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The Welfare Impact of Second-Best Uniform-Pigouvian 
Taxation: Evidence from Transportation†

By Christopher R. Knittel and Ryan Sandler*

When consumers or firms don’t face the true social cost of their 
actions, market outcomes are inefficient. In the case of negative exter-
nalities, Pigouvian taxes are one way to correct this market failure, 
but it may be infeasible to tax the externality directly. The alterna-
tive, taxing a related product, will be second-best. In this paper, we 
show that in the presence of heterogeneous externalities and elastici-
ties, this type of indirect tax performs poorly. In our empirical appli-
cation, gasoline taxes to address pollution externalities, less than a 
third of the deadweight loss of the externality is addressed by sec-
ond-best optimal taxes. (JEL D62, H21, H23, H71, H76, Q53, R48)

A basic tenet of economics posits that when consumers or firms do not face the 
true social cost of their actions, market outcomes are inefficient. In the case 

of externalities, Pigouvian taxes can correct this market failure, and the optimal 
tax leads agents to internalize the true cost of their actions. Although technology 
is increasingly allowing policymakers to implement Pigouvian taxes that precisely 
match externalities, in practice directly taxing the externality is often either tech-
nically or politically infeasible. In such cases, policymakers might tax a product 
correlated with the externality. This introduces an additional complication: the level 
of externality generated can vary across agents. For example, instead of taxing 
vehicle emissions, policymakers tax gasoline even though emissions per gallon of 
gasoline consumed varies across vehicles. Similarly, a uniform alcohol tax may be 
imposed to reduce the negative externalities associated with use, even though exter-
nalities likely vary by the type of alcohol or who is consuming it. We refer to uni-
form taxes intended to address a heterogeneous externality as second-best optimal 
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(SBO) taxes. When the level of externalities produced differs across consumers, a 
uniform tax will be second best and deadweight loss will remain. Moreover, if price 
responsiveness and externalities are correlated, the SBO tax will differ from the 
more easily calculated average externality.

In this paper, we study the efficiency and equity implications of using a uni-
form SBO tax in place of the optimal Pigouvian tax. As an empirical example, we 
focus on the local pollution externalities of the personal transportation market in 
California between 1998 and 2008. Policymakers are often concerned about four 
externalities in the transportation sector: local pollution from tailpipe emissions, 
known as criteria pollutants;1 climate change externalities resulting from carbon 
dioxide associated with the engine’s combustion process; road congestion; and 
externalities associated with accidents. For all but the climate change externality, a 
gasoline tax is an imperfect instrument. While fuel consumption is positively cor-
related with criteria pollutant emissions, congestion, and accident externalities, it is 
not perfectly correlated.2

In any market with heterogeneous externalities, the relationship between the SBO 
tax and the first-best Pigouvian tax depends on three empirical relationships: the 
distribution of externalities across individuals; the extent to which prices affect the 
implicit demand for the externality; and the correlation between individual-specific 
demand responses and externality levels. If individual demand responses do not dif-
fer, the SBO gasoline tax will simply be the average per-unit externality. However, if 
price responsiveness and externalities are correlated, Diamond (1973) shows that the 
SBO tax will be a weighted average of individual per-unit externalities, where the 
weights are the price derivatives of the individual-specific gasoline demand curves. 
In our empirical work, we allow the elasticity of vehicle miles traveled (VMT) with 
respect to gasoline prices—an elasticity that we hereafter call the VMT elasticity—
to vary depending on a vehicle’s emissions per mile traveled, which we observe in 
our data.

An important empirical result of this paper is that we find that vehicle-level 
emissions are correlated with vehicle-specific VMT elasticities; dirtier vehicles 
are more price responsive.3 Using detailed vehicle-specific data on miles driven, 
we show a positive correlation between criteria pollutant emissions and the VMT 
elasticity (in absolute value) holds for all three pollutants for which we have data: 
carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NOx ). VMT 
elasticities are also positively correlated with greenhouse gas emissions and vehicle 
weight.

1 Criteria air pollutants are the only air pollutants for which the administrator of the US Environmental Protection 
Agency has established national air quality standards defining allowable ambient air concentrations. Congress has 
focused regulatory attention on these pollutants (i.e., carbon monoxide, lead, nitrogen dioxide, ozone, particulate 
matter, and sulfur dioxide) because they endanger public health and are widespread throughout the United States.

2 In contrast, burning a gallon of gasoline leads to the same amount of carbon dioxide emissions regardless of 
the vehicle, so a gasoline tax is the optimal instrument for climate change externalities. 

3 While we tend to discuss the responsiveness of individuals to changes in prices because drivers can shift miles 
from one car to another, the more relevant response is the response of the number of miles driven by a particular 
vehicle. Therefore, throughout, we focus on the response of miles driven by a particular vehicle, not by a particular 
driver. 
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We find the average VMT elasticity is −0.13, but differences between cleaner and 
dirtier vehicles are substantial. When we allow VMT elasticity to vary by within-year 
quartiles of NOx emissions, the elasticity for vehicles in the highest (i.e., dirtiest) 
quartile is −0.28. The VMT elasticity then falls monotonically with NOx quartiles. 
The VMT elasticity is −0.15 in the third quartile, −0.05 in the second quartile, and 
0.04 in the first quartile. Similar correlations between emissions and VMT elastici-
ties hold for CO and HCs.

These correlations drive a wedge between the SBO gasoline tax associated with 
emissions and what we call the “naive” tax, which we define as the the tax based 
only on the unweighted average externality across vehicles. We show the SBO gas-
oline tax is larger, on the order of 50 percent, than the naive gasoline tax in each of 
the years of our sample. However, we also show that for local pollutants, a uniform 
gasoline tax performs poorly in eliminating DWL. Across our sample, we estimate 
the SBO gasoline tax eliminates only 30 percent of DWL associated with the pollut-
ants studied. During the second half of our sample, the SBO gasoline tax eliminates 
only 25 percent of the DWL.

To determine whether our DWL results extend to externalities beyond vehicle 
emissions, we next investigate which features of the personal transportation mar-
ket lead to the failure of the SBO gasoline tax to eliminate a substantial portion of 
the DWL from emissions of criteria pollutants. First, we show that the failure of 
the SBO gasoline tax is not simply due to variation in the harmfulness of pollu-
tion across counties—a county-specific SBO tax would only remove slightly more 
DWL than a statewide tax. Instead, the failure of the SBO gasoline tax stems from 
two related factors: the heterogeneity in local pollution externalities across vehicle 
vintages and the overall right skew of the distribution of pollution externalities. If 
these features were not present, a uniform tax would address more than 80 percent 
of the DWL of local pollution externalities. These features are likely present in other 
vehicle externalities such as accidents and congestion, suggesting that policymakers 
will need to implement direct Pigouvian taxes or more complete policies to address 
the externalities of vehicle usage.

The equity and distributional consequences of SBO taxes are also important—in 
addition to normative considerations, political support for a tax scheme hinges on 
equity. Because gasoline demand is income inelastic, gasoline taxes are generally 
regressive, although there is debate in the literature as to just how regressive such 
taxes are (Poterba 1991, Chernick and Reschovski 1997). Gasoline expenditures 
and gasoline taxes paid are relatively constant across the income distribution and 
necessarily make up a larger share of income at the lower end of the distribution. 
One might expect that an emissions tax might be more regressive still, especially 
if poorer households are more likely to own higher polluting vehicles. Our results 
show the opposite, however. Our empirical model predicts that the average house-
hold in every income decile would pay a higher percentage of income under the 
SBO gasoline tax than under an optimal emissions tax. This is more pronounced 
for households at the bottom of the income distribution. Because dirtier vehicles are 
more price responsive and have lower VMT ex ante, the SBO gasoline tax revenues 
are higher than under the optimal emissions tax. Furthermore, although on average 
lower income households are more likely to drive higher polluting vehicles, the 
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correlation is weak. Vehicles that would have a higher tax burden under an optimal 
emissions tax are owned by households throughout the income distribution and 
make up a small minority of vehicles in every income bracket.

Our results have implications for regulating externalities beyond local pollutants 
emitted by personal automobiles. Indeed, our focus on the local pollution external-
ities is driven partly by data availability. Increasingly stringent emissions standards 
for new vehicles have gradually made local pollution less important compared to 
other externalities of personal automobiles. Nonetheless, both our result that the 
SBO tax and the naive uniform tax diverge substantially and our result that the SBO 
tax performs poorly likely transfer to other transportation externalities, and indeed 
other externalities entirely. For example, congestion externalities also exhibit sub-
stantial heterogeneity, with miles traveled during peak hours having much larger 
external costs, while being less price responsive as well. Our results suggest that 
the marginal congestion externality is probably much less than the average, and that 
a gasoline tax will address little of the overall congestion externality. In addition, 
although the significance of local pollution externalities has declined in the United 
States, local air quality continues to be an issue in other countries, and our specific 
results may be useful in those contexts.

We are not the first to analyze the optimal level of gasoline taxes. Parry and 
Small (2005) calculate the optimal gasoline tax for the United States and United 
Kingdom accounting for local and global pollution, accidents, congestion, and the 
inefficiencies associated with income taxes. Our analysis differs in four key respects. 
First, in general Parry and Small (2005) implicitly assume vehicle externalities are 
uncorrelated with the sensitivity of each vehicle’s demand for gasoline and gasoline 
prices, whereas we allow for, and find, such correlation.4 Second, we account for 
the possibility that marginal damage of vehicle emissions may vary geographically. 
Third, Parry and Small (2005) do not estimate the DWL that remains from institut-
ing a gasoline tax, as opposed to the first-best set of optimal emissions taxes, which 
is one of the main focuses of our paper. Fourth, our focus is more narrow in some 
respects, as our empirical work focuses on externalities associated with local and 
global pollution, although our results bear on the external costs related to accidents 
and congestion.

