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The rebound effect is the phenomenon underlying the disproportionality between energy efficiency
improvements and observed energy savings. In road transport, the effect reveals the extent to which energy
savings from improved fuel efficiency are forgone due to additional car travel. We present a meta-analysis
of 74 primary studies containing 1120 estimates of the direct rebound effect in road transport to evaluate its
magnitude and identify its determinants. We find that the short-run rebound effect is, on average, about
10–12%, whereas the long-run effect about 26–29%. However, variation of estimates is large and can mainly
be explained by differences in the time horizon considered, the elasticity measure used, and the type of data
and econometric approach employed in primary studies. We also find that the rebound effect is declining
over time and that lower per capita incomes, higher gasoline prices and higher population density are
associated with larger rebound effects.
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1. Introduction

Road transport is responsible for important negative externalities,
including air pollution, emissions of greenhouse gases (GHG), noise
and traffic congestion. It accounted for more than 17% of global
energy-related GHG emissions in 2013, and is one of the few sectors
of economic activity where emissions are still increasing (IEA, 2015;
Sims et al., 2014). Road transport is also one of the major sources of
emissions of harmful air pollutants, such as nitrogen oxides and partic-
ulate matter, and is responsible for about half of the costs of premature
deaths and health problems caused by outdoor air pollution in OECD
countries (OECD, 2014; Parry et al., 2007). At the same time, road traffic
congestion is estimated to cost humanity billions of dollars annually
from time losses. In the more congested countries, these losses can
equal more than 1% of GDP (OECD/ECMT, 2007).

Governments use a wide array of policies to induce road users to in-
ternalise the external costs of their travel decisions, including both reg-
ulatory andmarket-based instruments.Motor fuel taxes are perhaps the
most frequently used instrument to this end, with varying levels of
stringency across countries. Motor vehicle taxes, including one-off and
recurrent taxes, are also used in many countries, while congestion pric-
ing has also been introduced in a number of cities (e.g. London, Milan,
Singapore and Stockholm). In addition, policymakers frequently rely
on regulatory approaches to address the external costs of road trans-
port. Fuel efficiency and CO2 emissions standards are among the most
popular regulatory instruments used to this end. However, GHG emis-
sions from transport have continued to rise since 2007, despite the in-
creased use of more fuel efficient vehicles (Sims et al., 2014).

This paper investigates an unintended consequence of fuel efficiency
improvements: the rebound effect. The rebound effect explains why en-
ergy efficiency improvements usually lead to less than proportional re-
ductions in energy consumption. It stems from the increased use of an
energy service (in this case, travel) following an improvement in effi-
ciency (Gillingham et al., 2016; Khazzoom, 1980). Increased efficiency
of a service effectively results in a lower (per unit) service price,
which can have direct and indirect effects. This study focuses only on
the direct rebound effect, which refers to changes in efficiency and use
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of a particular energy service.1 In road transport, the direct rebound ef-
fect implies that people respond to higher fuel efficiency by driving
more.

The rebound effect is at the core of the debate on the relative efficacy
of fuel efficiency standards in comparison with market-based instru-
ments. Although fuel efficiency standards are often established with
similar end-goals as price instruments, the intermediate effects of the
two policy approaches may, in fact, be the opposite (see also Parry
et al., 2014). A motor fuel tax increases the cost of driving per mile,
thereby reducing travel demand. In contrast, improved fuel efficiency
decreases the cost of driving permile, resulting in an increase in driving.
Induced travel from improvements in fuel efficiency has important
implications.2 First, it partially offsets expected energy savings. Second,
it contributes to mileage-related externalities, such as higher levels of
non-exhaust air pollution, noise and congestion (see also van Dender
and Crist, 2011). Thus, the rebound effect plays an important role in
the choice of the appropriate policy instrument, or combination of
instruments, to address road transport externalities.3

Earlier literature has shown that considering the change in travel
demand from an increase in fuel efficiency is the most straightforward
measure of the direct rebound effect in road transport (see e.g. Frondel
et al., 2008; Sorrell and Dimitropoulos, 2008). However, a farmore pop-
ular measure in the literature is the change in travel induced by a reduc-
tion in the cost of driving per distance unit (kilometre or mile). Many
empirical studies also resort on changes in travel from a reduction in
fuel prices to estimate the rebound effect in road transport. The last ap-
proach is usually followed due to difficulties in finding reliable data on
fuel efficiency or due to econometric concerns (Frondel et al., 2012).

Although there is a general consensus in the literature that the re-
bound effect exists in road transport, empirical estimates vary widely,
ranging fromnegative values (fuel efficiency improvements result in re-
duced travel) to greater than 100% (implying that improvements in fuel
efficiency increase fuel use – a phenomenon often denoted as backfire).
Indeed, Gillingham et al. (2016) note that estimates of the rebound ef-
fect show considerable variation, most likely caused by differences in
the definitions employed, and in the data and empirical methods used
by the authors. The literature still suffers from a lack of clear-cut defini-
tions and guidelines for measurement, sometimes even leading to sig-
nificantly different estimates of the rebound effect obtained from the
same data source (Gavankar and Geyer, 2010).

This paper presents ameta-analysis of 74 primary studiesmeasuring
the direct rebound effect in road transport in order to provide a useful
synthesis of past work. The scope of the analysis is narrowed as much
as possible to passenger transport, as elasticities in the commercial sec-
tor are influenced by different factors from the ones affecting elasticities
in passenger transport. Meta-regression analysis provides insights into
cross-country differences in the magnitude of the rebound effect by
considering factors such as differences in income, gasoline prices and
population density.

The rest of the paper is structured as follows. Section 2 provides
background on the theoretical and empirical literature related to the re-
boundeffect. Section 3 explainswhymeta-analysis is an appropriate ap-
proach to synthesise past empirical literature on the rebound effect in
road transport. Section 4 provides a statistical summary of the collected

empirical estimates, while Section 5 presents the results of the meta-
regression analysis. Section 6 concludes and discusses policy
implications.

2. Background

A phenomenon first suggested by Jevons (1865) and revisited by
Khazzoom (1980), the rebound effect is empirically measured as an
elasticity of demand. Letting e denote fuel efficiency, t travelled distance
(in kilometres or miles) and f the amount of fuel consumed (in litres or
gallons), note first the identity e= t/f.4 It can be shown that Eef = Eet − 1,
where E f

e ¼ ∂ f
∂e

e
f is the elasticity of fuel demand with respect to energy

efficiency and Ete ¼ ∂t
∂e

e
t is the elasticity of travel demandwith respect to

fuel efficiency (Sorrell and Dimitropoulos, 2008). If Eet is greater than
zero, Eef is lower in absolute terms than unity, implying that an increase
in fuel efficiencywill lead to a less than proportional reduction in fuel de-
mand. In fact, the elasticity of travel demand with respect to fuel efficiency
reflects exactly the deviation of this reduction from proportionality and
can, therefore, serve as a straightforward measure of the rebound effect
in road transport (see also Greene et al., 1999; Hymel et al., 2010;
Wheaton, 1982).

Considering, however, c as fuel cost per unit of travel (e.g. mile) and
p as fuel price, the identity c= p/e holds (Small and Van Dender, 2007).
Earlier literature has shown that under specific assumptions (further
explained below), the elasticity of travel demandwith respect to fuel ef-
ficiency is equal to the negative of the elasticity of travel demand with re-
spect to fuel costs per unit of travelled distance, Etc ¼ ∂t

∂c
c
t. As mentioned

above, the intermediate effect of an improvement in fuel efficiency is
to decrease the fuel cost of driving. Therefore, the elasticity with respect
to this cost is often used to empirically measure the rebound effect, al-
though perhaps in a less direct way than the elasticity with respect to
fuel efficiency (see, for example, Greene, 1992; Jones, 1993; Small and
Van Dender, 2007).

In addition, data on fuel efficiency are often less abundant, harder to
measure, or lacking in variation. This leads authors to exploitmore read-
ily available data on fuel prices. This has resulted in a third measure of
the rebound effect (see, for example, Frondel et al., 2012; Greene
et al., 1999; Munk-Nielsen, 2015): the negative of the elasticity of travel
demand with respect to fuel price, Etp ¼ ∂t

∂p
p
t :

For one to consider that these three elasticities are just different
measures of the same underlying phenomenon, a set of assumptions
must be made.5 A first assumption is that fuel costs is what ultimately
matters for consumers, and thus their response is identical if a certain
cost reduction stems from an increase in fuel efficiency or a reduction
in the fuel price. The second assumption is that fuel prices are exoge-
nously determined (see e.g. Sorrell and Dimitropoulos, 2008). Estimates
of the rebound effect based on the elasticity with respect to fuel price
further require that fuel efficiency is held constant (see e.g. Frondel
et al., 2012). Still, if empirical interest lies in the effect of changes in
fuel efficiency, this last assumption may seem counterintuitive.

