesting that automobile buyers have overlapping 
choice sets. Thus, some buyers will consider both small and medium-sized cars whereas other 
buyers will consider both large and medium-sized cars. Hence, the nested logit model appears to 
unrealistically limit the allowable patterns of interproduct similarity. To avoid these problems, I 
allow choice sets to overlap but will restrict all choice sets to include the same number of products. 
As I describe, the resulting model is estimable with data on individual first and second choice 
preferences. We illustrate the model’s utility by deducing demand-price elasticities for the automo- 
tive market. 

INTRODUCTION 

Making pricing changes in the automotive industry (as well as many other key decisions 
(Hagerty, Carman, & Russell, 1988; Hauser, 1988; Tellis, 1988) required some knowledge 
of how pricing changes impact the sales of all products. But estimating demand-price 
elasticities is complicated by the following: 

1. Data limitations. Because vehicle prices tend to move together and because vehicle 
attributes tend to change from year to year, the available time-series data is generally 
insufficient for estimating demand-price elasticities for all vehicles. 

2. Complicated patterns of interproduct similarity. These complicated patterns generally 
make the simpler nested logit models (Kamakura & Russell, 1989; Russell & Bolton, 
1988) inapplicable. 

Models capable of capturing complicated patterns of interproduct similarity (e.g., 
the multinomial probit (Daganzo, 1979) become computationally impractical when the 
number of products is not small. 

This paper develops a new approach to estimating elasticities based on (a) Informa- 
tion on individual first and second choice preferences; (b) A flexible model of overlapping 
choice sets which can accommodate any pattern of demand-price cross-elasticity. I use 
the model to deduce more than 40,000 automotive demand-price elasticities and examine 
the sensitivity of our predictions to changes in modelling assumptions. 

THE CHOICE MODEL 

Assumption I: With probability Pn , an individual will only consider buying a prod- 
uct in choice set Q. Given Q, the probability of buying a product in Q (or not buying any 
product) is logit. Thus, the overall probability of buying product i is: 
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p, = c pn exp( V,, 1 
R Len w ( Vm 1 + em ( Van 1 

where V’,, is the value that an individual with choice set D attaches to buying product i 
(with i = 0 corresponding to the option of not buying any product in the market of 
interest.) 

As the prices of all the products in one’s choice set increases, an individual becomes 
more likely to drop out of the market. There is no possible price change that will cause 
the individual to switch a product outside his choice set. This model is consistent with a 
customer using a coarse screening process, not involving price, to select his/her choice set 
followed by a more focussed examination of the options in the choice set. This is a key 
difference between our model and the nested logit model in which the probability of 
having a given choice set does depend on prices. By making this restriction, our model, 
unlike nested logit, can allow choice sets to be overlapping. 

If X, is the price of product j, 

c PflZ [L, ax, - n3J J LR ew(I/,) + exp(V,,) 

exp( Kn) ew ( VJn ) - 
Len exp( VKI ) + exp( VW ) C,,, exp exp( V,) + exp( V,, ) 

where hi,, equals 1 for i = j and equals 0 else. 

Assumption 2: Suppose that ~ - av,, - l,7’& 
ax, 

, JEn, i.e., the marginal utility of product j is 

independent of the other products in the choice set. 
Suppose we also define 

1. P,,Q = ew( vl,) 
Len exp ( vM 1 

as the probability of buying i from choice set Q, given one buys 

a product in the market. 

2. P,,n = 1 - exp ( vO,) 
GeR exp ( v, 1 + ew ( voQ 1 

as the probability of buying some vehicle in 

the choice set (versus not buying at all). 
3. B,, = Lc,P~[6ijP~/8/n - Pf~nPi~nf’\nl* 

Then 

ap; - B l//’ 
ax,  ‘J J 

(1) 

ESTIMATING THE MODEL SPECIFYING B,, 

USING FIRST CHOICE/SECOND CHOICE DATA 

In the automotive context, we have information on the vehicle individuals buy (their 
first choice) and the vehicle they would have bought if their first choice were unavailable 
(their second choice)-conditioned on their second choice being a car. We let N,, be the 
fraction of the population specifying i as their first choice and j as their second choice. 
We now assume: 

Assumption 3(a): All choice sets contain the same number of vehicles. 
Thus if each choice set only contains two vehicles, N,, + N,, would be the fraction 

of the population considering both products i and j and P,,,, = N, would be the 
N,, + N,, 
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fraction of those only considering products i and j who buy product i. If we let PC,,, be the 
fraction of individuals with products i and j as their choice set who buy a product in the 
market, then 

To extrapolate our first choice/second choice data to choice sets with r 2 2 vehicles, let 
N(i, , . . . i,) be the unobserved fraction of individuals with i,, . . . , i, as their first 
through rth choices. Then suppose we estimate N(i, , . . . i,) by 

N(i,, i2, i,,. . . , i,) = N(i,, iz) N(i,, 4 ) Nil, i,) 
N(i,) - N(i,, i2) ’ * * 

- 
Nil 1 - x N(i,, ik) 

k<r 

From this, Pi, ii,, ;, is easily estimated. If all choice sets 
compute 

contain r elements, we then 

# iz (2) 

For concreteness, we will assume: 
Assumption 3(b). All choice sets contain three vehicles, 
This paper will additionally assume that buyers are similar to nonbuyers, i.e., 
Assumption 4. PC, n is a constant. 