The closest paper to ours, in terms of our DWL results, is Fullerton and West 
(2010), who also investigate the amount of DWL eliminated by a uniform gasoline 
tax. They do so by calibrating a numerical model with approximate miles and emis-
sions obtained by matching inspection data from a small pilot study in California to 
quarterly gasoline expenditures in the Consumer Expenditure Survey. In contrast, 
our estimates are based on actual emissions, miles traveled, and gasoline prices for 

4 Parry and Small (2005) do apply an ad hoc correction to the congestion component of their optimal tax to 
account for peak period driving being less price sensitive than nonpeak driving. Although it is surely true that peak 
period driving is less price sensitive, Parry and Small do not estimate the elasticities, nor the correlation between 
price responsiveness and congestion externalities. Parry and Small’s correction is significantly smaller than the 
wedge we find between the SBO and naive pollution taxes. 
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the universe of California vehicles. We find a uniform tax removes much less of the 
DWL of pollution compared to their calculations.5

The paper proceeds as follows. Section I draws on Diamond (1973) to derive 
the SBO gasoline tax and the amount of remaining DWL. Section II discusses the 
empirical setting and data. Section III provides descriptive support for the empirical 
results through graphical analysis. Section IV presents the main empirical model 
and results on miles driven. Section V estimates empirically the optimal uniform tax 
and welfare effects, and Section VI presents results on the incidence of gasoline and 
emissions taxes. Section VII concludes the paper.

I.  Optimal Uniform Taxes

In this section, we derive the second-best optimal uniform tax to internalize an 
externality in the presence of heterogeneity in the externality. We closely follow the 
model of Diamond (1973) in deriving the optimal tax. We then add more structure 
to the problem to analytically solve for the amount of remaining DWL.

Consumer ​h​ derives utility indirectly from her consumption of a good, ​​α​h​​​ , and a 
numeraire, ​​μ​h​​​ , but is also affected by the consumption of others, ​​α​−h​​​ (the external-
ity). Assuming quasi-linear preferences, consumer ​h​’s utility can be written as

(1)	​​ U​​ h​ ( ​α​1​​, ​α​2​​ ,  … , ​α​h​​ ,  … , ​α​n​​ ) + ​μ​h​​.​

We assume utility is monotone in own consumption, i.e., ​∂​U​​ h​/∂​α​h​​  ≥  0​. This 
yields demand curves ​​α​ h​ 

∗​​ , given by

(2)	​​ α​ h​ 
∗​  = ​ α​h​​​(​p​g​​ + τ)​,​

where ​​p​g​​​ denotes the per-unit price of the good and ​τ​ a per-unit tax on purchases.
These assumptions, along with assuming an interior solution for each consumer, 

lead to the following result.

PROPOSITION 1: The second-best optimal uniform per-unit tax, ​​τ​​ ∗​​, is ( from 
Diamond 1973)

(3)	​​ τ​​ ∗​  = ​ 
− ​∑ i​ 

 
 ​​ ​∑ h≠i​ 

 
 ​​ ​  ∂ ​U​​ h​ ____ ∂ ​α​i​​

 ​ ​α​ i​ ′ ​
  _______________ 

​∑ i​ 
 
 ​​ ​α​ i​ ′ ​

 ​  ,​

where ​​∑ h≠i​ 
 
 ​​  ∂ ​U​​ h​/∂ ​α​i​​​ is the external costs associated with one unit of consumption 

by individual ​i​ and ​​α​ i​ ′ ​​ is the derivative of consumer ​i​’s demand for the good with 
respect to the price.

5 In addition, there is a broad literature aimed at estimating how vehicle owners’ driving and scrappage deci-
sions respond to gasoline prices and vehicles’ policies, typically using either aggregate data or NHTS survey data. 
See, for instance, Li, Timmins, and von Haefen (2009); Gillingham (2010); and Jacobsen and van Benthem (2013). 
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PROOF:
See online Appendix A.
The SBO tax becomes a weighted average of vehicles’ externalities where the 

weights are the derivative of the demand with respect to the tax. If there is a positive 
correlation between price responsiveness and externalities (in the vehicle context, 
dirtier cars are more responsive), this correlation will increase the SBO tax.6 Note 
that if consumption of ​α​ creates multiple externalities, the SBO tax addressing all 
externalities will be the sum of the SBO taxes that would address each externality 
independently. To see this, notice that the externalities appear in equation (1) only 
through ​∂​U​​ h​/∂ ​α​i​​​. So long as ​∂ ​U​​ h​/∂ ​α​i​​​ is additively separable (i.e., the externalities 
do not interact), the terms can be rearranged to express the total SBO tax as the sum 
of the SBO taxes for the component externalities.

As Diamond explicitly discusses, there is no requirement that all of the ​​α​i​​​  terms 
must be negative.7 In the context of personal automobiles, this could occur if house-
holds hold multiple vehicles, as they may shift miles from their least fuel efficient, 
most polluting vehicle to a cleaner, more efficient vehicle.8

The presence of heterogeneity in the externality also implies that a uniform tax 
will not achieve the first-best outcome. A uniform tax will under-tax high externality 
agents and overtax low externality agents. We extend Diamond (1973) to solve for 
the amount of DWL remaining in the presence of an SBO tax applied to a market 
with heterogeneous externalities. We make assumptions on the distribution of the 
externality in order to obtain a closed-form solution with intuitive content. When we 
turn to our empirical application, we relax these assumptions entirely and leverage 
the empirical distribution.

We start with the case where demand elasticities and emissions are uncorrelated 
and then relax this assumption.

PROPOSITION 2: Suppose consumers are homogeneous in their demand for the 
good, but individuals’ per-unit externalities differ. In particular, let ​​α ′ ​​ denote the 
derivative of demand with respect to price.

If the distribution of the per-unit externality, ​E​ , is log normal, with probability 
density function

(4)	​ φ( ​E​i​​ )  = ​   1 _ 
​E​i​​ ​√ 
_

 2 ​σ​ E​ 2 ​ ​
 ​ exp​(​ 

− ​( ​E​i​​ − ​μ​E​​ )​​ 2​
  ___________ 

2 ​σ​ E​ 2 ​
 ​ )​,​

6 As an intuitive example, imagine the case where there are only two vehicle types. The first emits little pollu-
tion, while the second is dirtier. Also imagine the clean vehicles are completely price insensitive, while the dirty 
vehicles are price sensitive. The naive tax would be calculated based on the average emissions of the two vehicle 
types. However, the marginal emission is the emissions rate of the dirty vehicles; the clean cars are driven regardless 
of the tax level. In this case, we can achieve first best by setting the tax rate at the externality rate of the dirty vehicle. 
There is no distortion to owners of clean vehicles since their demand is completely inelastic, so we can completely 
internalize the externality to those driving the dirty vehicles. 

7 However, second-best optimal tax loses the interpretation as a weighted average if some ​​α​i​​​ terms are positive. 
8 Also note that the elasticity of gasoline consumption with respect to price accounts for households selling or 

scrapping their vehicles and buying different ones. That is, if the gasoline tax increases the scrappage rate of some 
vehicles, then the relevant derivative of the externality with respect to price is the expected change in gasoline con-
sumption, not the change in gasoline demand, conditional on survival. 
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the DWL absent any market intervention will be given as:

	​ D  = ​   1 _ 
2​α ′ ​ ​ ​e​​ 2​μ​E​​+2​σ​ E​ 2 ​​.​

PROOF:
See online Appendix A.

This leads to the following calculation of remaining DWL under the SBO tax.

PROPOSITION 3: Under the assumptions in Proposition 2, the ratio of remaining 
DWL after the tax is imposed to the DWL absent the tax is

(5)	​ R  = ​ 
D − ​ ​e​​ 2​μ​E​​+​σ​ E​ 2 ​​ _ 

2​α ′ ​ ​
 _ 

D
  ​  =  1 − ​ ​e​​ 2​μ​E​​+​σ​ E​ 2 ​​ _ 

​e​​ 2​μ​E​​+2​σ​ E​ 2 ​​
 ​  =  1 − ​e​​ −​σ​ E​ 2 ​​.​

PROOF:
See online Appendix A.
With externalities uncorrelated with the demand for the good, the remaining 

DWL from a uniform tax depends only on the shape parameter of the externality 
distribution. The larger ​​σ​ E​ 2 ​​ is, the wider and more skewed will the distribution of 
the externality be, causing the uniform tax to “overshoot” the optimal reduction in 
consumption for more individuals.

If demand is not homogeneous and in fact is correlated with per-unit externalities, 
the calculation changes. Let ​​α​ h​ ′ ​​ denote the derivative of the demand associated with 
individual ​i​ with respect to the price of the good. For ease, define ​​B​i​​ = 1/​α​ h​ ′ ​​ , and 
assume that ​​B​h​​​ is distributed lognormal with parameters ​​μ​B​​​ and ​​σ​ B​ 2 ​​. Define ​ρ​ as the 
dependence parameter of the bivariate lognormal distribution (the correlation coef-
ficient of ​ln E​ and ​ln B​). We then have the following result.

PROPOSITION 4: When ​​B​h​​​ and ​​E​h​​​ are distributed lognormal with dependence 
parameter ​ρ​ , the SBO tax is

	​​ τ​​ ∗​  = ​ e​​ ​μ​E​​+​ ​σ​ E​ 2 ​
 ___ 

2
 ​+ρ​σ​E​​​σ​B​​​​.

PROOF:
See online Appendix A.
As we would expect, the SBO tax does not depend on the scale of the elasticity 

distribution, only on the extent to which externalities are correlated with elasticities. 
We can then calculate the amount of remaining DWL under both the naive and SBO 
tax.