The empirical literature provides mixed evidence of the equivalence
of these three definitions. Some papers find no statistical difference be-
tween any of the above elasticities, indicating that any definition pro-
vides a valid estimate of the rebound effect (e.g. Frondel et al., 2008;
Frondel and Vance, 2014). Greene et al. (1999) conclude that the data1 One can also consider the indirect rebound effect, where a change in the price of an en-

ergy service results in changes in the demand for other goods and services (Sorrell and
Dimitropoulos, 2008). For a more general typology of rebound effect definitions, see
Gillingham et al. (2016).

2 In this paper, the term induced travel is used to denote increases in travel demand
stemming from improvements in fuel efficiency. The use of the term should not be con-
fused with induced travel from road capacity expansions (cf. e.g. Cervero and Hansen;
Hymel et al., 2010).

3 When estimating the impacts of fuel efficiency standards, policymakers often take re-
bound effects and their implications into consideration. Even in that case, however, the
relative economic efficiency of fuel efficiency standards compared to price instruments
is undermined by rebound effects.

4 The terms fuel efficiency and fuel economy (i.e. the ratio of travelled distance to the
amount of fuel consumed by the vehicle to cover this distance – e.g. miles per gallon,
kilometres per litre) are used interchangeably in this paper. In some countries, efficiency
is measured by the inverse of this ratio, usually termed fuel consumption or fuel intensity
(e.g. litres per 100 km). However, following themajority of the empirical literature on the
rebound effect, we focus on fuel economy, as it provides a more direct measure of the
amount of energy input required to maintain a specific level of an energy service.

5 While the elasticities of travel with respect to cost and fuel price are expected to be
negative, the elasticity with respect to fuel efficiency should, at least theoretically, be
positive.
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generally do not contradict the hypothesis that consumers respond
symmetrically to proportionate changes in fuel price and fuel efficiency.
However, others (e.g. De Borger et al., 2016; Greene, 2012; Hymel and
Small, 2015)find that reductions in fuel price have amuch larger impact
on travel demand than increases in fuel efficiency. On the other hand,
Linn (2016) finds that the estimated elasticitywith respect to fuel econ-
omy is systematically larger in absolute terms than the onewith respect
to fuel price: however, in his empirical setup the formerwould better be
viewed as a long-run elasticity, whereas the latter as a short-run one.

A fourth elasticity suggested by the literature as an upper bound
measure of the rebound effect is the elasticity of fuel consumption with
respect to fuel price (e.g. Sorrell and Dimitropoulos, 2008; Sorrell
et al., 2009). This measure does not fall within the scope of this meta-
analysis, as we were concerned that it may provide inflated estimates
of the rebound effect, and as a number of comprehensive reviews and
meta-analyses have already focused on it (see e.g. Brons et al., 2008;
Espey, 1998).

To the best of our knowledge, nometa-analysis of elasticities of travel
demand has been conducted to provide insights into the magnitude and
determinants of the rebound effect. Previous comprehensive reviews of
the rebound effect literature had amuchwider scope than road transport
and did not provide a formal statistical analysis of rebound effect esti-
mates (Greening et al., 2000; Sorrell et al., 2009). At the same time,
existing meta-analyses and surveys of road transport elasticities did
not explicitly focus on the rebound effect andwere thereforemainly con-
cerned with different elasticities from the ones of interest here (Brons
et al., 2008; Goodwin et al., 2004; Graham and Glaister, 2004).

Both streams of studies also date back to a time when much fewer
primary studies were conducted in this area. In particular, more than
two-thirds of the estimates included in our meta-analysis are derived
from studies published after 2008. Given that both economic and envi-
ronmental conditions have changed considerably over the past decades
and that the theoretical understanding of the rebound effect and
econometric techniques have advanced, a fresh look at the rebound ef-
fect literature is warranted.

It is useful, however, to provide an overview of these important
earlier contributions to the literature. Greening et al. (2000) survey
relevant studies from the United States and conclude that the magni-
tude of the rebound effect is low to moderate. Their survey investigates
the rebound effect in different sectors and takes also into account
indirect and economy-wide effects. In contrast, the review of Sorrell
et al. (2009) focuses on the direct rebound effect in energy services in
the household sector. The scope of services considered in their review
is not limited to passenger transport; it extends to heating, cooling
and other household services. The review encompasses 17 studies on
passenger transport which allows Sorrell et al. (2009) to conclude that
the long-run direct rebound effect is between 10 and 30%. They also
classify studies according to the type of data used (cross-sectional and
time series vs. panel) and their level of aggregation (aggregate vs.
household survey data). They caution that estimates based on disaggre-
gate data and ones based on cross-sectional or time series variation in
energy prices may overestimate the rebound effect. They also express
scepticism about the validity of the assumption underlying the equiva-
lence of the three rebound effect measures presented earlier, i.e. that
consumer responses to fuel price changes are symmetric to responses
to fuel efficiency changes.

Other relevant reviews and meta-analyses include Brons et al.
(2008) and parallel blind studies from Goodwin et al. (2004) and
Graham and Glaister (2004). Brons et al. (2008) perform a meta-
analysis of the price elasticity of gasoline demand using a Seemingly
Unrelated Regression (SUR) approach with cross-equation restrictions.
Their meta-analysis also collects 13 estimates of travel demand (either
aggregate or per car) with respect to fuel price which are used in the
estimation of their systemof equations. The elasticity of aggregate travel
demand with respect to fuel price is, on average, 0.03 in the short run
(opposite sign than expected) and −0.32 in the long run.

Goodwin et al. (2004) provide a review of elasticities of fuel con-
sumption, road traffic and vehicle stock, with respect to price and in-
come (see also Hanly et al., 2002). Their review draws on 69 studies
from the UK, or other countries broadly comparable to the UK, which
inter alia provide about 20 estimates of the elasticity of travel demand
with respect to fuel price. They distinguish between estimates from dy-
namic and static regression models, and between models using aggre-
gate versus vehicle-level data. They find that the elasticity of travel
demand with respect to fuel price is, on average, about −0.1 in the
short-run and −0.3 in the long-run when the model is dynamic.
When the model is static, however, average estimates range from
−0.27 to−0.69 depending on the type of data and level of aggregation
used. Graham and Glaister (2002, 2004) also focus on demand elastici-
ties for fuel and road traffic, but extend the scope of their review to
other countries. Again, one of the most significant differences in esti-
mates comes from long-run versus short-run elasticities. They find
that the elasticity of travel demandwith respect to fuel price is, on aver-
age, −0.15 in the short run and −0.31 in the long run.

The type of data used to estimate the rebound effect varies substan-
tially across empirical studies. To some extent, this is associated with
the elasticitymeasure(s) adopted in each of them.Most studies estimat-
ing the rebound effect based on fuel efficiency do not rely on aggregate
data to estimate the elasticity of interest, as variation in fuel efficiency
is usually insufficient. In contrast, they mostly use disaggregate data
and exploit variation in travelled distances and fuel efficiency across ve-
hicles. Authors usually consider published or on-road corrected fuel ef-
ficiency ratings for each vehicle, or an average rating for a household
with multiple vehicles. Many studies estimating the rebound effect
based on fuel efficiency also include fuel price as a control variable,
thus providing away to directly compare themagnitude of the elasticity
with respect to fuel efficiency with the one of the elasticity with respect
to fuel price.

Studies considering the elasticity with respect to fuel costs per unit of
travelled distance or the one with respect to fuel price are relatively di-
verse. Some of the studies using the former elasticity measure use
panels of microdata, but the majority utilise aggregate time series or
panel data (e.g. at the national or state level). Fuel costs per unit of trav-
elled distance are usually calculated by the authors, combining data on
fuel prices with data on average fleet fuel efficiency, or with data on fuel
demand and travel demand.6 Studies estimating the elasticity of travel
demand with respect to fuel price largely rely on panel data to utilise
variation in fuel prices over space and time.

Another important difference between studies lies in the treatment
of the potential endogeneity of the independent variable of interest.
On this issue, an influential study in the rebound effect literature is
Small and van Dender (2007), which focuses on the elasticity of vehicle
miles travelled (VMT) with respect to fuel cost permile. Their approach
considers that VMT, number of vehicles and fuel efficiency are simulta-
neously determined. This accounts for endogenous changes in fuel effi-
ciency, and therefore provides a more reliable estimate of the rebound
effect. Other approaches to treating the potential endogeneity of fuel ef-
ficiency are presented in e.g. De Borger et al. (2016) and Linn (2016).
However, many studies seem to completely neglect this potential
source of bias in elasticity estimates.

Estimates of the rebound effect may also be influenced by the
treatment of the relationship between fuel efficiency and other car attri-
butes. For example, it is likely that fuel efficiency is positively correlated
with capital (car purchase) costs. Failing to control for changes in capital
costs following fuel efficiency improvements can lead to an overestima-
tion of the rebound effect (see also Sorrell and Dimitropoulos, 2008).

6 Some studies using aggregate data on travel demandnote thepossible caveat of signif-
icant measurement error. This is the case particularly regarding US data on vehicle miles
travelled, as they are generally reported independently by each state, and often different
states have different methodologies for measurement and aggregation (see e.g. Small
and Van Dender, 2007).
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Similarly, more fuel efficient carsmay have characteristics less desirable
for consumers, such as being smaller or less comfortable, having less
horsepower, or lower safety ratings (see also West et al., 2015).7

Such differences may have an impact on the magnitude of the rebound
effect.