SPECIFYING Vk USING SEGMENT ELASTICITY INFORMATION 

While estimating the sales of specific vehicles as a function of prices is difficult, we 
can frequently group vehicles into segments and use time-series to estimate the sales in 
each segment Z as a function of the average price, X,, of vehicles within that segment. If 
mi is the product i’s marketshare and P, is the share of sales in segment Z, then the 
segment own-elasticity is given by 

’ C api _ 
‘I’ = E ic, a log x, C m, C viii $%$ 

id jd I 
(3) 

We now assume: 
Assumption 5(a) A percentage increase in the prices of all products in the same 

segment will not change the relative marketshares of products in that segment, i.e., Cjqi 
is a constant for all i l I. 

Assumption 5(b): A percentage increase in the average price of all products in the 
same segment is historically associated with a percentage increase in the prices of all 

products in that segment, i.e., ~ - dlogXj _ 1 

dlogX, 
Assumption 5 and equation 4 imply that v,~ = EjE,gij, i E I and 

Defining D,j = B, if products i and j are in the same segment (and zero else) and 
inverting D gives 
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x,VJ = roll c D,i'qk ,_iEl 
kl 

Thus, we can estimate Vj from our segment own-elasticities. Substituting into (1) gives 

P,V,, = v,,&, c D,k’Pk ,.iEI (4) 
kel 

SPECIFYING P,, n USING MARKET OWN-ELASTICITY DATA 

Ife; - dl0gK 
dlogX, ’ 

the market own-elasticity, q, is given by 

ai0gP ai0gwai0gx, 
rl=alogX= 

c,ej ai0gP/ai0gx, 
ai0gx/ai0gx, = cjf3;ai0gx/ai0gx, 

where P is total sales and X is the average price of products in the market. Then 

ai0gP 
=c 

m al0gp, 
aiogx, , ’ aiogx, 

-_=_ 

Defining wj = m,x, ai0gP . 
x and 7 = - 

ai0gx g'ves 

Note that n is invariant to which product is chosen as our reference product for 0;. We 
will specify t9; by assuming that 

Assumption 6: 0; is a constant, i.e., all prices had the same percentage price changes 
over the period during which elasticities were estimated. Thus our products form a Hick- 
Sian composite (Deaton & Muellbauer, 1988). 

Given this assumption 

rl= (5) 

Hence, a uniform 1% price increase causes individuals to switch to cheaper goods, leading 
to a less than one percent change in the average price of all products. 

1. 
2. 
3. 
4. 

We can now specify PC, R from 17 using the following algorithm: 

Assume PC, R = 0.5 
Compute B,j from (2) and TJ,, from (3) 
Compute 17 ’ from (5) 
Adjust PC, n and iterate until TJ ’ equals the prespecified value of 7. 

APPLICATIONTOTHEAUTOMOTIVEMARKET 

Results 
We divided the automotive market into seven segments with segment elasticities 

estimated from a time-series model relating segment sales to average prices within each 
segment. The average segment elasticity was about - 2 with a confidence interval ranging 
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from - 1.5 to -3.0. The market own-elasticity was assumed to equal - 1. Our first 
choice/second choice data was from a quarterly survey of more than 40,000 new car 
buyers. 

Table 1 presents results for a single segment. Note that higher cross-elasticities are 
associated with products with higher first choice/second choice frequencies: e.g., Chevro- 
let’s Celebrity’s cross-elasticity with 6000 is high while its cross-elasticity with Pontiac’s 
Bonneville is small. Cross-elasticities are asymmetric (e.g., Celebrity’s cross-elasticity with 
6000 is much smaller than 6000’s cross-elasticity with Celebrity because Celebrity’s sales 
of 23 1,000 units exceed 6000’s sales of 117,000 units.) 

The average productline own-elasticity is about - 5. 1 also find that products whose 
second choices lay in the same segment seemed to be more elastic than products is whose 
second choices lay outside the segment. These own-elasticity estimates were considerably 
lower than those generally used by General Motor’s (GM) marketing staff. This result, 
reinforced by other empirical studies, caused GM to reduce the extent to which it used 
price rebates to attract customers. Nested logit, when applied to this problem, tends to 
lead to even lower elasticity estimates because nested logit artificially restricts the degree 
of competition between product lines. 