PROPOSITION 5: When ​​B​i​​​ and ​​E​i​​​ are distributed lognormal with dependence 
parameter ​ρ​ , the ratios of the remaining DWL after the SBO tax to the original 
DWL will be

(6)	​ R(​τ​​ ∗​)  =  1 − ​e​​ −​σ​ E​ 2 ​​,​
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and the ratios of the remaining DWL after the naive uniform tax to the original DWL 
will be

(7)	​ R(​τ​naive​​)  =  1 − ​e​​ −​σ​ E​ 2 ​​ ​(2​e​​ −ρ​σ​E​​​σ​B​​​ − ​e​​ −2ρ​σ​E​​​σ​B​​​)​.​

PROOF:
See online Appendix A.
As we would expect, the optimal tax correctly accounts for the correlation between 

the externality and demand responses, and thus the remaining DWL depends only 
on the variance and skewness of the externality distribution. However, in the pres-
ence of correlation, the naive tax reduces less of the DWL from the externality, 
reducing it by a proportion related to the degree of correlation and the spread of the 
two distributions. The term in parentheses in equation (7) is strictly less than one 
and strictly greater than zero if ​ρ > 0​ , but may be negative if ​ρ < 0​ and the shape 
parameters are sufficiently large.

II.  Empirical Setting

A. Data

Our empirical setting is the California personal transportation market. We bring 
together a number of large datasets. Our analysis is primarily based upon the universe 
of emissions inspections from 1996 to 2010 from California’s vehicle emissions 
testing program, the Smog Check Program, which is administered by the California 
Bureau of Automotive Repair (BAR). A vehicle appears in the data for a number 
of reasons. First, vehicles more than four years old must pass a Smog Check within 
90 days of any change in ownership. Second, in parts of the state (details below), 
an emissions inspection is required every other year as a prerequisite for renewing 
the registration on a vehicle that is six years or older. Third, a test is required if a 
vehicle moves to California from out-of-state. Vehicles that fail an inspection must 
be repaired and receive another inspection before they can be registered and driven 
in the state. There is also a group of exempt vehicles. These are: vehicles of 1975 
model year or older, hybrid and electric vehicles, motorcycles, diesel-powered vehi-
cles, and large natural gas powered trucks.9

These data report the location of the test, the unique vehicle identification num-
ber (VIN), odometer reading, the reason for the test, and test results. We decode 
the VIN to obtain the vehicles’ make, model, engine, and transmission. Using this 
information, we match the vehicles to EPA data on fuel economy. Because the VIN 
decoding is only feasible for vehicles made after 1981, our data are restricted to 
these models. We also restrict our sample to 1998 and beyond, given large changes 
that occurred in the Smog Check Program in 1997. This yields roughly 76 million 
observations.

9 In 2010, California began requiring Smog Checks for diesel-powered vehicles of model years 1997 and newer. 
We have fewer than 500 diesel-powered vehicles in our data, however. 
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The Smog Check data report measurements for NOx and HCs in terms of parts 
per million and CO levels as a percentage of the exhaust, taken under two engine 
speeds.10 As we are interested in the quantity of emissions, the more relevant metric 
is a vehicle’s emissions per mile. We convert the Smog Check emissions readings 
into emissions per mile using conversion equations developed by Sierra Research 
for the California Air Resources Board in Morrow and Runkle (2005). The conver-
sion equations are functions of both measurements of all three pollutants, vehicle 
weight, model year, and truck status. For more details on cleaning the Smog Check 
data, including the conversion equations for the three criteria pollutants, see online 
Appendix B.

As part of our simulation exercise, we also use data obtained from CARFAX Inc. 
to estimate scrappage decisions. These data contain the date and location of the last 
record of the vehicle reported to CARFAX for 32 million vehicles in the Smog Check 
data. This includes registrations, emissions inspections, repairs, import/export 
records, and accidents. Because the CARFAX data include import/export records, 
we are able to correctly classify the outcomes of vehicles which are exported to 
Mexico as censored, rather than scrapped, thus avoiding the issues identified in 
Davis and Kahn (2010).

For a subset of our Smog Check data, we are able to match vehicles to households 
using confidential data from the California Department of Motor Vehicles (DMV). 
These data track the registered address of every vehicle in the state, with one address 
given for each year. We use the registration information to attach demographic infor-
mation on income from US census data. Online Appendix C discusses the process of 
cleaning the registration data. The DMV data are only available for the years 2000 
to 2008.

For a portion of our analysis, we use data from the 2009 National Highway 
Transportion Survey, which contains information on household vehicles, annual 
VMT, and household income for a sample of households.

Finally, we use gasoline prices from EIA’s weekly California average price series 
to construct average prices between inspections.

Table 1 reports means and standard deviations of the main variables used in our 
analysis, for all observations and broken down by vehicle age and by year of Smog 
Check. The average fuel economy of vehicles in our sample is 23.5 MPG, with fuel 
economy falling over the period of the sample. The change in the average dollars 
per mile has been dramatic, almost tripling between 1998 and 2008. The dramatic 
decrease in vehicle emissions is also clear in the data, with average per-mile emis-
sions of HCs, CO, and NOx falling considerably from 1998 to 2008. The tightening 
of standards has also meant that more vehicles fail Smog Checks late in the sample, 
although some of this is driven by the aging of the vehicle fleet.11

10 HCs, as measured by the Smog Check Program, are similar to, but slightly different from, Non-Methane 
Organic Gases (NMOG), the pollutant measured by the EPA and Califorania Air Resources Board (CARB)’s 
testing standards for new vehicles. HCs include emissions of methane, but do not include oxygenated com-
pounds such as aldehydes. For a primer on the differences from CARB, see https://www.arb.ca.gov/ei/speciate/
orgtermsnmhcthctogsummary.pdf. Regardless of the metric, emissions of this type from vehicle sources largely 
consist of uncombusted gasoline fumes. 

11 Although the failure rate increases with time, the average emissions rate for vehicles of a given model year 
stays relatively constant over our sample. That is, emissions do not, on average, rise with vehicle age, holding 

https://www.arb.ca.gov/ei/speciate/orgtermsnmhcthctogsummary.pdf
https://www.arb.ca.gov/ei/speciate/orgtermsnmhcthctogsummary.pdf
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B. Automobiles, Criteria Pollutants, and Health

The vehicle inspection data report emissions of three criteria pollutants: NOx, 
HCs, and CO. All three of these directly result from the combustion process within 
either gasoline or diesel engines. Both NOx and HCs are precursors to ground-level 
ozone, but all three have been shown to have negative health effects on their own.12

While numerous studies have found links between exposure to the ozone or the 
three criteria pollutants and health outcomes, the mechanisms are still uncertain. 
These pollutants, as well as the ozone, may directly impact vital organs or indirectly 
cause trauma. For example, CO can bind to hemoglobin, thereby decreasing the 
amount of oxygen in the bloodstream. High levels of CO have also been linked to 
heart and respiratory problems. NOx reacts with other compounds to create nitrate 

vintage constant. See online Appendix Figure A.1. This is likely at least in part due to the Smog Check Program 
itself, both directly (by fixing cars with high emissions) and indirectly (by forcing high emissions cars off the road). 

12 CO has also been shown to speed up the smog-formation process. For early work on this, see Westberg, 
Cohen, and Wilson (1971). 

Table 1—Summary Statistics

Vehicle age Year

All 4–9 10–15 16–28 1998 2008

Weighted fuel economy 23.53 23.30 23.70 23.80 24.27 23.07
(5.320) (5.235) (5.331) (5.507) (5.478) (5.169)

Average $/mile 0.0973 0.0928 0.0977 0.109 0.0581 0.143
(0.0416) (0.0403) (0.0417) (0.0426) (0.0134) (0.0361)

Odometer (00000s) 1.214 0.932 1.376 1.626 1.023 1.323
(0.605) (0.454) (0.567) (0.688) (0.528) (0.622)

Average VMT/day 24.50 30.23 23.09 15.64 29.48 22.62
(95.96) (43.29) (101.2) (148.9) (65.64) (28.24)

Grams/mile HC 0.762 0.219 0.739 2.017 1.403 0.542
(1.177) (0.270) (1.019) (1.670) (1.506) (1.022)

Grams/mile CO 5.525 0.510 4.814 18.15 12.44 3.488
(12.91) (1.646) (10.90) (20.35) (18.97) (10.49)

Grams/mile ​​NO​x​​​ 0.664 0.317 0.731 1.297 1.042 0.516
(0.638) (0.303) (0.599) (0.728) (0.904) (0.547)

Failed Smog Check 0.0868 0.0435 0.106 0.165 0.0515 0.0992
(0.282) (0.204) (0.307) (0.371) (0.221) (0.299)

Average HH income 48066.3 49,955.1 47,117.3 44,970.8 49,768.5 47,778.3
(17,031.0) (17,685.0) (16,556.3) (15,555.7) (17,952.5) (16,791.9)

Truck 0.385 0.406 0.368 0.367 0.322 0.426
(0.487) (0.491) (0.482) (0.482) (0.467) (0.494)

Vehicle age 10.68 6.694 12.14 18.54 9.244 11.77
(4.587) (1.615) (1.686) (2.478) (3.552) (4.854)

Observations 76,510,820 34,713,936 29,775,806 12,008,157 4,172,978 5,849,644

Notes: Statistics are means with standard deviations presented below in parentheses. Weighted fuel economy is 
from EPA. Dollars per mile is the average gasoline price from EIA in between the vehicle’s current and previous 
Smog Checks, divided by the vehicle’s fuel economy. Average household income is taken from the 2000 census 
ZCTA where the smog check occured. The dataset used for this table contains one observation per vehicle per year 
in which a smog check occured.
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aerosols, which are fine-particle particulate matter (PM). PM has been shown to 
irritate lung tissue, lower lung capacity, and hinder long-term lung development. 
Extremely small PM can be absorbed through the lung tissue and cause damage on 
the cellular level. On their own, HCs can interfere with oxygen intake and irritate 
lungs. Ground-level ozone is a known lung irritant, has been associated with low-
ered lung capacity, and can exacerbate existing heart problems and lung ailments 
such as asthma or allergies.