3. Meta-analysis

Given the diversity in definitions, data and methodological ap-
proaches used to estimate the rebound effect in road transport, we con-
duct a meta-analysis of relevant empirical studies. Meta-analysis is a
rigorous statistical approach to synthesise thefindings of a narrowly de-
fined collection of primary empirical studies (Glass, 1976). Even though
originating frommedical research, the approach has become popular in
economics and other social sciences in the last decades. Meta-analysis
has been widely applied to energy economics (see e.g. Brons et al.,
2008; Espey, 1998; Havranek and Kokes, 2015; Liu and Shumway,
2016). This is, to the best of our knowledge, the first meta-analysis con-
ducted on the rebound effect in road transport.

Generally, there are at least three purposes that can be served by a
meta-analysis. First, to summarise existing empirical evidence with a
view to provide valid estimates of the underlying effect size (here, the
magnitude of the rebound effect); second, to pinpoint the sources of
heterogeneity in estimates of the effect size across studies; and third,
to provide an empirical framework suitable for making predictions of
the effect of interest in other contexts (Nelson and Kennedy, 2009). It
is especially the last two goals that account for economists' appreciation
ofmeta-regression analysis, which uses econometric methods to synthe-
sise the empirical results of previous studies (see e.g. Stanley and Jarrell,
1989; Weitzman and Kruse, 1990). In the meta-regression, each pri-
mary study estimate of the effect size of interest is a unique observation.
An empirical model is then developed to estimate the impact of contex-
tual andmethodological characteristics of primary studies on effect size
estimates. Primary study characteristics are usually modelled with the
help of dummy variables.

Themeta-regression analysis presented in Section 5 of this paper fo-
cuses on disentangling the determinants of heterogeneity in rebound
effect estimates. The econometric models constructed for the meta-
regression analysis investigate how: (i) differences in the elasticity
measure used to compute the rebound effect, (ii) differences in primary
study design, methodology and data, and (iii) differences in time- and
country-specific factors (gasoline prices, GDP per capita and population
density) influence rebound effect estimates.

Three main statistical challenges arise when conducting a meta-
analysis: sample heterogeneity, heteroskedasticity of effect-size
variances and correlation between effect size estimates (Nelson and
Kennedy, 2009). Heterogeneity in primary studies and rebound effect
estimates can be controlled for by introducing explanatory variables
capturing differences in the design and methodology of the study in
themeta-regression analysis. Heteroskedasticity of effect-size variances
can be treated by using heteroskedasticity-robust variance-covariance
estimators and by weighting each primary estimate by the inverse of
its variance to give more reliable estimates greater weight.8 Correlation
between estimates may stem from the use of multiple estimates

from each study. In addition, estimates could be correlated across
papers with the same authors, or even across studies with different
authors but with the same data source (which is often the case for US
estimates). Several techniques can be used to treat this problem. One
possible solution is to take only one estimate fromeachpaper. However,
this is often undesirable due to the resulting small sample size and the
frequent absence of clear benchmarks allowing the identification of
the preferred estimate from each study. Another way to address this
problem is to test the robustness of thefindings using a variety of econo-
metric methods, ranging from generalised least squares to panel data
techniques. In what follows, our analysis mainly focuses on a subset of
255 preferred estimates (see the following section for details on how
these estimates were identified). We also use panel data empirical
methods to address remaining concerns over correlation among
estimates.

Another possible concernwhen conducting ameta-analysis is publi-
cation bias. Publication bias signifies the idea that journals tend to fa-
vour statistically and economically significant results which are
consistent with economic theory (Stanley and Jarrell, 1989; Stanley
and Doucouliagos, 2012, pp. 51–79). This implies that a meta-analysis
which relies only on studies published in academic journals is likely to
overestimate themagnitude of the effect of interest. A first step towards
addressing the potential issue of publication bias is to collect estimates
from other sources, such as discussion papers, manuscripts, or
conference presentations (Nelson and Kennedy, 2009). About 20% of
the estimates used in thismeta-analysis (15% for the subset of preferred
estimates) are derived from sources other than academic journals,
including book chapters, PhD theses, and working and conference
papers.

4. Descriptive analysis

In general, it is crucial for ameta-analysis to be aswide-reaching and
inclusive as possible in the collection of primary studies in order to
strengthen the robustness of the regression results and avoid potential
biases. Therefore, this meta-analysis aimed to collect as many studies
of the rebound effect in passenger transport as possible, including arti-
cles published in academic journals and books, as well as discussion,
working and conference papers, and policy reports.

As a starting point, widely cited papers, prior narrative reviews and
surveys of existing literaturewere consulted; this allowed identification
of other important pieces of work on the topic. This step was followed
by an online database search of ScienceDirect, EconLit, Wiley,
IngentaConnect, Google Scholar, JSTOR, and NBER, as well as a detailed
search for papers from conferences of relevant associations of econo-
mists (AERE, EAERE, IAEE, ITEA). Additionally, a search of relevant policy
reports was made in the websites of ministries of environment, energy,
and transport and environmental protection agencies of several coun-
tries. Individual researchers and national experts were also contacted
on an ad hoc basis to widen the scope of the search.

Initially, more than 100 studies were collected. However, in order to
be included in thismeta- analysis, studiesmust conduct an econometric
analysis to estimate oneof the elasticities presented in Section 2. Studies
focusing on freight transport were not further considered, as elasticities
in the transport of goods are influenced by different factors from the
ones affecting elasticities in passenger transport. In the end, our data-
base contains 1120 estimates from 74 studies.9 The top and bottomper-
centile of these estimates was not included in the empirical analysis, as
their magnitude was considered implausible. The complete list of stud-
ies used in the analysis can be found in Table A.I of Appendix A.

7 Improved fuel efficiency neednot always benegatively correlatedwith other technical
attributes. For example, diesel cars tend to be more fuel efficient (despite emitting higher
levels of NOx and particulate matter) than their gasoline counterparts, often without sig-
nificant differences in other vehicle attributes valued by consumers (e.g. safety, reliability,
comfort, performance). Similarly, in recent years, much progress has beenmade in the de-
sign of hybrid cars; today, many car manufacturers offer the samemodel in both gasoline
and hybrid variants, with few – sometimes hardly noticeable – physical or aesthetic differ-
ences between the two. However, diesel and hybrid variants are usually more expensive
than their gasoline counterparts, an example of how increases in fuel efficiency entail in-
creases in capital costs.

8 Alternatively, e.g. in case ofmissing standard errors, estimates can be weighted by the
sample size of the primary study (see e.g. Nelson and Kennedy, 2009).

9 We collected all estimates of elasticities of travel demand with respect to fuel effi-
ciency, fuel costs and fuel price, regardless of whether they were explicitly denoted as es-
timates of the rebound effect. Apart from leading to a larger sample size, this approach is
also less likely to suffer from publication bias.
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Summary statistics of rebound effect estimates by elasticitymeasure
and primary study are presented in Tables A.II to A.IV in Appendix A. The
tables also present the country and time period on which estimates are
based. The number of estimates derived per study ranges from 1 to 89,
with a median of 10 estimates. Some studies produce estimates for
more than one elasticity measure or more than one country. Estimates
are concentrated on a relatively small number of countries: Australia,
Canada, China, India, Israel, Japan, the United States and several
European countries. The majority of estimates are for the United
States (about 64%), while a relatively large number of estimates are
also available for the United Kingdom (8.8%), Denmark (8.5%) and
Germany (5.4%).

The last columns of Tables A.II to A.IV present summary statistics by
study for a set of preferred estimates, which have been identified as fol-
lows. The full database contains inter alia estimates for certain popula-
tion groups (e.g. by income or by annual distance travelled) or for
different regions within a country, as well as estimates from models
which have been shown to lead to inconsistent or inferior estimates in
the primary studies (e.g. models which do not account for the
endogeneity of an independent variable while they should have, or
models whose underlying assumptions are rejected by a formal test).
To ensure that we provide a summary of themost reliable empirical ev-
idence, we construct a smaller database that contains only the subset of
estimates which: (i) stem from model specifications identified as the
preferred ones by the authors of primary studies, or from the most rig-
orous model specifications; and (ii) refer to the least possible extent to
population subgroups that introduce additional sources of heterogene-
ity that are difficult to account for in a meta-regression framework.10

This database contains 255 preferred estimates of the rebound effect
which are used in the statistical analysis of this section and the meta-
regression analysis of Section 5. Summary statistics and meta-
regression results for the full sample of 1120 estimates are presented
in Appendix B.

Fig. 1 depicts the kernel density of the preferred estimates of the
rebound effect separately for the three elasticity measures. The
distribution is skewed to the right regardless of the elasticity measure
under consideration. Estimates of the elasticity with respect to fuel
costs (long-dashed line) show lower dispersion and are much more
concentrated in the interval between 0 and 20% than estimates of the
other two measures.11 Estimates of the elasticity with respect to fuel
efficiency (solid line) seem to peak at a very similarmagnitude of the re-
bound effect with estimates of the elasticity with respect to fuel costs.
Estimates of the elasticity with respect to fuel price (short-dashed
line) peak at a somewhat greater magnitude and show the highest
dispersion.