Sensitivity Analysis 
I now explore the sensitivity of our elasticity predictions to various perturbations in 

the model assumptions and input data. As the accompanying Table 2 indicates, I first 
compared the maximum, mean and minimum own-elasticity and cross-elasticity inferred 

Table 1. Mid-sized car segment demand/price elasticities for 1986 

Monte Grand Supreme Supreme Regal 
Celebrity Carlo 6000 Bonneville Prix Ciera 4DR 2DR Century 2DR 

Celebrity - .3.85 0.08 0.47 0.02 0.00 
Monte Carlo 0.26 -3.96 0.05 0.03 0.34 
6000 1.09 0.03 -6.41 0.14 0.14 
Bonneville 0.26 0.13 0.88 -5.36 0.57 
Grand Prix 0.03 1.02 0.59 0.38 -6.09 
Ciera 0.53 0.02 0.49 0.03 0.01 
Supreme 4DR 0.00 0.00 0.00 0.00 0.00 
Supreme 2DR 0.01 0.05 0.01 0.01 0.04 
Century 0.60 0.01 0.65 0.05 0.02 
Regal 2DR 0.01 0.13 0.03 0.00 0.04 
Thunderbird 0.07 0.22 0.06 0.00 0.05 
Taurus 0.23 0.02 0.23 0.01 0.00 
Cougar 0.08 0.17 0.08 0.01 0.10 
Sable 0.20 0.02 0.36 0.01 0.03 
Lancer 0.23 0.00 0.08 0.00 0.00 
Lebaron 0.15 0.04 0.13 0.00 0.04 
Lebaron GTS 0.04 0.02 0.14 0.00 0.00 

0.55 0.00 0.02 0.46 0.01 
0.06 0.00 0.28 0.03 0.41 
1.18 0.00 0.04 1.17 0.06 
0.42 0.00 0.32 0.62 0.00 
0.12 0.00 0.79 0.13 0.40 
4.69 0.00 0.06 1.22 0.00 
0.00 -2.04 0.00 0.04 0.00 
0.03 0.00 -2.28 0.01 0.10 
1.65 0.28 0.02 -5.67 0.06 
0.00 0.00 0.19 0.05 -2.53 
0.12 0.00 0.05 0.05 0.08 
0.27 0.00 0.04 0.24 0.00 
0.11 0.00 0.00 0.05 0.12 
0.42 0.00 0.00 0.24 0.00 
0.04 0.00 0.00 0.09 0.00 
0.41 0.00 0.00 0.33 0.05 
0.14 0.00 0.00 0.02 0.00 

Thunder- 
bird 

Celebrity 0.03 0.09 0.03 0.03 0.02 0.03 0.01 
Monte Carlo 0.27 0.02 0.19 0.01 0.00 0.02 0.01 
6000 0.05 0.21 0.07 0.12 0.02 0.06 0.05 
Bonneville 0.00 0.06 0.06 0.03 0.00 0.00 0.00 
Grand Prix 0.19 0.00 0.33 0.04 0.00 0.08 0.00 
Ciera 0.04 0.10 0.04 0.06 0.00 0.08 0.02 
Supreme 4DR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Supreme 2DR 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
Century 0.03 0.12 0.02 0.05 0.01 0.08 0.01 
Regal 2DR 0.03 0.00 0.04 0.00 0.00 0.01 0.00 
Thunderbird -4.11 0.34 0.91 0.08 0.02 0.04 0.01 
Taurus 0.35 -3.92 0.09 0.36 0.01 0.04 0.02 
Cougar 0.99 0.10 -4.05 0.19 0.00 0.03 0.02 
Sable 0.21 0.94 0.46 -5.01 0.00 0.05 0.08 
Lancer 0.09 0.06 0.00 0.00 -3.37 0.02 0.76 
Lebaron 0.08 0.08 0.06 0.04 0.01 -3.50 0.06 
Lebaron GTS 0.02 0.04 0.05 0.06 0.38 0.07 -2.98 

Taurus Cougar Sable Lancer Lebaron 
Lebaron 

GTS 



406  R .  F. BORDLEY 

Table 2. Sensitivity analysis of elasticity estimates 

Min 

Own-Elasticity Cross-Elasticity 

Mean Max Cor 0 Min Mean Max Cor 0 

Baseline model 
1987 Version 

- 13.4 -4.14 -1.8 1.0 0 0 .03 3.9 1.0 0 
-11.7 -4.16 -2.8 .91 .9 0 .03 4.8 .88 .07 