III.  Preliminary Evidence

One of the main driving forces behind our empirical results is how gasoline 
demand elasticities for different vehicles vary systematically with emissions levels. 
In this section, we present evidence that significant variation exists in terms of 
vehicle externalities within a year, across years, and even within the same vehicle 
type (make, model, model year, etc.) within a year. Further, simple statistics, such as 
the average miles traveled by vehicle type, suggest that elasticities may be correlated 
with externalities.13

Figure 1 plots the distributions of NOx, HCs, and CO emissions in 1998, 2004, 
and 2010. The distribution of criteria pollutant emissions tends to be right skewed 
in any given year, with a standard deviation equal to roughly one to three times the 
mean, depending on the pollutant. The skewness implies that some vehicles on the 
road are quite dirty relative to the mean vehicle. Over time, the distribution has 
shifted to the left, as vehicles have gotten cleaner, but the range remains. A major 
reason for the leftward shift is the progressive tightening in the limits on emissions 
per mile imposed by the US EPA, such that more recent model years have substan-
tially lower emissions per mile than vehicles produced in the 1980s and early 1990s. 
As these newer, cleaner vehicles have comprised a greater share of the fleet, average 
emissions have fallen.

The variation in emissions is not only driven by the fact that different types of 
vehicles are on the road in a given year, but also variation within the same vehicle 
type, defined as a make, model, model year, engine, number of doors, and drivetrain 
combination. To see this, Figure 2 plots the distributions of emissions for the most 
popular vehicle/year in our sample, the 2001 four-door Toyota Corolla in 2009. The 
vertical line is at the mean of the distribution. Here, again, we see that even within 
the same vehicle type in the same year, the distribution is wide and right skewed. 
The distribution of HCs is less skewed, but the standard deviation is 25 percent of 
the mean. CO is also less skewed and has a standard deviation that is 36 percent of 
the mean. Across all years and vehicles, the mean emissions rate of a given vehicle 
in a given year, on average, is roughly four times the standard deviation for all three 
pollutants (online Appendix Table A.1).

To understand how the distribution within a given vehicle type changes over time, 
Figure 3 plots the distribution of the 1995 3.8L, front-wheel drive, Ford Windstar in 

13 We are not the first to document the large variation across vehicles in emissions. See, for example, Kahn 
(1996). Instead, our contribution is in finding a link between elasticities and emissions. 
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1999, 2001, 2004, and 2007.14 These figures suggest that over time the distributions 
shift to the right, become more symmetric, and the standard deviation grows consid-
erably, relative to the mean. Across all vehicles, the ratio of the mean emission rate 
of NOx and the standard deviation of NOx has increased from 3.16 in 1998 to 4.53 
in 2010. For HCs, this increased from 3.59 to 5.51, and for CO, the ratio increased 
from 3.95 to 5.72.

These distributions demonstrate significant variation in emissions across 
vehicles and within vehicle type, and thus significant scope for meaningful 
emissions-correlated variation in elasticities along those lines.15 We next present 
suggestive evidence that VMT elasticities may be correlated with emissions. For 
each criteria pollutant within each calendar year, we rank vehicles by their observed 
emissions per mile and divide them into quartiles. We do the same for fuel economy. 
Next, for each quartile year, we compute the median annual VMT and plot how 
this has changed over our sample, normalized by the 1998 level for each quartile. 
Figure 4 foreshadows our results on VMT elasticities and externalities. For each 
pollutant, we see that the dirtiest quartile saw the largest decreases in miles driven 
during the run-up in gasoline prices from 1998 to 2008 when prices increased from 

14 We chose this vehicle because the 1995 3.8L, front-wheel drive Ford Windstar in 1999 is the second-most 
popular entry in our data, and it is old enough that we can track it over four two-year periods. 

15 Because of the way we handle multiple tests of a given vehicle within a year, our distributions likely under-
state the degree of on-road heterogeneity. In order for a vehicle to be registered, the vehicle must pass a Smog 
Check. In our data, we see multiple tests of the same vehicle over a short time frame. We use the final test, which 
will necessarily have been passed, for our calculations. Furthermore, our calculations omit unregistered vehicles, 
many of which are likely to have high emissions. 

Figure 1. Distribution of Three Criteria Pollutant Emissions across All Vehicles in 1998, 2004, and 2010 
(observations above the ninetieth percentile are omitted )
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Figure 2. Distribution of Three Criteria Pollutant Emissions of a 2001 Four-Door, 1.8L, 
Toyota Corolla in 2009 (observations above the ninetieth percentile are omitted )

Figure 3. Distribution of Three Criteria Pollutant Emissions of a 1995 3.8L, FWD, Ford Windstar in 1999, 
2001, 2005, and 2009 (observations above the ninetieth percentile are omitted)
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roughly $1.35 to $3.20.16 The ordering of the relative decreases suggests that dirtier 
vehicles may have been more responsive over this period.

IV.  Vehicle Miles Traveled Decisions

We now estimate how changes in gasoline prices affect decisions about vehicle 
miles traveled (VMT) and how this elasticity varies with vehicle characteristics. 
Our empirical approach mirrors Figure 4. For each vehicle receiving a biennial 
Smog Check, we calculate average daily miles driven and the average gasoline price 
during the roughly two years between Smog Checks. Obviously vehicle owners with 
more fuel-efficient vehicles will respond less to changes in the per-gallon gasoline 
price, and to abstract from this, we specify the elasticity with respect to the price in 
dollars per mile (DPM) by dividing the average per-gallon price by fuel economy 
in gallons per mile. Thus, the price faced by each vehicle’s owner will vary both 
with the exact period in between Smog Checks and with the specific vehicles’ fuel 
economy. We then allow the elasticity to vary based on the emissions of the vehicle. 
We begin by estimating

(8)	​ ln (VM​T​ijgt​​ )  =  β ln (DP​M​ijgt​​ )  + γ ​X​it​​ + ​μ​t​​ + ​μ​j​​ + ​μ​g​​ + ​μ​v​​ + ​ε​igt​​​ ,

16 The levels also differ. Online Appendix Figure A.2 plots the median of daily miles traveled across our sample 
split up by the emissions quartile of the vehicle. 
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Figure 4. Change in the log of VMT over Sample by Pollutant Quartile
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where ​i​ indexes vehicles, ​j​ vehicle types, ​g​ geographic locations, ​t​ time, and ​v​ vehi-
cle age, or vintage; ​DP​M​ijgt​​​ is the average gasoline price per mile faced by vehicle ​i​ 
between time ​t​ and the date of the previous Smog Check, ​​X​it​​​ is a vector of time-vary-
ing covariates, and ​​ε​igt​​​ is a residual.17 The covariate vector ​​X​it​​​ includes an indicator 
for whether the vehicle is a truck, a quadratic time trend in days, and a sixth order 
polynomial in odometer reading, using the odometer reading from the previous 
Smog Check (i.e., the odometer reading before the choice of VMT). Our baseline 
specification assumes that gasoline prices are exogenous to individual driving deci-
sions. Such an assumption is common in the literature, as gasoline prices are largely 
driven by movements in the world price of crude oil, which saw dramatic changes 
during the 2000s for reasons unrelated to driving choices in California.18 However, 
we have also estimated our main analyses instrumenting for DPM with the Brent 
Crude oil price, and we obtain very similar results. Online Appendix D describes a 
variety of robustness checks, including using a complete set of month-by-year fixed 
effects, thus relying on cross-sectional variation in gas prices, as opposed to time-se-
ries variation. All of our robustness checks yield results that are qualitatively similar 
to our baseline specification.

We begin by including demographic characteristics by the zip code of Smog 
Checks and year and vintage fixed effects. We then progressively include finer 
vehicle-type fixed effects by including make, then make/model/model year/engine, 
and finally individual-vehicle fixed effects. We also differentiate the influence of 
gasoline prices by vehicle attributes related to the magnitude of their negative exter-
nalities—criteria pollutants, CO2 emissions, and weight.

We allow the VMT elasticity to vary with the magnitude of their externalities in 
two ways. For both approaches, we begin by ranking vehicles within each calendar 
year by their emissions per mile of NOx , HCs, CO, fuel economy, or vehicle weight 
in pounds. In one set of specifications, we split vehicles up by the quartile of these 
variables and allow each quartile to have a separate ​β​.19 In another set, we include 
a linear interaction of centiles of these variables and the log of gasoline prices in 
dollars per mile.

Table 2 shows our results, focusing on NOx. The changes from models 1 to 4 
illustrate the importance of controlling for vehicle-type fixed effects. Initially, the 
average elasticity falls from −0.269 to −0.123 when including make fixed effects, 
but then rises when including finer vehicle-type fixed effects. Model 4 includes 

17 The fuel economy in gallons per mile used to calculate our DPM variable uses the standard assumption that 
45 percent of a vehicle’s miles driven are in the city and 55 percent are on the highway. This is the standard approach 
used by the EPA for combined fuel economy ratings. 