Table I presents the corresponding summary statistics by elasticity
measure (see Table B.I in Appendix B for a similar analysis for the full
sample). The unweighted mean of estimates of the elasticity with re-
spect to fuel efficiency (see third column) is 24%. Estimates based on
the elasticity of travel with respect to fuel costs are slightly lower
(around 23%), whereas estimates relying on the elasticity of travel
with respect to fuel price are higher, close to 30%. However, the rela-
tively high standard deviations of rebound effect estimates unveil con-
siderable variation, even among estimates using the same elasticity
measure. While unweighted statistics may provide a general idea of
the magnitude of the rebound effect, they should be interpreted with
great caution, as they neither account for the heterogeneity of estimates
nor for the precision with which effects are estimated.

A remedy to the second issue is to consider averages whereby each
estimate is weighted by a measure of its precision. Columns 6–8 of
Table I present summary statistics of estimates weighted by the size of
the sample used in the primary study. This is to take into account that,
ceteris paribus, studies with a larger sample size tend to produce
more precise results.12Weighting each estimate by ameasure of its pre-
cision also helps to deal with the issue of heteroskedasticity mentioned
in the previous section (Nelson and Kennedy, 2009).

Summary statistics based on weighted estimates imply noticeably
lower values of the rebound effect than those based on unweighted es-
timates. The divergence between unweighted and weighted estimates
is particularly acute when focusing on the elasticities with respect to
fuel efficiency and fuel price. The elasticitywith respect to fuel efficiency
now provides the most conservative estimate of the average rebound
effect among the three measures, at about 9%. The weighted average
of the elasticity with respect to fuel price is about 17%, about 56% of its
unweighted value, while the weighted average of the elasticity with re-
spect to fuel costs is also about 10% lower than its unweighted counter-
part. One could be inclined to conclude that less precise estimates tend
to inflate the magnitude of the rebound effect, but this probably ex-
plains only partially the divergence observed here. Another cause of
this divergence lies in the heterogeneity of estimates. In particular,
weighted statistics may place more emphasis on certain types of de-
mand response times (e.g. short-run estimates), as the latter may be es-
timated with larger sample sizes.

It is, thus, useful to draw an important distinction between estimates
referring to different demand response times. Short- and long-run
estimates usually stem from dynamic models; i.e. econometric
specifications in primary studies include at least one lagged value of
the dependent variable in the set of explanatory variables. In few
cases, estimates are explicitly designated as short- or long-run by the
authors of the primary study, despite the absence of a dynamic model
in the empirical analysis. In these cases, we follow the classification pro-
vided by the authors. Short-run estimates refer to drivers' responses in
the first period (usually a year) following the fuel efficiency improve-
ment. In contrast, long-run estimates take into account the time
required by consumers to change their capital stock, i.e. to change10 A number of studies provide only estimates for different population subgroups (e.g.

studies based on quantile regression analyses). In those cases, we include all the relevant
estimates in themeta-analysis. For studies providing estimates for different elasticitymea-
sures and/or different response times (e.g. both short- and long-run), we take into consid-
eration at least one estimate per measure and type of response time.
11 Note that figures and tables present estimates in proportions, whereas the interpreta-
tion of the results is made in percentage terms, as is common in the literature on the re-
bound effect.
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Fig. 1. Distribution of estimates of the rebound effect by elasticity measure.
Note: Sample of 255 preferred estimates. The figure illustrates the distribution of 57
estimates of the elasticity with respect to fuel efficiency, 116 estimates of the elasticity
with respect to fuel costs and 82 estimates of the elasticity with respect to fuel price.

12 Typically, the preferred measure of precision is the variance of each estimate. In this
meta-analysis, however, the standard error was not provided and could not be retrieved
for a significant portion of the estimates. Following standard practice in the field (see
e.g. Nelson and Kennedy, 2009), each rebound effect estimate was instead weighted by
the sample size used in the primary study.
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vehicles.13 However, not all studies use dynamicmodels to estimate the
elasticities of interest or explicitly define the demand response time.
These “unspecified response time” estimates are treated with different
approaches in related meta-analyses and reviews, such as e.g. those of
gasoline price and income elasticities (see e.g. Brons et al., 2008;
Espey, 1998). In our analysis, such estimates are reported separately
from short- and long-run estimates.

Fig. 2 depicts the distribution of rebound effect estimates by response
time. Short-run estimates are concentrated around a rebound effect value
slightly lower than 10% and are much less dispersed than long-run esti-
mates and estimates with unspecified response time. In contrast, long-
run estimates peak above 20%, pointing to a stronger demand response.
Estimates with unspecified response time show the largest dispersion,
reflecting the diversity of methods and data used to estimate them.

Table II presents the corresponding summary statistics of
rebound effect estimates by demand response time (see Table B.II in
Appendix B for a similar analysis for the full sample). The table reveals
a significant divergence between short-run estimates and the other
two categories. The weighted average of the estimates implies that the
short-run rebound effect is in the area of 10–12%. Theweighted average
of the estimates of themost directmeasure of the rebound effect, i.e. the
elasticity with respect to fuel efficiency, point to a value closer to 12%,
but the number of estimates is probably too small to rely on this figure.
Instead, estimates of the short-run elasticities with respect to fuel costs
and fuel price point to a rebound effect of 10%.

As long-run estimates take into account the time required by con-
sumers to change their vehicle stock, they are particularly useful for pol-
icies aiming to increase the fuel efficiency of new cars. Weighted
averages of long-run estimates are substantially higher than those of
short-run ones, revealing a long-run rebound effect in the area of 26–
29%. Once again, the small number of estimates of the elasticity with re-
spect to fuel efficiency does not allow us to conclude that the long-run
effect is necessarily on the high side of that interval. Estimates of elastic-
ities with unspecified response time show mixed results. In the case of
the elasticity with respect to fuel efficiency, they seem to reflect a
short-term demand response, whereas estimates of the other two elas-
ticities point to a long-term one. This is perhaps related to the sources of
variation used in primary static models to estimate the elasticities of
interest.14

5. Meta-regression analysis

Summary statistics of empirical evidence are informative, but
another objective of this meta-analysis is to unravel the sources of var-
iation in rebound effect estimates. The large standard deviations pre-
sented in Table I indicate a high degree of heterogeneity in elasticity
estimates. Several sources of heterogeneity among primary studies
have been identified in the relevant literature (see e.g. Gillingham
et al., 2016; Greening et al., 2000; Sorrell and Dimitropoulos, 2008).
Differences in the geographical and time coverage of the study are com-
mon suspect causes of heterogeneity. Heterogeneity can also exist,
however, due to differences in the type of data used (e.g. cross-
sectional, time series or panel; disaggregate or aggregated) or in the
quality of data: some datasets are more prone to measurement error
than others.15 Othermethodological differencesmay be present, includ-
ing differences in the econometric technique deployed, the control var-
iables included in primary studies' empiricalmodels, or the treatment of
endogenously determined variables.

Our meta-regression analysis is based on the following econometric
model:

Ri ¼ α þ β1Ti þ β2Mi þ β3Xi þ β4Ci þ β5Yi þ εi ð1Þ

where R denotes the rebound effect estimate from the primary study, T
is a vector of dummy variables reflecting the demand response time
(short-run, long-run, unspecified), and M is a vector of dummy

13 For the purposes of this meta-analysis, estimates defined in a primary study as
medium-run (Gillingham, 2014) are reclassified as long-run elasticities, as it seems likely
that individuals can change vehicleswithin a two-year timeframe. Hanly et al. (2002) out-
line threemainways individuals can adapt to increases in the cost of driving: (i) changing
driving styles (e.g. less heavy acceleration and braking); (ii) shifting the pattern of jour-
neys such that more of them occur in fuel-efficient contexts (e.g. light traffic at moderate
speeds); and (iii) shifting to more fuel-efficient vehicles. While (i) and (ii) can be enacted
in the short run, changing vehicles can only occur in the long run. As individuals have the
flexibility to choose the fuel efficiency of their vehicle, onewould indeed expect greater in-
creases in travel demand in the long run.
14 In Table B.III of Appendix B, we comparemeans of rebound effect estimates published
in academic journals with means of estimates extracted from other sources (e.g. book
chapters, conference and working papers and PhD theses). Comparisons are made by de-
mand response time and are based on both unweighted andweightedmeans. The analysis
of the subset of 255 preferred estimates shows that estimates extracted fromother sources
are generally of larger magnitude. However, differences are not statistically significant,
with one exception: the weighted mean of estimates with unspecified response time is
about 8 percentage points lower in studies published in academic journals.

0

1

2

3

4

5

D
e
n

s
it
y

-.4 -.2 0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8

Rebound effect estimates

Long-run estimate Short-run estimate Unspecified response time

Fig. 2. Distribution of estimates of the rebound effect by time of response.
Note: Sample of 255 preferred estimates. The figure illustrates the distribution of 64
estimates of long-run elasticities, 70 estimates of short-run elasticities, and 121
estimates of elasticities with unspecified response time.