Sensitivity to Assumptions 

Assumption 3 
r=2 
r=4  

Assumption 4 
Assumption 5 

Equal own-elast 
Assumption 6 

e: = P, 
e: = l/P, 

- 10.9 
-  15.5 
- 16.2 

-7.8 

- 16.7 
-11.8 

-4.13 - 1.8 .99 .5 0 .02 3.0 .98 .05 
-5.22 - 1.8 .99 .5 0 .03 4.9 .98 .05 
-5.14 - 1.8 .97 .6 0 .03 6.3 .96 .05 

-4.85 -2.2 .70 1.6 0 .03 4.1 .98 .03 

-5.25 - 1.8 .99 .5 0 .03 5.0 .99 .03 
-4.48 - 1.8 .99 .3 0 .027 3.9 .99 .02 

Sensitivity to Input Data 

Min segment Elasticities - 17.1 -5.84 -2.3 1.0 .5 0 .04 5.0 1 .oo .04 
Max segment Elasticities -9.7 -3.62 - 1.4 .99 .5 0 .02 3.0 1.00 .04 
Market own 

n = -1.5 -8.1 - 3.76 - 1.8 .99 .5 0 .02 2.3 0.99 .03 
n = -0.5 -21.1 -5.87 - 1.8 .99 1.2 0 .04 6.6 0.99 .07 

1 st choice/ - 12.0 -4.69 - 1.8 .88 1.1 0 .03 1.7 0.64 .ll 
2nd choice 

from 1986 data with the estimates inferred using 1987 first choice/second choice data. I 
also computed the correlation of the 1987 estimates with my 1986 estimates as well as the 
square root of the mean squared differences (which I call a) between the 1987 estimates 
and the 1986 estimates. I found little difference between my estimates. 

I then varied assumption 3 (which specified a choice set of three elements) by estimat- 
ing the model with the size of the choice set equal to 2 or 4. Adding one more element to 
the choice set caused our own-elasticity estimates to become 10% more negative. But the 
correlation between all three sets of estimates remained high. 

Assumption 4 had assumed that nonbuyers had the same choice sets as buyers. We 
now alternatively assume that nonbuyers have the same choice set as buyers with compa- 
rable incomes, Y. Then 

where f,, r is the fraction of vehicle buyers with incomes Y and fr, R is the fraction of 
buyers with choice set 0 having income Y. This assumption causes our luxury car esti- 
mates to become 20% more negative though it only changed the average elasticity by 
about five percent. 

Assumption 5 indicated that an increase in the average product price within a seg- 
ment would not cause product shares within the segment to change. If we remove this 

assumption, define w,, 
PX 

= aandm,,, 
P 

~,E,P,X, 
= --L- and use the analogue of the argu- 

LP, 
ments leading to (5), we get 

I now suppose that all own-elasticities within the same segment are equal. Because (1) 
. 81, P,B, gives 17, = P,B,~ this implies 
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Assumption 6 indicated that all products regardless of their price tended to have the 
same percentage price change over time. To vary that assumption, I first assume that 
products that are more expensive tend to have much higher percentage price increases. A 
second alternative is to assume that products that are more expensive have much lower 
percentage price increases. This does not appear to change our elasticity estimates signifi- 
cantly. 

Assumption 1 specifies the structure of the model. Although I did not conduct a 
sensitivity analysis of our results to Assumption 1, Bordley (in press) constructed a very 
different kind of model that appeared to give roughly the same kinds of results. Hence, 
my elasticity predictions do, in fact, seem insensitive to model specification. 

Thus, my elasticity predictions seem robust to my modelling assumptions. To explore 
my model’s sensitivity to input data, I first examine how the elasticity estimates change 
when I use the maximum segment elasticity values (instead of the midpoints) and when I 
use the minimum segment elasticity values. I then vary my market own-elasticity. Finally, 
I construct a crude approximation to the first choice/second choice as follows: 

1. Let n,, be the number of car lines for which N, exceeds -!%- 
1 - m, 

2. SetN,, = OifN, I m,m, 
1 - mi 

3. Set N, = 3 if N,j 2 3 
n, 1 - m, 

As Table 2 shows, varying the input data does change my elasticity estimates signifi- 
cantly. Varying the first choice/second choice data appears to change my cross-elasticities 
more than my own-elasticities. 

Thus, my results seem robust to my modelling assumptions while being quite sensi- 
tive to my input data. 

CONCLUSIONS 

Nested logit attempts to model individual choice by dividing up a market of n 

products into, say, y disjoint nests or segments. In the automotive market, this assump- 

tion of a small number of disjoint segments seems unrealistic. I developed an alternative 

model that divides the market up into 
n! 

3!(n-3)! 
overlapping segments, thus allowing for 

arbitrarily complicated patterns of interproduct similarity. I demonstrate the feasibility 
of the method by applying it to 1986 automotive data; I then demonstrated the robustness 
of our elasticity estimates to permutations in our assumptions. 
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