18 See, for example, Busse, Knittel, and Zettelmeyer (2013). 
19 We note that in addition to accounting for relative emissions, specifying emissions levels as quartiles reduces 

the effect of random noise from the Smog Check data. The Smog Check emissions testing itself is an estimate of 
true emissions, and measured emissions can vary even without changes in actual emissions. We can test the extent 
of this by comparing vehicles that pass an inspection for a change of ownership shortly before or after a biennial 
inspection. Although the changes between closely spaced inspections like this are mean zero, the average absolute 
change in the emissions reading is about 10-15 percent of a standard deviation. Specifying emissions as quartiles 
will mute this variance, since it is relatively unlikely that an unusually high or low emissions reading will move a 
vehicle to a different quartile than the true emissions level would indicate. 
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individual-vehicle fixed effects yielding an average elasticity of −0.134.20 In 
models  5 and 6, we examine heterogeneity with vehicle fixed effects. Model 5 
includes interactions with quartiles of NOx. The VMT elasticity for the cleanest 
vehicles, quartile one, is positive at 0.043, while the VMT elasticity for the dirtiest 
vehicles is twice the average elasticity at −0.280. To put these numbers in context, 
the average per-mile NOx emissions of a quartile one vehicle is 0.163 grams, while 
the average per-mile NOx emissions of a quartile four vehicle is 1.68 grams. As a 
further point of comparison, the Tier 2 emissions standards established by the EPA 
in 2000 called for fleet average NOx emissions of 0.3 grams per mile for passenger 
cars of model years 2004–2006 and 0.07 grams per mile starting with model year 
2007.21 Model 6 assumes the relationship is linear in centiles of NOx and finds that 
each percentile increase in the per-mile NOx emission rate is associated with an 
elasticity 0.001 larger in absolute value from a base of essentially zero.

We find similar patterns across the other externalities. The range of the estimated 
VMT elasticities is somewhat larger when using quartiles of HCs and CO emissions 
compared to NOx, with the dirtiest quartiles around −0.30 and the cleanest around 
0.05. For CO2, the cleanest vehicles are those with the highest fuel economy, and 
here, we see the least fuel-efficient vehicles having a VMT elasticity of −0.183, 
compared to −0.108 for vehicles with fuel economy in the highest quartile. We 
observe some heterogeneity in the VMT elasticity across vehicle weights as well, 
although it is smaller than the other externalities. For the full set of results, see 
online Appendix Table A.2.

The SBO gasoline tax is not (necessarily) affected by the mechanism behind 
the heterogeneity in elasticities we observe, and a full exploration of the mecha-
nism is outside the scope of the present paper. In a related working paper (Knittel 
and Sandler 2013), we investigate several potential mechanisms, including multiple 
vehicle households switching VMT to a cleaner vehicle, older vehicles (which nec-
essarily have higher emissions) being more responsive, and low-income consumers 
being more responsive and owning dirtier vehicles. In Knittel and Sandler (2013), 
we find that each of these explanations account for some of the heterogeneity in 
elasticities, but that a portion remains unexplained.

V.  Efficiency of the Second-Best Optimal Gasoline Tax

In this section, we use our empirical results on driving responsiveness to evaluate 
the efficiency of SBO taxes in the presence of heterogeneity. We first calculate the 
SBO gasoline tax to address the externalities from emissions of NOx, HCs, and CO 
and compare this to the naive tax equal to the average externality. We then compare 
the remaining DWL left over from these second-best taxes to the optimal outcome 
obtained by a Pigouvian tax on emissions. Although we focus on the local pollution 

20 Our average elasticity is larger than that found in Hughes, Knittel, and Sperling (2008), reflecting the longer 
run nature of our elasticity. 

21 The Tier 2 standards also required light duty trucks (including SUVs) to have a fleet average of 0.2 grams 
per mile of NOx emissions for model years 2004–2008 and meet the same 0.07 grams per mile standard starting 
with model year 2009. Tier 2 standards have since been superseded by tighter Tier 3 standards, which began taking 
effect with model year 2017. 
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externalities of driving, our results will extend to any externality with a similar 
pattern of heterogeneity, and we discuss the implications of our results to SBO taxes 
for other driving externalities such as accidents and congestion.

A. Tax Calculations

We calculate the naive tax per gallon of gasoline as the simple average of the 
externality per gallon caused by all vehicles on the road in California in a particular 

Table 2—Vehicle Miles Traveled, Dollars per Mile, and Nitrogen Oxides (quartiles by year)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(1) (2) (3) (4) (5) (6)

ln(DPM) −0.269 −0.123 −0.183 −0.134 −0.038
(0.044) (0.038) (0.027) (0.022) (0.028)

ln(DPM) × NOx Q1 0.043
(0.021)

ln(DPM) × NOx Q2 −0.054
(0.022)

ln(DPM) × NOx Q3 −0.152
(0.025)

ln(DPM) × NOx Q4 −0.280
(0.028)

ln(DPM) × NOx Centile −0.001
(0.000)

NOx Q2 0.216
(0.663)

NOx Q3 −1.742
(0.881)

NOx Q4 −2.417
(1.003)

NOx Centile −0.001
(0.001)

Truck 0.054 0.057 0.005
(0.033) (0.045) (0.055)

Time trend −0.244 −0.314 −0.278 −0.035 −0.057 −0.062
(0.037) (0.024) (0.015) (0.028) (0.032) (0.025)

Time trend squared 0.002 0.002 0.002 0.000 0.000 0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Year fixed effects Yes Yes Yes Yes Yes Yes
Vintage fixed effects Yes Yes Yes Yes Yes Yes
Sixth-order polynomial in 
  lagged odometer

Yes Yes Yes Yes Yes Yes

Demographics Yes Yes Yes Yes Yes Yes
Make fixed effects No Yes No No No No
Vin prefix fixed effects No No Yes No No No
Vehicle fixed effects No No No Yes Yes Yes

Observations 36,387,455 36,387,455 36,387,455 36,387,455 29,779,909 29,779,909
R2 0.210 0.218 0.143 0.121 0.117 0.118

Notes: Each observation is a vehicle’s Smog Check inspection. The dependent variable is the log of the average 
daily vehicle miles traveled since the previous inspection. DPM represents the average gasoline price over the 
period since the previous inspection, converted to dollars per mile by dividing by vehicle fuel economy. Quartiles 
and centiles of ​​NO​x​​​ are based on rankings of emissions per mile within the calendar year in which the Smog Check 
occurs. Standard errors clustered by vehicle make are reported in parentheses.
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year. We value the externalities imposed by NOx and HCs using the marginal 
damages calculated by Muller and Mendelsohn (2009), based on the county in 
which each vehicle has its Smog Check.22 For CO, we use the median marginal 
damage estimate from Matthews and Lave (2000).

Let the marginal damage per gram of pollutant ​p​ in county ​c​ be ​​θ​ c​ 
p​​ , with emis-

sions rates in grams per mile by vehicle ​i​ of ​​ε​ i​ 
p​​. Then the externality per mile of 

vehicle ​i​ , ​​E​i​​​ is

(9)	​​ E​i​​  = ​ θ​ c​ 
HC​ ⋅ ​ϵ​ i​ 

HC​ + ​θ​ c​ 
N​O​x​​​ ⋅ ​ϵ​ i​ 

N​O​x​​​ + ​θ​ c​ 
CO​ ⋅ ​ϵ​ i​ 

CO​​.

The naive tax in year ​y​ will then be

(10)	​​ τ​naive​​ (y)  = ​  1 _ 
​N​​ y​

 ​ ​ ∑ 
i=1

​ 
​N​​ y​

 ​​ ​ 
​E​i​​ _ 

MP​G​i​​
 ​ ,​

where ​​N​​ y​​ denotes the number of vehicles on the road in year ​y​  and ​MP​G​i​​​ denotes the 
fuel economy rating of vehicle ​i​. In practice, since the stock of vehicles represented 
in the Smog Check data in any given year will be less than the total stock of vehicles 
in the vehicles fleet, we weight each Smog Check observation by the frequency with 
which vehicles of the same vintage and class appear in the California fleet as a whole.

Following Proposition 1, we calculate the SBO gasoline tax, taking into account 
the heterogeneity in both levels of the externality and the responsiveness to gaso-
line prices. We estimate a regression similar to equation (8), but allow the elasticity 
of VMT with respect to DPM to vary over quartiles of all three criteria pollutants, 
fuel economy, vehicle weight, and three groups of vehicle age. For more details, 
see online Appendix E. Let the group-specific elasticity for vehicle ​i​ be ​​β​ i​ 

q​​ , where ​
q​ indexes cells by HC emissions, NOx emissions, CO emissions, MPG, weight, 
and age, with the externalities again in quartiles by year. Further, let the average 
price per gallon and the quantity of gasoline consumed per year in gallons in year ​
y​ be ​​P​ i​ 

y​​ and ​​Q​ i​ 
y​​ , respectively.23 Then the optimal tax in year ​y​ will be

(11)	​​ τ​​ ∗​(y)  = ​  
− ​∑ h​ 

  ​​ ​∑ i≠h​ 
  ​​ ​  ∂​U​​ h​ ___ ∂ ​α​i​​

 ​ ​α​ i​ ′ ​
  ______________ 

​∑ h​ 
  ​​ ​α​ h​ ′ ​

  ​ ,​

22 Note that while we use Muller and Mendelson’s county-specific damages for completeness, county-level 
variation in damages is of relatively little importance. Most of the variation in vehicle emissions is between vehi-
cles within counties and even within zip codes. Online Appendix Table A.7 demonstrates this, presenting the total 
within-zip code and between-zip code standard deviations of the Smog Check emissions readings for each of the 
criteria pollutants we study. For all three pollutants, the average within-zip code standard deviation is at least 83 
percent of the total standard deviation. The relative unimportance of county-level variation is also demonstrated 
later in Table 4, where we find that a county-specific SBO tax is a little better than a statewide tax. Note, also, that 
the values used in this paper differ from those used in the published version of Muller and Mendelsohn (2009). The 
published values were calculated using incorrect baseline mortality numbers that were too low for older age groups. 
Using corrected mortality data increases the marginal damages substantially. We are grateful to Nicholas Muller for 
providing updated values and to Joel Wiles for bringing this to our attention. 