15 For example, Weber and Farsi (2014) compare data for Switzerland. In one of their
models, they use data on self-reported travel for a reference day to project annual vehicle
kilometres travelled, while in another they use very accurate GIS travel data. They find a
very weak correlation of 0.2 between the two measures of distance travelled, indicating
that there may be significant differences between self-reported and rigorously measured
travel data.

Table I
Summary statistics of empirical estimates of the rebound effect in road transport.

Rebound effect definition Observations Unweighted Weighted

Mean Median Std. dev. Mean Median Std. dev.

Elasticity w.r.t. fuel efficiency 57 0.243 0.172 0.261 0.091 0.023 0.121
Elasticity w.r.t. fuel costs 116 0.227 0.166 0.218 0.207 0.097 0.151
Elasticity w.r.t. fuel price 82 0.299 0.229 0.266 0.166 0.099 0.131

Note: Sample of 255 preferred estimates. For elasticities with respect to fuel costs and fuel price, the table presents the negative of the estimates derived from the primary study. To
compute the weighted statistics, each estimate is weighted by the size of the sample used in the primary study.
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variables indicating the elasticity measure estimated in the primary
study (see Section 2 for definitions of the elasticity measures used in
this paper). The vector of variables X contains elements related to vari-
ous study characteristics (e.g. type of data and econometric technique
used), and vector C denotes specific macro-level variables affecting
the rebound effect in the country and time period analysed in the pri-
mary study, such as income, gasoline prices and population density.
Vector Y controls for global time trends that may have an impact on
the rebound effect estimate. Parameter α and (vectors of) parameters
β(.) are to estimated, and ε is the error term of the model.

Table III presents the definition and summary statistics of the
explanatory variables used in the meta-regression analysis, while
Table IV presents the results of fourmeta-regressionmodels. In addition
to a simple OLS specification, provided for comparison purposes,
Table IV shows the results of a weighted least squares (WLS) model,
where variables are weighted by the sample size used in the primary
study.16

The last two columns of Table IV present results from the estimation
of fixed and random effects panel data models. These models assume
that each group of primary studies provides a panel of rebound effect es-
timates. Two studies are assigned to the same group if they use the same
dataset or a similar dataset from the same source, and share at least one
co-author.17 On the basis of this criterion, 58 groups of studies have
been constructed. Panel datamethods canmore effectively take into ac-
count thepotential correlation of estimates coming from the same study
or group of studies (see also Nelson and Kennedy, 2009) than methods
which do not explicitly account for multiple sampling. The panel data
equivalent of Eq. (1) is as follows:

Rjk ¼ γ j þ δ1Tjk þ δ2Mjk þ δ3Xjk þ δ4Cjk þ δ5Yjk þ ujk ð2Þ

where Rjk denotes the kth rebound effect estimate from group of studies
j. The group-specific parameter γ and (vectors of) parameters δ(.) are to
be estimated. The error term of the model is denoted by u.

For readers interested in the meta-regression analysis of the full
sample of 1120 estimates, the relevant summary statistics and meta-
regression results are presented in Tables B.IV and B.V (Appendix B)
respectively. Those results are in the same direction, and for most vari-
ables of similar magnitude, to the ones presented in this section.

Our empirical results are discussed in the context of theWLS and the
panel data models: between the fixed- and the random-effects

specification,we have a preference for fixed-effects, as the results of sta-
tistical tests reveal that the assumptions underlying the random-effects
model are not adequately supported by empirical outcomes.

A first important assumption that was interesting to test waswhether
long-run estimates are systematically different from short-run ones and
from those with an unspecified response time. The results of our econo-
metric models reveal that short-run estimates of the rebound effect, as
well as those with an unspecified response time, are consistently and sig-
nificantly lower than long-run ones (reference category). Furthermore,
estimates with an unspecified response time are statistically indistin-
guishable from short-run ones. The magnitude of the difference between
long-run and short-run estimates slightly exceeds 18 percentage points,
while the one between long-run estimates and estimateswith an unspec-
ified response time is slightly smaller.

Section 2 discussed the various definitions of the rebound effect and
the assumptions underlying their use. As alreadymentioned, the empir-
ical literature has not reached a consensus on how the estimated mag-
nitude of the rebound effect varies with the elasticity measure used in
the primary study. Our meta-regression results provide evidence that
the elasticities of travel demand with respect to fuel costs and fuel
price result in higher estimates than the elasticity with respect to fuel
efficiency (reference category), even though the statistical and eco-
nomic importance of the finding varies across specifications. On the
one hand, WLS results imply that the former two elasticities result in a
remarkable overestimation of the rebound effect by 30 percentage
points. On the other hand, the panel datamodels do not provide equally
worrisome evidence: for example, the fixed-effects model shows that
estimates of the elasticity with respect to fuel costs are about 8 percent-
age points higher than estimates of the elasticity with respect to fuel ef-
ficiency. Despite the point estimate of the coefficient of the elasticity
with respect to fuel price being higher than that of the elasticitywith re-
spect to fuel costs across specifications, the two coefficients are not dif-
ferent from each other in statistical terms. The empirical evidence does
not alleviate concerns over the validity and implications of the assump-
tions underlying the theoretical equivalence of the three definitions, so
the most direct measure of the rebound effect – the elasticity of travel
demand with respect to fuel efficiency – should be preferred to other
measures whenever this is possible.

Similar to meta-analyses of gasoline price elasticity (e.g. Brons et al.,
2008; Espey, 1998), our models also test for differences in rebound ef-
fect estimates between studies using different types of data. Earlier
studies found, for example, that cross-sectional data tended to inflate
the gasoline price elasticity. Our empirical findings do not lead to similar
conclusions: when the level of data aggregation (aggregate data vs.
microdata) is controlled for, cross-sectional and time series data are
associated with lower estimates of the rebound effect than estimates
from models using panel or cross-sectional time-series data (reference
category). Differences are not statistically significant in the panel data
models, but are sizeable and significant in the WLS model.

The use of microdata, mainly stemming from household surveys, is
associated with higher estimates of the rebound effect, especially
when data cover relatively short time periods. The large effect on esti-
mates could possibly be attributed to an assumption commonly made
in empirical studies using microdata. This assumption is that vehicle
fuel economy is uncorrelated with other vehicle and household charac-
teristics (Linn, 2016). For example, econometric models in primary
studies may fail to control for vehicle attributes like vintage which are
correlated with fuel efficiency. These studies may overestimate the re-
bound effect, as they will attribute the effect of e.g. driving a newer,
and thus more comfortable, car on VMT to improved fuel efficiency. Re-
bound effects are overestimated especially when data cover relatively
short time periods which leave little room to fuel efficiency and fuel
prices to vary significantly. The WLS model shows that each additional
year of data is associated with a 4.9 percentage-point reduction in the
estimatedmagnitude of the rebound effect, while the rest of themodels
point to a substantially smaller effect.

16 The sample size used for the estimation of different models often varies within pri-
mary studies.
17 An exception to this definition is Jones (1993), which is grouped togetherwith Greene
(1992, 2012), as it extends the analysis of Greene (1992).

Table II
Summary statistics of estimates by time horizon and elasticity measure.

No. of
estimates

Unweighted
mean

Weighted
mean

Min Max

Elasticity w.r.t. fuel efficiency
Short-run 5 0.154 0.116 −0.032 0.684
Long-run 6 0.351 0.291 −0.143 1.152
Unspecified 46 0.238 0.072 −0.203 0.953

Elasticity w.r.t. fuel costs
Short-run 47 0.103 0.097 −0.040 0.360
Long-run 45 0.311 0.256 0.040 0.994
Unspecified 24 0.313 0.411 0.065 1.220

Elasticity w.r.t. fuel price
Short-run 18 0.145 0.099 −0.108 0.476
Long-run 13 0.345 0.283 0.128 0.801
Unspecified 51 0.342 0.338 0.035 1.686

Note: Sample of 255 preferred estimates. For elasticities with respect to fuel costs and fuel
price, the table presents the negative of the estimates derived from the primary study. Esti-
mates defined in the primary study as medium-run are considered here as long-run elastic-
ities. To compute the weighted mean, each estimate is weighted by the size of the sample
used in the primary study.
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Several studies estimate empirical models at the vehicle level. These
models could underestimate the magnitude of the rebound effect, be-
cause they do not consider that the elasticity of car ownership with

respect to fuel efficiency is likely to be positive. Put differently, higher
fuel efficiency induces the ownership and use of more cars, as driving
becomes cheaper. The kilometres driven in these extra cars will be

Table III
Description and summary statistics for the variables used in the meta-regression analysis.

Explanatory variable Description Observations Mean Std. dev. Min Max

Short-run estimate =1, if estimate refers to the short run (usually 1 time period);
=0, otherwise.

255 0.275 – 0 1

Unspecified response time =1, if estimate cannot be classified as short- or long-run;
=0, otherwise.

255 0.475 – 0 1

Elasticity w.r.t. fuel costs =1, if estimate of elasticity w.r.t. fuel costs in primary study;
=0, otherwise.