23 Again, we also weight vehicles based on the number of vehicles of that age and class that appear in the fleet 
as a whole; see online Appendix E. We also account for vehicle owners’ decisions to scrap their vehicles to the 
extent these are affected by gasoline prices. Online Appendix G discusses the details and results of this exercise. To 
summarize, we allow gasoline price to affect scrappage decisions and allow this to vary over emissions profiles and
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with

(12)	​​ α​ i​ ′ ​  = ​ −β​ i​ 
q​ ⋅ ​ ​Q​ i​ 

y​
 ___ 

​P​ i​ 
y​
 ​ ,​

and

(13)	​​  ∂ ​U​​ h​ _ ∂ ​α​i​​
 ​  = ​ 

​E​i​​ _ 
MP​G​i​​

 ​.​

Table 3 shows the naive and SBO taxes for each year from 1998 to 2008. The 
naive tax would be 61.5 cents per gallon of gasoline consumed in 1998, while the 
SBO tax is 91 cents, 48 percent higher. The ratio of the naive and SBO gasoline 
tax increases even as the levels of the externalities decline over time. From 2000 
on, the SBO gasoline tax is at least 50 percent larger than the naive tax in each 
year.

B. Welfare with Uniform Taxes

We have shown that because of the correlation between elasticities and exter-
nality rates, the SBO gasoline tax is much higher than the naive tax calculated as 
the average of per-gallon externalities. However, even the optimal uniform tax is 
still a second-best policy. Because of the heterogeneity in externality levels, the 
highest externality individuals will be taxed by less than their external costs to soci-
ety, leaving the remaining DWL. Those with lower externalities than the weighted 
average will be taxed too much, overshooting the optimal quantity of consumption 
and creating more DWL. We now calculate how far both the naive and SBO gaso-
line taxes are from the optimal Pigouvian tax for the local pollutant emissions from 
driving. We also examine how much of any shortfall is due to unique features of 
the local pollution externality, rather than general factors that would apply to other 
externalities.

Simulation Results.—We begin by approximating the ratios of DWL with and 
without the taxes using our data to simulate the change in miles driven and thus in 
gasoline consumption from a tax. Let ​mile​s​ i​ 

y​​ be the actual average miles per day 
traveled by vehicle ​i​ between its last Smog Check and the current one, observed 
in year ​y​ , and let ​​​  miles​​  i​ 

y ​(τ)​ be the miles per day that a vehicle would travel if the 
average price of gasoline were raised by a tax of $​τ​ per gallon that is fully passed 
through to consumers. In principle, a higher gasoline tax might induce some con-
sumers to drive less aggressively to save fuel, which might also have effects on 
emissions of local pollutants.24 However, we assume that vehicle fuel economy and 

vintages. We find that the main source of heterogeneity occurs across vintages; specifically, increases in gasoline 
prices decrease the hazard rate of very old vehicles, but increase the hazard rate of middle-aged vehicles. Because 
emissions of criteria pollutants are positively correlated with age, this has the effect of increasing criteria pollutants, 
although the aggregate effect is small. 

24 The direction of any such effect is hard to predict. Lower fuel consumption overall would likely reduce 
emissions per mile with all else equal. However, changing driving patterns would also influence the operating 
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per mile emissions are constant despite the hypothetical tax. We approximate DWL 
as a triangle, such that the ratio of interest is

	​ r(τ )  = ​ 
​∑ i​ 

  ​​ ​ 1 _ 
2
 ​ ⋅ ​|​ mile​s​ i​ 

y​ − ​​  miles​​  i​ 
y​ (τ)  ________________ 

MP​G​i​​
 ​ |​ ⋅ ​|​  ​E​i​​ _ 

MP​G​i​​
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The fully optimal tax would have a ratio of zero, while a tax that actually increased 
the DWL from gasoline consumption would be greater than one. We note that, given 
other distortions in the market such as other taxes and externalities, the initial DWL 
might be more correctly approximated with a trapezoid, rather than a triangle. 
That is, some DWL from other inefficiencies would exist even with the first-best 
Pigouvian tax for local pollution. We return to the issue of other externalities in the 
next subsection. Note also that we have not fully accounted for the extensive mar-
gin in our simulation—that is, on the number and type of vehicles on the road. We 
account for scrappage and have a rough adjustment for purchases of new cars, but 
we cannot account for changes in technology or substitution patterns between old 
and new cars that might be influenced by a permanent tax on gasoline.25

Table 4 shows the ratios of DWL with various SBO taxes to the DWL with no 
additional tax. The first two columns show ratios for a statewide tax based on the 

temperature of vehicles’ engines with additional affects on emissions, particularly of NOx. NOx emissions are pri-
marily limited by the catalytic converter, which operates more efficiently when warm. 

25 For instance, Archsmith et al. (2017) shows that gasoline prices influence substitution patterns when house-
holds replace one vehicle in their portfolio, and leverage this to identify substitution preferences. 

Table 3—Average and Marginal Pollution Externality

Average externality 
(¢/gallon)

Marginal externality 
(¢/gallon)

1998 61.48 91.27
1999 54.78 81.62
2000 48.55 74.31
2001 40.96 64.29
2002 34.18 54.09
2003 28.77 46.89
2004 24.31 39.26
2005 21.25 33.95
2006 18.61 29.52
2007 16.23 25.81
2008 14.36 22.84

Notes: Average externality is the simple average of damages from emissions of criteria pollut-
ants produced by each car in each year, divided by fuel usage. We refer to a tax on the average 
externality as the “naive tax.” The marginal externality is computed as the weighted average of 
externality per gallon, using the negative slope of the vehicle’s demand curve as the weight. A 
tax on the marginal externality is the SBO gasoline tax. Both calculations also weight vehicles 
by the frequency with which vehicles of the same vintage and class appear in the California 
fleet as a whole. The dollar figures are inflation adjusted to year 2008.
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average and marginal externalities (i.e., the naive and SBO taxes), respectively, of 
all vehicles in California in each year. DWL with the naive tax averages 72.4 percent 
of the DWL with no additional tax over the sample period and rises over time as the 
fleet becomes cleaner. The SBO gasoline tax is a little better, averaging 69.8 percent 
of DWL with no tax during our sample period.26

Our simulation shows that the SBO gasoline tax is a remarkably poor instrument 
to address the local pollution externalities of personal automobiles. We next explore 
whether this result is likely to be specific to the context of local pollution externali-
ties, or apply more broadly to other heterogeneous externalities. The purpose of this 
analysis is to explore the nature of the failure of the uniform gasoline taxes.

We first examine the role of between-county variation in local pollution exter-
nalities. The marginal damages from Muller and Mendelsohn (2009) are designed 
to vary at the county level, and within California, they vary substantially across 
counties, due to both baseline emissions levels and the extent to which population 
is exposed to harmful emissions. The third and fourth columns of Table 4 show the 
remaining DWL from a set of naive and SBO gasoline taxes computed at the county 
level. In essence, we eliminate the between-county variation in the local pollution 
externality by simulating separate taxes in each county equal to the average or mar-
ginal externality in each county and year. We find that the county-by-county vari-
ation in emissions and elasticities does not explain the failure of a single, uniform 
tax to remove a substantial amount of deadweight loss. The average ratio over our 
sample is 0.68 for the naive tax and 0.653 for the optimal uniform tax, just over 4 
percentage points less than either the naive or SBO statewide tax.

26 We can also calculate the ratio of remaining DWL to original DWL by calibrating equations (6) and (7) with 
the moments in our data. The average values in our sample for the lognormal shape parameters ​​σ​ E​ 2 ​​ and ​​σ​ B​ 2 ​​ are 1.47 
and 1.51, respectively. The average value of ​ρ​ , the correlation coefficient for the logs of externality and inverse 
elasticity, is 0.28.

Table 4—Ratios of DWL with Tax to DWL with No Tax

Baseline
No between- 

county variation
No between- 

vintage variation Total DWL
Naive SBO Naive SBO Naive SBO $

1998 0.616 0.568 0.573 0.523 0.348 0.341 196,466,743.8
1999 0.636 0.577 0.592 0.529 0.330 0.325 158,104,022.2
2000 0.635 0.583 0.587 0.532 0.320 0.317 131,221,905.8
2001 0.690 0.627 0.649 0.582 0.348 0.345 100,426,397.4
2002 0.700 0.675 0.652 0.625 0.348 0.346 76,704,234.1
2003 0.716 0.699 0.661 0.643 0.316 0.314 58,869,859.8
2004 0.746 0.740 0.699 0.693 0.313 0.312 42,633,364.9
2005 0.766 0.762 0.723 0.718 0.319 0.318 27,431,776.5
2006 0.801 0.796 0.762 0.757 0.338 0.337 20,756,465.9
2007 0.817 0.817 0.780 0.780 0.328 0.327 15,589,665.8
2008 0.838 0.836 0.805 0.802 0.331 0.331 12,340,287.7
Average 0.724 0.698 0.680 0.653 0.331 0.329 76,413,156.7

Notes: DWL with no tax calculated is based on the difference in emissions from imposing a tax equal to the actual 
externality per gallon consumed by a particular car. SBO tax is computed as the weighted average of externality per 
gallon, using the negative slope of the vehicle’s demand curve as the weight. All taxes also weight vehicles by the 
frequency with which vehicles of the same vintage and class appear in the California fleet as a whole.
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Another important feature of local pollution externalities that makes a uniform tax 
fall short is the variation across vintages. Older vehicles are on average much more 
polluting than newer ones, although as we showed in Section III, there is substantial 
variation even within vehicle type. To test the importance of between-vintage 
variation, the fifth and sixth columns of Table 4 show the proportion of remaining 
DWL after a set of naive or SBO gasoline taxes based on the local pollution exter-
nalities by vintage and year, eliminating between-vintage variation as a factor. Here 
we see a substantial improvement: 0.331 for the naive tax and 0.329 for an SBO 
gasoline tax.

The other major factor driving the failure of a uniform SBO tax to address local 
pollution externalities is the skewness in the externality distribution. The roughly 
50 percent increase in the tax level from an SBO gasoline tax correctly abates more 
emissions from the dirtiest vehicles, but also overtaxes the cleanest vehicles by a 
larger amount. The welfare benefits of the SBO gasoline tax are around 10 percent 
higher than those from a naive tax, but still fall far short of the benefits from a true 
Pigouvian tax linked to actual vehicle emissions. The number of vehicles for which 
the uniform tax overshoots is remarkable. Specifically, the distribution of emissions 
is so strongly right skewed that the naive uniform tax overshoots for more than 72 
percent of vehicle years and the SBO gasoline tax for even more.

The variance and skewness in the distribution of externality per gallon causes a 
uniform tax to be less efficient than might otherwise be expected. Figure 5 shows 
this clearly, plotting the kernel density of the externality per gallon in 1998 and 2008, 
with vertical lines indicating the naive tax and the optimal tax, respectively. The 
long right tail of the distribution requires that either tax greatly exceed the median 
externality. As striking as these results are, they are likely to be more skewed still in 
other states besides California. California has more stringent new-vehicle emissions 
standards and a more widespread emissions inspection program than most other US 
states and indeed more so than EU countries. These regulations will tend to reduce 
the number of vehicles in the right tail of emissions. For a more in-depth discussion 
of how our results would differ in other states, see in online Appendix F.

To test the importance of the shape of the externality distribution to the perfor-
mance of an SBO tax, we next examine how the SBO gasoline tax would com-
pare to the optimal Pigouvian emissions tax if the distribution became less skewed. 
To do this, we focus on the California personal vehicle fleet in 2008 and progres-
sively remove more of the right tail of the externality distribution. These results 
are reported in Table 5. The first column reports the ratios of DWL with the SBO 
gasoline tax to DWL with no tax for 2008, with both tax and DWL recalculated 
after dropping vehicles whose externality is above the ninety-fifth, ninetieth, seven-
ty-fifth, fiftieth, or twenty-fifth percentiles. The second column reports the SBO tax 
in dollars, while the last two columns give the standard deviation and skewness of 
the resulting externality distribution. With the top 5 or 10 percent of the externality 
distribution removed, the distribution remains highly right skewed, and the SBO 
tax still removes less than half the DWL of local pollution externalities. Cutting our 
sample at the seventy-fifth percentile makes the externality distribution much less 
skewed, and the remaining DWL after an SBO tax falls by more than half compared 
to our full sample. When vehicles above the twenty-fifth percentile are removed, the 
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remaining externality distribution becomes roughly symmetrical with a skew statis-
tic near zero, and the (now very small) SBO tax removes more than 84 percent of  
the DWL.

C. Treatment of Other Externalities

Our results in the previous subsection show that the heterogeneity in the local pol-
lution externalities of personal automobiles make a uniform tax a remarkably poor 
tool to address those externalities. We now consider the implications of this result 
for other externalities, including other externalities from personal transportation. To 
the extent that a uniform tax can address other externalities, we are underestimating 
the effectiveness of a uniform tax. However, if the features of local pollution that 
lead an SBO tax to fail are present in other externalities, our results apply more 
broadly and point to the need for other policies to control externalities.

Indeed, many of the other externalities of personal transportation are similar to cri-
teria pollution emissions in the sense that they also vary across vehicles. Congestion 
and accident externalities depend on when and where vehicles are driven. Accidents 
and infrastructure depreciation depend to some degree on vehicle weight.27 We lack 
vehicle-specific measures of these other externalities to measure how imposing an 
SBO gasoline tax would address the DWL from these externalities. However, we 
can use our results of the previous subsection to assess qualitatively the effective-
ness of a uniform gasoline tax. This is important in part because, to the extent that a 
uniform gasoline tax can address other externalities, it is possible that current pol-
icy already does so —the combined state and federal gasoline tax in California was 
$0.47 per gallon during our sample period.

27 For estimates on the degree of this heterogeneity, see Anderson and Auffhammer (2011) and Jacobsen (2013). 
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The harms of local pollution can vary by the geographic area where the pollutants 
are emitted. Externalities such as accidents and congestion are unlikely to have the 
same type of geographic heterogeneity—geographic variation for these externalities 
is more likely to be between particular roads and intersections rather than across 
counties. However, in the previous subsection, we showed that geographic variation 
is a minor factor in the failure of a uniform gasoline tax to address local pollutant 
externalities. A more important factor was variation across vintages of vehicles. We 
expect that a similar type of variation will exist for accident externalities, and to 
an extent with congestion externalities, through variation across hours of the day. 
More generally, variation across classes of individuals is a common feature in het-
erogeneous externalities. Perhaps the most important factor leading to the failure 
of the SBO gasoline tax for local pollution is the strong skew to the externality 
distribution. The harms of accident and congestion externalities are highly skewed 
as well—large trucks disproportionately contribute to the former, while peak period 
driving disproportionately contributes to the latter.

These factors indicate that the SBO gasoline tax that addresses accidents and 
congestion externalities as well as local pollution externalities will fail to remove a 
significant portion of the DWL. Therefore, the actual amount of DWL will be the 
sum of the DWL that we measure plus the DWL loss arising from the externalities 
that we cannot measure.28

One externality that does not vary across vehicles is the social cost of CO2 emis-
sions due to their contribution to climate change. Because CO2 emissions are, to a 
first-order approximation, directly proportional to gasoline consumption, in this case 
a per-gallon gasoline tax is the optimal policy instrument. The larger the climate 
change externality, the greater the share of DWL eliminated by the SBO gasoline 
tax will be. To get a sense of how climate change externalities affect our calcula-
tions, we repeat the analysis for a range of social costs of carbon (SCC).

28 In fact, Parry and Small (2005) find that the contribution of these other externalities to the second-best opti-
mal gas tax may, in fact, be larger than the contribution arising from local pollutants. This would suggest that the 
degree for which we understate the remaining deadweight loss might be large. 

Table 5—Ratios of DWL with Tax to DWL with No Tax in 2008, 
Eliminating the Right Tail of the Externality Distribution

Externality moments

Exclude above: DWL ratio SBO tax $ SD Skewness

Ninety-fifth percentile 0.745 0.12 0.144 3.171
Ninetieth percentile 0.628 0.07 0.066 2.973
Seventy-fifth percentile 0.373 0.04 0.020 1.128
Fiftieth percentile 0.249 0.02 0.008 0.520
Twenty-fifth percentile 0.157 0.01 0.004 0.158

Notes: DWL with no tax is calculated based on the difference in emissions from imposing a tax 
equal to the actual externality per gallon consumed by a particular car. SBO tax is computed as 
the weighted average of externality per gallon, using the negative slope of the vehicle’s demand 
curve as the weight. All taxes also weight vehicles by the frequency with which vehicles of the 
same vintage and class appear in the California fleet as a whole.
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We calculate the remaining DWL after imposing the SBO gasoline tax based on 
local pollution externalities, varying the SCC from 0 cents per gallon to $1.00 per 
gallon.29 While our discussion focuses on the externalities associated with CO2, we 
stress that these calculations are relevant for any externalities for which a per-gallon 
tax is the first-best instrument. They also represent the lower bound on the remain-
ing DWL when we consider any other externality for which a per-gallon tax is a 
second-best instrument.

Figure 6 summarizes the results across all years in our sample. The values for 
an extra per-gallon externality of zero roughly correspond to the ratios reported in 
Table 4.30 Not until the extra per-gallon externality exceeds $0.20 per gallon does 
a uniform gasoline tax eliminate the majority of DWL associated with both the 
criteria pollutants and a per-gallon externality. Even if the per-gallon externality is 
$1.00, nearly 20 percent of combined DWL remains under both the naive and SBO 
gasoline taxes.

VI.  Incidence of Gasoline and Pigouvian Taxes

Our results in Section V demonstrate that a uniform gasoline tax is an ineffective 
policy tool on efficiency grounds. In this section, we consider the implications of 
the SBO gasoline tax and the first-best optimal Pigouvian emissions tax for equity. 

29 For comparison, Greenstone, Kopits, and Wolverton (2011) estimate the SCC for a variety of assumptions 
about the discount rate, relationship between emissions and temperatures, and models of economic activity. For 
each of their sets of assumptions, they compute the global SCC; focusing only on the US impacts would reduce the 
number considerably. For 2010, using a 3 percent discount rate, they find an average SCC of $21.40 per ton of CO2 
or roughly 23.5 cents per gallon of gasoline, with a ninety-fifth percentile of $64.90 (71 cents per gallon).These 
calculations assume that the life-cycle emissions of gasoline are 22 pounds per gallon. Using a 2.5 percent discount 
rate, the average SCC is $35.10 (38.6 cents per gallon). 

30 The figure plots the weighted averages across the years, while the last row in Table 4 is a simple average of 
the annual weighted averages, hence a slight difference. 
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Gasoline taxes are generally thought to be regressive, placing a greater burden on 
the poorest households. Fuel consumption is relatively constant across the income 
distribution, and thus the argument goes that a tax on gasoline expenditures will 
represent a larger fraction of the income of low-income households.31 However, 
it is possible that a uniform gasoline tax is less regressive than an emissions tax, 
particularly if poorer households tend to own dirtier vehicles. We begin by describ-
ing our methodology for assigning household income to the vehicles in our Smog 
Check data and then present our results on the regressivity of the SBO gasoline tax 
and the optimal Pigouvian emissions tax.