255 0.455 – 0 1

Elasticity w.r.t. fuel price =1, if estimate of elasticity w.r.t. fuel price in primary study;
=0, otherwise.

255 0.322 – 0 1

Cross-sectional data =1, if primary data are cross-sectional;
=0, otherwise.

255 0.298 – 0 1

Time series data =1, if primary data are time series;
=0, otherwise.

255 0.153 – 0 1

Microdata =1, if primary study uses micro-level (e.g. survey) data;
=0, otherwise.

255 0.604 – 0 1

Length of period covered by
the data

Length of time period covered by the data used in the primary study (in years). 255 15.592 15.093 1 45

Empirical model at the
vehicle level

=1, if econometric model is developed at the vehicle level;
=0, if model at the household level or on aggregate data.

255 0.451 – 0 1

Vehicle capital costs =1, if vehicle capital costs taken into account in empirical model;
=0, otherwise.

255 0.306 – 0 1

Single car =1, if elasticity estimate is specific to households with one car;
=0, otherwise.

255 0.157 – 0 1

Country-specific =1, if estimates are based on an analysis for a single country;
=0, if estimates are based on a cross-country analysis.

255 0.965 – 0 1

Trend Time trend based on the average year of the period used to estimate the elasticity
(base year is 1971)

255 24.814 11.358 0 39

Percentage of years in oil crisis Percentage of years in the period 1974–1981 in the total time period considered in
the study.

255 14.803 27.708 0 100

GDP per capita Average GDP per capita (1000s of 2010 USD PPP) in the time period covered by
the data

246 37.711 8.511 4.363 51.156

Gasoline price Average gasoline price per litre (2010 USD PPP) in the time period covered by the data 246 0.939 0.457 0.420 3.600
Land per 100 people Average land area (in sq. kilometres) per 100 people in the time period covered

by the data
246 4.207 8.367 0.205 51.037

Note: Data on GDP per capita are extracted from the OECD National Accounts database. Population density data used to compute land per 100 people are extracted from theWorld De-
velopment Indicators database of the World Bank. Data on gasoline prices are calculated from IEA energy price data. Databases were last accessed in January 2016.

Table IV
Meta-regression results for the subset of preferred estimates.

OLS WLS Fixed effects Random effects

Estimate Std. error Estimate Std. error Estimate Std. error Estimate Std. error

Short-run estimate −0.188*** (0.029) −0.271*** (0.019) −0.184*** (0.031) −0.188*** (0.030)
Unspecified response time −0.136** (0.052) −0.190** (0.089) −0.179** (0.068) −0.130*** (0.050)
Elasticity w.r.t. fuel costs 0.110** (0.054) 0.296*** (0.046) 0.080* (0.046) 0.093* (0.051)
Elasticity w.r.t. fuel price 0.112* (0.066) 0.300*** (0.048) 0.113 (0.070) 0.109* (0.066)
Cross-sectional data −0.124* (0.069) −0.252*** (0.030) – – −0.001 (0.073)
Time series data −0.096 (0.059) −0.417** (0.184) – – −0.098 (0.061)
Microdata 0.274*** (0.081) 0.664*** (0.132) – – 0.255*** (0.064)
Microdata × length of period covered by the data −0.018*** (0.006) −0.049*** (0.008) −0.003 (0.006) −0.017*** (0.005)
Empirical model at the vehicle level 0.044 (0.050) 0.060 (0.064) −0.079* (0.045) −0.031 (0.044)
Vehicle capital costs −0.057 (0.049) −0.302** (0.128) 0.066 (0.085) −0.005 (0.052)
Single car 0.111** (0.052) 0.119** (0.059) 0.069** (0.031) 0.085** (0.033)
Trend −0.008*** (0.002) −0.041*** (0.013) −0.007*** (0.002) −0.005*** (0.002)
Percentage of years in oil crisis −0.003*** (0.001) −0.012*** (0.004) −0.0002 (0.002) −0.002* (0.001)
Country-specific −0.049 (0.059) 0.080 (0.183) 0.014 (0.022) −0.024 (0.028)
Country-specific × (GDP per capita)−1 0.494 (0.760) 0.371 (1.189) 1.583** (0.663) 0.135 (0.782)
Country-specific × ln(gasoline price) 0.238*** (0.072) 0.336*** (0.116) 0.072 (0.092) 0.203*** (0.071)
Country-specific × land per 100 people −0.002 (0.001) −0.017* (0.010) −0.052*** (0.007) −0.003** (0.001)
Constant 0.534*** (0.127) 1.401*** (0.453) 0.664*** (0.092) 0.439*** (0.105)

Observations 255 255 255 255
R-squared 0.374 0.818 0.656 0.324a

Adjusted R-squared 0.329 0.805 0.522 –
Intraclass correlationb – – – 0.487

Note: Robust standard errors, clustered by groupof primary studies (58 groups), in parentheses. ***, ** and * indicate that the parameter is statistically significant at the 1%, 5% and10% level
respectively. Types of data used (cross-sectional, time series and microdata) do not vary within groups of studies, so their effect is unidentifiable in the fixed-effects model. The Sargan-
Hansen test for overidentifying restrictions suggests that the fixed-effects model should be preferred to the random-effects one (p-value = 0.00).

a Weighted average of R-squared within and between panels.
b The intraclass correlation shows the proportion of the variance attributed to differences between panels.
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neglected by these models and thus the overall rebound effect could be
underestimated. Our results do not provide robust empirical support for
this argument: the effect is only significant at the 10% level in the fixed-
effects model.

Fuel efficiency improvements are rarely costless. Failing to take into
account changes in vehicle capital costs in the empirical model used to
estimate the rebound effect may lead to its overestimation (see e.g.
Sorrell and Dimitropoulos, 2008). We test this assumption by adding a
dummy variable capturing whether the primary econometric model
controls for changes in car capital costs.18 The relevant coefficient has
the expected sign in most models (with the exception of the fixed-
effects one), but only theWLSmodel points to a significant overestima-
tion of the rebound effect by studies not taking into consideration
changes in capital costs.

Households owning only one car may respond differently to fuel ef-
ficiency improvements from households owning multiple cars. Indeed,
the fixed-effects model suggests that rebound effect estimates for one-
vehicle households are about 7 percentage points higher than estimates
for multi-vehicle ones and estimates pooling all households together.
This finding can be explained by two factors. First, one-vehicle house-
holds drive, on average, fewer kilometres than multi-vehicle ones (see
e.g. Feng et al., 2013; Linn, 2016). Hence, a certain increase in kilometres
travelled in response to a fuel efficiency improvement (e.g. 100 km)will
be reflected in a larger increase in percentage terms – and, thus, a higher
rebound effect– for one-vehicle households than formulti-vehicle ones.
Second, when the analysis is conducted at the individual vehicle level
(vs. the household level), rebound effects can be more accurately esti-
mated for one-car households. In their case, behavioural responses to
fuel efficiency improvements are concentrated on one car and, there-
fore, the rebound effect observed for that car also reflects the
household's full response. On the contrary, multivehicle households
can substitute the use of less fuel-efficient cars with the use of more
fuel-efficient ones, and rebound effect estimates will depend on the
car being analysed.19

Several primary studies have argued that the rebound effect in road
transport has declined over time and attribute this pattern mainly to an
increase in real incomes and a reduction of real fuel costs (e.g. Hymel
et al., 2010; Small and van Dender, 2007). We test for the impact of in-
comeand fuel price changes on rebound effect estimates (see discussion
below), butwewere also interested in testingwhether there is any time
effect independently ofmacroeconomic factors. To this end, we have in-
cluded a variable capturing the difference between the average year of
the period used to estimate the elasticity and a reference year: in this
case, 1971 (see also Brons et al., 2008). The fixed-effects model reveals
that the rebound effect declines by about 0.7 percentage points per
year, after controlling for changes in real incomes and fuel prices.

Relevant elasticities, and therefore rebound effects, may have also
been lower during the oil crises of the 1970s, as fuel supply was
constrained. The models use the percentage of years in the period of
the oil crises (1974–1981) in the total number of years considered in
the primary study to test this assumption (cf. Brons et al., 2008; Espey,
1998). For instance, theWLSmodel points to a 1.2 percentage-point re-
duction of the rebound effect for every 10-point increase in the percent-
age of years in the oil crisis.

Rebound effect estimates vary by country, but it is more interesting
to investigate particular country characteristics whichmay be responsi-
ble for this variation. To this end, rebound effect estimates were
matched with macroeconomic, demographic, energy, and transport in-
frastructure characteristics.20 Estimates are matched with GDP per
capita, population density, the percentage of population living in
urban areas, gasoline prices, railway density, and other variables
which may theoretically affect the magnitude of the rebound effect.
Out of these variables, only GDP per capita, gasoline prices and land
per capita (the inverse of population density) appeared to both signifi-
cantly influence rebound effect estimates and not raisemulticollinearity
concerns and are, thus, included in the presented specifications.

Several studies of the rebound effect suggest that it decreases
with income (e.g. Hymel et al., 2010; Small and van Dender, 2007). At
least two theoretical arguments exist in support of their findings. First,
demand for car travel is closer to saturation for higher-income house-
holds than for lower-income ones and, thus, rebound effects for the
former group should be smaller. Second, the relative importance of
the time costs of driving – vs. e.g. fuel costs or other car operating
costs – increases as incomes grow. The opportunity cost of time in-
creases with income and, thus, richer households are likely to take ad-
vantage of improved fuel efficiency to a lesser extent than less well-off
households (see also Small and Van Dender, 2007; Sorrell and
Dimitropoulos, 2008; Sorrell et al., 2009). Empirical support for the
inverse relationship between income – captured here by GDP per
capita – and rebound effect estimates is not always strong in our
analysis: coefficients do have the expected sign, but the relationship is
statistically significant only in the fixed-effects model.21

Higher gasoline prices and population densities may imply higher
rebound effect estimates for at least two reasons. First, higher gasoline
prices and population densities are, ceteris paribus, associated with
less intensive car use. Thus, even if individuals respond to improved
fuel efficiency by increasing travelled distances by the same level (e.g.
1000 km), the increase will be higher in percentage terms in locations
where gasoline prices and population density are higher. Second, indi-
viduals may be tempted to increase private car travel to a larger extent
(in absolute terms) in placeswith higher gasoline prices and population
density. Before the fuel efficiency improvement, it was more attractive
to make some trips by other transport modes (e.g. public transport)
than by car. This is much more likely to have occurred in places where
gasoline prices and population density are high, as the ratio of the
costs of travelling e.g. by public transport over the costs of travelling
by car should be lower there. After the fuel efficiency improvement, pri-
vate car travel becomes more competitive and households are more
likely to substitute the car for other modes for those trips.

In agreement with the arguments above, the models show that
higher average gasoline prices and population density (the inverse of
land per capita) in the period analysed in the primary studies are asso-
ciatedwith higher rebound effects (see also Sims et al., 2014). For exam-
ple, the WLS model suggests that a 1% increase in gasoline prices
(constant prices and PPPs) is associatedwith an increase of the rebound
effect of 0.34 percentage points. Gasoline prices are to an important ex-
tent determined by excise taxes on gasoline, which vary significantly
among countries. However, our findings provide no ground to argue
that the rebound effect may be less of a concern where gasoline taxes
are lower. Indeed, the effect on distances travelled and therefore on
emissions, pollution, congestion and noise may be larger in absolute18 When the econometric model is based on a system of equations, the vehicle capital

costs dummy is set equal to one regardless of whether capital costs are controlled for in
the VMT equation or in another equation of the model (e.g. the equation explaining the
fleet size/number of cars).
19 For a given car body type, size and level of comfort, the rebound effect is likely to be
underestimated when the analysis is based on the more fuel-efficient car, whereas
overestimated when it is based on the less efficient one. However, if the less fuel-
efficient car is the one in which more kilometres are driven – e.g. because it is larger and
more comfortable – then the opposite line of reasoning might hold: the rebound effect
is likely to beunderestimatedwhen the analysis focuses on the less fuel efficient (butmore
comfortable) car, whereas overestimated when it focuses on the more fuel-efficient (but
less comfortable) car.

20 For each estimate of a primary study, the matching approach considers the time cov-
erage of the data used to produce that estimate. The average of each macro-level variable
of interest for that time period and country is then calculated (ignoring possible gaps in
time series). The resulting averages of macroeconomic and other country characteristics
are finally matched back to the rebound effect estimates produced by primary studies.
21 Assuming an initial value of GDP per capita of 20,000 USD (in 2010 PPP), the fixed-
effects model implies a reduction of about 0.4 percentage points in the rebound effect
for a 1000 USD increase in GDP per capita.
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terms in countries where gasoline taxes are lower (and average
distances travelled by car are higher).

The specifications presented above are the outcome of extensive ex-
ploratory analysis, where the influence of several other explanatory fac-
tors was tested. However, those variables were dropped from the final
specifications due to poor statistical significance and multicollinearity
concerns. Nevertheless, some of these factors are of particular interest,
because they have been considered as important determinants of the
magnitude of the rebound effect. For example, we examined whether
rebound effect estimates varied with the treatment of the potential
endogeneity of the independent variable of interest – fuel efficiency,
fuel costs or fuel price. The results of the relevant econometric specifica-
tions are presented in Table C.I of Appendix C.22Models considering that
the variable of interest is endogenous seem to lead to higher rebound
effect estimates than models considering it to be exogenous (see the
results for the “endogeneity treated” coefficient). However, the effect
is only statistically significant in the random-effects model, while
multicollinearity concerns are raised in the WLS model, where the var-
iable indicating whether endogeneity is treated is strongly correlated
with the variable indicating whether the rebound effect estimate refers
to the short run.23

To further illustrate differences in the magnitude of the rebound ef-
fect between countries or regionswith different demographic andmac-
roeconomic characteristics and fuel prices, we also use the results of our
meta-regression models to provide estimates of the long-run effect in
diverse contexts. Long-run reboundeffect estimates are based on the re-
sults of the fixed-effects model and are presented in Table V. Estimates
refer to the year 2017 and to various levels of GDP per capita and gaso-
line prices (both in 2010 USD PPP), and population density.

Three levels are considered for each of these variables: for GDP per
capita, values range from USD 10,000 – somewhat lower than e.g. the
GDP per capita of Indonesia – to USD 60,000, close to the GDP per capita
of Norway (OECD, 2018). Gasoline prices range from USD 0.50 per litre,
a value below the price of gasoline in OECD countries (but relatively
close to the average price of gasoline in the USA in 2016), to USD
3.00 per litre, slightly below the gasoline price in Turkey (IEA, 2018).
Population density ranges from 20 people per km2, a value slightly
below average population density in Sweden or the USA to 300 people
per km2, slightly above population density in the United Kingdom
(World Bank, 2018).

The range of long-run rebound effect estimates is wide, demonstrat-
ing the importance of considering the demographic, macroeconomic
and energy price context of a country before assuming a certain
value of the rebound effect. Point estimates of long-run rebound effects
range from about 15% for a combination of low gasoline prices (50 US
cents) and population density (20 people/km2), and high GDP per
capita (60,000USD), to 65% for a combination of relatively high gasoline
prices and population density and a GDP per capita of USD 10,000.

Where incomes are lower and gasoline prices and population density
are higher, travellers drive on average relatively few kilometres, so
even small behavioural changes in response to fuel efficiency improve-
ments will be recorded as large changes in percentage terms.

6. Conclusions and policy implications

This paper presents a meta-analysis of 74 primary studies including
1120 estimates of the direct rebound effect in road transport. Its aim is
to provide a useful synthesis of past work and inform ongoing discus-
sions about the effect's magnitude and its determinants. Empirical re-
sults based on a subset of 255 preferred estimates from these studies
reveal that the magnitude of the rebound effect in road transport is,
on average, around 10–12% in the short run and 26–29% in the long
run. In the case of fuel efficiency standards in particular, the long-run
estimate is the most relevant, as the fuel efficiency of vehicles cannot
be significantly changed in the short run (Linn, 2016).

Variation in rebound effect estimates is, however, large and can be
attributed to both contextual and methodological factors. For example,
rebound effect estimates varywith the elasticity used tomeasure the re-
bound effect and the type of data used in the primary study. The most
direct measure of the rebound effect – the elasticity of travel with re-
spect to fuel efficiency – results in more conservative estimates than
measures exploiting variation in fuel prices. Furthermore, studies
usingmicrodata (e.g. survey data) lead to significantly higher estimates
of the rebound effect than studies using aggregate data, especiallywhen
they cover relatively short time periods which leave little room to fuel
efficiency and fuel prices to vary significantly.

The meta-analysis further reveals significant differences in the esti-
mates of the rebound effect across countries. Cross-country differences
can be to some extent attributed to variation in real per capita income,
gasoline prices, and population density. Lower GDP per capita, higher
gasoline prices and higher population density are associatedwith larger
rebound effects. Therefore, caution should be exercised when assuming
a certain magnitude of the rebound effect, as it may vary substantially
across regions.

The rebound effect has important policy implications. A 10% increase
in fuel efficiency results on average in a circa 2.6% increase in travel
demand in the long run. This induced travel partially offsets the
expected energy savings from the increase in fuel efficiency, in addition
to contributing to mileage-related externalities, like higher levels of

22 We also tried to test for differences between studies for Europe, North America
(Canada and USA) and other regions after controlling for differences in GDP per capita,
gasoline prices and population density. However, the relevant region dummies are very
strongly correlated with the variables included in the model and raise multicollinearity
concerns. Furthermore, estimates based on self-reported data have been suggested to be
larger in absolute terms than estimates based on odometer readings (see e.g. Weber and
Farsi, 2014). Therefore, we also tested whether estimates based solely on self-reported
data are different from estimates based on odometer readings or a mix of data sources.
Nevertheless, differences were not significant in any of our specifications. We also tried
to introduce a term for correction for publication bias in the regression models equal to
the inverse of the sample size used in the primary study. However, the termwas only sig-
nificant in the fixed-effects model and was not further considered in the analysis (cf. Liu
and Shumway, 2016).
23 The positive relationship between endogeneity treatment and rebound effect esti-
mates is not generally in agreement with arguments presented in the existing literature,
as studies not treating endogeneity have been suggested to lead to an overestimation of
the rebound effect (see Small and Van Dender, 2007; Sorrell and Dimitropoulos, 2008).
Such a positive relationship could exist if e.g. drivers of longer distances sort themselves
in larger and less fuel-efficient cars and, thus, failing to take this relationship into account
leads to an underestimation of the rebound effect.