We note that there is an extensive literature analyzing the distributional impacts 
of gasoline taxes and carbon taxes more generally. Poterba (1991) argues that 
annual expenditure is a better proxy for permanent income than annual income and 
shows that by this metric a gasoline tax is less regressive than it might otherwise 
seem. However, Chernick and Reschovski (1997) use long-term income directly, 
and find gasoline taxes are still borne predominately by the poor. More recently, 
Teixidó and Verde (2017) find that gasoline taxes are regressive under analysis simi-
lar to Poterba (1991) if wealth is considered as well. Recent works focus on various 
means of “recycling” revenues from a gasoline tax to compensate for the burden of 
the tax, either by cutting more distortionary taxes or providing subsidies or lump-
sum rebates to some households. Williams et al. (2015) argue that the uses of tax 
revenue may be more important than the tax itself to determine the regressivity of a 
carbon tax. While important, these issues are outside the scope of our analysis here, 
which focuses on the relative distributional effects of a gasoline tax and an emission 
tax.

A. Assigning Income to Vehicles

For the analyses in this section, we link the Smog Check data to DMV registra-
tion information. We geocode the addresses from the DMV data and match them 
to census block groups (CBGs) then link these data to CBG demographics from 
the 2000 Decennial Census. The DMV data allow us to match an address to each 
vehicle by calendar year for the period of 2000–2008. We then predict the annual 
average tax paid by the owners of each vehicle in the Smog Check data, using our 
estimates of optimal taxes and counterfactual VMT from Section V. Note that the 
because our predicted counterfactual VMT is vehicle specific, we implicitly allow 
for lower income households to be more responsive to gas prices to the extent that 
lower income households tend to own older and dirtier cars. However, our analysis 
only considers partial equilibrium effects, as we do not account for interactions 
with other markets, and in particular the use of the tax revenues. This should not 
materially affect the comparison between taxes, but our estimates of the absolute 
regressiveness of each tax may be biased.

31 In principle, a gasoline tax could be more progressive than this argument implies, if the poorest households 
do not own cars. For instance, del Granado, Coady, and Gillingham (2012) show that fuel subsidies in developing 
countries primarily accrue to higher income individuals. In practice, the 2009 NHTS indicates that over 95 percent 
of US households own at least one car; the fraction of California households with a car is slightly higher. 
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All of the analyses in this section consider the average of predicted taxes over the 
whole period from 2000–2008. Although the levels of tax and externality are higher 
earlier in the period than later in the period, the distributional patterns are almost 
identical regardless of the time period used.

We note that annual income is not an ideal measure of well-being for the purpose 
of analyzing distributional impacts of a gasoline tax, as annual income may not 
reflect a household’s long-term ability to bear a tax burden. Permanent or lifetime 
income is more appropriate, with annual consumption being the most commonly 
used proxy. We use annual income for practical reasons—we do not have consump-
tion at the household or even the CBG level, and moreover the differences between 
annual expenditures and annual income will be muted in aggregate CBG data that 
we use.32

Figure 7 shows a map of California CBGs, shaded to show the average predicted 
annual tax paid as a fraction of year 2000 CBG median income. Panel A shows the 
average tax burden of the SBO tax, while panel B shows the average tax burden of 
an optimal Pigouvian emissions tax. Two patterns are evident from the maps. First, 
there is substantial geographic dispersion across the state of California, with vehi-
cle owners in the urban cores of Los Angeles and San Diego paying a much higher 
proportion of CBG median income in taxes. Second, although the geographic dis-
persion differs slightly between the SBO gasoline tax and the optimal emissions tax, 
the levels differ substantially—the annual burden of the optimal tax is much lower 
than that of the SBO tax. We discuss the intuition behind this surprising result below.

32 Poterba (1991) notes that the wedge between annual income and annual expenditure stems from a relatively 
small fraction of households whose expenditure ranking deviates substantially from their income ranking. 
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The map analysis in Figure 7 is instructive, but is not enough to show the extent 
to which the SBO gasoline tax or an optimal Pigouvian emissions tax would be 
progressive or regressive. To estimate the progressivity of these taxes, median CBG 
income is insufficient. Borenstein (2012) shows that CBG median income masks 
substantial within-CBG variation in household income, which causes it to do a poor 
job of capturing effects on the top and bottom of the income distribution. We imple-
ment Borenstein’s suggested correction for CBG income, which uses the full dis-
tribution of household incomes in each CBG from the census data combined with 
a separate dataset that contains both annual VMT and household income. In brief, 
Borenstein’s method requires the correlation between annual VMT and income 
within a CBG. In short, using the 2009 NHTS, we calculate the correlation between 
VMT and income. This allows us to assign vehicles in the Smog Check data to 
income brackets based on each vehicle’s annual VMT and the proportion of house-
holds in each income bracket within the CBG the vehicle is registered in. For more 
details, see online Appendix H and Borenstein (2012).

Using the Borenstein (2012) correction, we assign vehicles to 1 of 10 income 
brackets, which aggregate the 16 income categories contained in the census data 
into groups roughly approximating deciles of the California household income dis-
tribution.33 For purposes of calculating the tax burden and progressivity, we use the 
midpoint of each income bracket. Because our data are at the vehicle level, not the 
household level, we account for multiple vehicle households by dividing the esti-
mated household income by the average number of vehicles per household for that 
income bracket, taken from the 2009 NHTS.

B. Regressivity Results

Figure 8 plots for each decile of household income the average tax burden as 
a percentage of estimated income for the naive uniform tax, the SBO tax, and the 
optimal Pigouvian emissions tax.34 The figure also plots the average of pretax exter-
nality in dollars per year using the right axis. Aside from the tenth, highest, income 
decile, which has a much higher average annual VMT than the ninth decile, the aver-
age pretax externality is declining with income. In other words, we find that poorer 
households have dirtier cars, and pollute more in total even though their annual VMT 
is lower than richer households. As such, we expect an emissions tax to be regres-
sive to some extent. Indeed, all three taxes are regressive, with the lowest income 
brackets predicted to pay the highest percentage of household income toward the 
tax. However, the curve is most steeply sloped for the SBO gasoline tax, indicating 
that it is the most regressive of the three. The optimal emissions tax imposes a lower 
average tax burden than the SBO gasoline tax in every income decile.

On its face, it seems surprising that an emissions tax would result in a lower 
tax burden for all parts of the income distribution. The explanation for this result 

33 Specifically, the break points for the groupings are at the 10.41, 19.87, 29.02, 41.68, 49.31, 59.30, 72.10, 
81.29, and 93.5 percentiles of all households in California. 

34 Note that this is more precisely the average burden by decile for car owners. However, given that more than 95 
percent of California households own cars, including carless households would not significantly change our results. 
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is that under an emissions tax, vehicles with the highest per-gallon tax rate have 
the fewest posttax VMT, and vice versa. Even if all vehicles were equally price 
responsive, an emissions tax would raise less revenue on average than a uniform 
tax simply because the highest polluting vehicles pay the highest tax rate and thus 
reduce VMT and gasoline consumption the most. Of course, the core result of this 
paper is that vehicles are not equally responsive to gasoline prices, with the dirtiest 
vehicles having the greatest VMT elasticity. This further reduces the average burden 
of an emissions tax, while the variation in elasticities pushes the level and aver-
age burden of the SBO gasoline tax higher. Moreover, in practice, older and dirtier 
vehicles have lower VMT pretax. Thus, the SBO gasoline tax would only impose a 
lower tax burden on an income bracket if high-polluting, low VMT vehicles were 
concentrated in one decile, which is not the case. Indeed, the SBO tax is higher than 
optimal on a per-mile basis for more than 80 percent of vehicles. Although house-
holds in the lower income brackets are more likely to have higher polluting vehicles, 
more than 75 percent of vehicles in every income group have emissions below the 
marginal externality that determines the SBO gasoline tax. As a result, switching 
from the SBO gasoline tax to an emissions tax lowers the tax burden for the vast 
majority of vehicles in every income bracket.

It is also important to note that while Figure 8 illustrates that gasoline taxes are 
regressive, the figure hides a tremendous amount of variation within income deciles. 
We find that the variance falls as income rises. Figure 9 shows this clearly, plotting 
several percentiles of SBO gasoline tax expenditures as a share of income within 
each income bracket. For instance, the interquartile range of the share of SBO 
gasoline tax as a fraction of income for households in the lowest income decile is 
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between 0.5 percent of household income to over 1.5 percent of household income. 
In contrast, the interquartile range for the higher deciles is extremely small.

VII.  Conclusions

In this paper, we present three empirical results, all stemming from the stylized 
fact that vehicle emissions are heterogeneous and highly right skewed. First, the 
sensitivity of a given vehicle’s miles traveled to gasoline prices is correlated with 
the vehicle’s emissions. Dirtier vehicles are more price responsive. This increases 
the size of the second-best optimal uniform gasoline tax by as much as 50 percent.

Second, uniform indirect taxes are an inefficient policy tool to reduce vehicle 
emissions. In this paper, we demonstrate this deficiency through our empirical 
example of motor vehicle emissions of criteria pollutants. The optimal policy would 

Figure 9. Distribution of Tax Burden by Household Income Deciles
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differentially tax vehicles based on their emissions, not on consumption of gasoline. 
While gasoline consumption and emissions are positively correlated, we show that 
gasoline taxes are a poor substitute for a true Pigouvian emissions tax. The remaining 
DWL under the second-best optimal gasoline tax exceeds 75 percent in the second 
half of our sample. Moreover, the reasons for this shortfall, primarily skewness of 
the externality distribution and marked differences by vehicle vintages, likely apply 
to other externalities. Although it comes as no surprise that an indirect tax fails to 
achieve the optimal result, the magnitude of that failure is striking.

Finally, we find that gasoline taxes are not only regressive, but are more 
regressive than a Pigouvian tax on emissions. Because the distribution of emissions 
is so strongly right skewed, with a small number of very high polluting vehicles 
contributing the bulk of total emissions, a uniform gasoline tax will tend to overtax 
relative to the social optimum, leaving the vast majority of vehicle owners paying 
more, and with the poorest households paying substantially more as a fraction of 
their income.
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