Table V
Predicted long-run rebound effect values for different levels of GDP per capita, gasoline
price and population density, 2017: fixed-effects model.

Population
density
(people/km2)

Gasoline price per litre (2010 USD PPP)

0.50 1.50 3.00

Pred.
value

Std.
error

Pred.
value

Std.
error

Pred.
value

Std.
error

GDP per capita (2010 USD PPP) = 10,000
20 0.282 (0.166) 0.362 (0.107) 0.412 (0.109)
120 0.497 (0.190) 0.577 (0.118) 0.627 (0.102)
300 0.523 (0.193) 0.602 (0.119) 0.653 (0.102)

GDP per capita (2010 USD PPP) = 30,000
20 0.176 (0.134) 0.256 (0.100) 0.306 (0.125)
120 0.391 (0.155) 0.471 (0.100) 0.521 (0.108)
300 0.417 (0.158) 0.497 (0.100) 0.547 (0.106)

GDP per capita (2010 USD PPP) = 60,000
20 0.150 (0.127) 0.230 (0.101) 0.280 (0.131)
120 0.365 (0.147) 0.445 (0.098) 0.495 (0.112)
300 0.391 (0.149) 0.470 (0.098) 0.521 (0.110)

Note: Linear predictions, based on the estimates produced by the fixed-effects model. The
predictions are computed by setting the values of all variables equal to zero, except for
vehicle capital costs (set equal to 1), the time trend variable (equal to 46), the dummy
for country-specific estimates (set equal to 1) and its interaction effects with the inverse
of GDP per capita, the logarithm of gasoline prices and land per 100 people.
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non-exhaust air pollution, noise and congestion. Induced travel implies
that even in the presence of stringent fuel efficiency standards, the im-
plementation of price instruments is key to ensure that road transport
externalities are effectively addressed. In addition to motor fuel taxa-
tion, it is timely to reconsider the implementation of distance-based
road taxes, which can provide for an efficient means of addressing
mileage-related externalities. As these external costs (e.g. congestion)
vary across space and over time, distance-based taxes will be more effi-
cient if they are space- and time-variant (see also Johansson and
Schipper, 1997).

In addition to identifying the factors responsible for the variation in re-
bound effect estimates, the meta-regression model developed in this
paper can serve as a tool to assist policy analysis in contexts where re-
bound effect estimates are missing. This can be especially useful in coun-
trieswhere it is difficult to collect data on travel demand and resources for
relevant analyses are scarce. Importing data on macro-level variables
which aremore readily available (GDP per capita, gasoline prices, popula-
tion density), the analyst can derive estimates of potential rebound effects
in such contexts. However, such estimates should be treatedwith caution,
especially when they are derived for countries with very differentmacro-
economic characteristics, transport infrastructure and rates of new tech-
nology adoption than the ones analysed here.

It will also be useful to collect and use national data to estimate the
rebound effect in other countries. Estimates from developing countries,
in particular, are lacking in the existing literature. Due to numerous
differences in household income, road and public transport

infrastructure, travel behaviour, car ownership and technology adop-
tion between developed and emerging economies, there is little reason
to assume a consistent magnitude of the rebound effect across regions.
Provided that car travel demand is expected to increase considerably
in emerging economies in the following years –with potentially serious
environmental consequences – it is useful to collect more empirical ev-
idence of the impact of improved fuel efficiency on car ownership and
use in those contexts. This could be a promising avenue for future
research.
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Appendix A. Summary statistics of rebound effect estimates by study

Table A.I
List of primary empirical studies used in the analysis.

Ajanovic and Haas (2012) Gillingham et al. (2015a) Liu (2011)
Ajanovic et al. (2012) Gillingham et al. (2015b) Mannering (1983, 1986)
Barla et al. (2009), Lamonde (2007) Gillingham and Munk-Nielsen (2015) Mannering and Winston (1985)
Bento et al. (2009) Goldberg (1996, 1998) Matiaske et al. (2012)
Bergel et al. (2002) Gonzalez and Marrero (2012) Mayo and Mathis (1988)
Cervero and Hansen (2002) Greene (1992, 2012) Mizobuchi (2008)
Chugh and Cropper (2014) Greene and Hu (1984) Munk-Nielsen (2015)
Concas (2012) Greene et al. (1999) Noland (2001)
Dargay (2007) Greening et al. (1995) Noland and Cowart (2000)
De Borger et al. (2016) Hansen and Huang (1997) Odeck and Johansen (2016)
De Jong (1996) Haughton and Sarkar (1996) Pickrell and Schimek (1999)
De Jong et al. (2009) Hensher et al. (1990) Pirotte and Madre (2012)
D'Haultfœuille et al. (2014) Hensher and Smith (1986) Puller and Greening (1999)
Dillon et al. (2015) Hymel and Small (2015) Rentziou et al. (2012)
Feng et al. (2013) Hymel et al. (2010) Schimek (1996)
Ficano and Thompson (2014) Johansson and Schipper (1997) Small and Van Dender (2007)
Fridstrøm (1998) Jones (1993) Stapleton et al. (2016)
Frondel et al. (2017) Kemel et al. (2011) Steren et al. (2016)
Frondel et al. (2007, 2008) Knittel and Sandler (2010, 2011) Su (2011, 2012, 2015)
Frondel et al. (2012) Lee (2015) Wang and Chen (2014)
Frondel and Vance (2009, 2011, 2013) Leung (2015) Weber and Farsi (2014)
Gately (1990) Li et al. (2014) Wheaton (1982)
Gillingham (2014) Linn (2016) Yu et al. (2016)

Note: More than one study has been produced by Frondel and Vance (3), Greene (2) and Su (3). Lamonde (2007), Goldberg (1996), Frondel et al. (2007), Knittel and Sandler (2010), and
Mannering (1983) provide additional estimates and information for Barla et al. (2009), Goldberg (1998), Frondel et al. (2008), Knittel and Sandler (2011), and Mannering and Winston
(1985) and Mannering (1986) respectively.

Table A.II
Summary statistics for studies estimating the elasticity of travel with respect to fuel efficiency.

Primary study Country Data years All estimates Sample of preferred estimates

N Mean Min Max N Mean Min Max

De Borger et al. (2016) Denmark 2001–2011 14 0.094 0.054 0.174 8 0.088 0.076 0.100
Dillon et al. (2015) United States 2008–2009 3 0.019 0.004 0.045 1 0.045 0.045 0.045
Frondel et al. (2007, 2008) Germany 1997–2005 5 0.716 0.575 1.152 3 0.807 0.585 1.152
Frondel et al. (2012) Germany 1997–2009 2 0.506 0.418 0.594 1 0.418 0.418 0.418
Frondel and Vance (2009) Germany 1997–2006 2 0.517 0.515 0.518 2 0.517 0.515 0.518
Frondel and Vance (2013) Germany 1997–2012 4 0.612 0.188 0.953 2 0.571 0.188 0.953
Gillingham and Munk-Nielsen (2015) Denmark 1998–2011 2 −0.006 −0.035 0.023 1 0.023 0.023 0.023

(continued on next page)

173A. Dimitropoulos et al. / Energy Economics 75 (2018) 163–179



Table A.II (continued)

Primary study Country Data years All estimates Sample of preferred estimates

N Mean Min Max N Mean Min Max

Greene (2012) United States 1966–2007 6 −0.019 −0.143 0.144 2 −0.088 −0.143 −0.032
Greene and Hu (1984) United States 1978–1981 24 0.348 0.119 0.479 6 0.347 0.307 0.413
Hymel and Small (2015) United States 1966–2009 1 0.023 0.023 0.023 1 0.023 0.023 0.023
Linn (2016) United States 2008–2009 34 0.348 0.103 0.793 2 0.290 0.208 0.371
Liu (2011) United States 2000–2001 10 0.159 −0.292 0.369 1 0.172 0.172 0.172
Matiaske et al. (2012) Germany 1997–2003 1 −0.032 −0.032 −0.032 1 −0.032 −0.032 −0.032
Mizobuchi (2008) Japan 2007 4 0.254 0.166 0.411 1 0.223 0.223 0.223
Munk-Nielsen (2015) Denmark 1997–2006 2 0.499 0.279 0.718 1 0.279 0.279 0.279
Schimek (1996) United States 1950–1994 2 0.130 0.050 0.210 2 0.130 0.050 0.210
Stapleton et al. (2016) United Kingdom 1969–2011 24 −0.134 −0.643 0.309 1 0.309 0.309 0.309
Steren et al. (2016) Israel 2007–2011 3 0.355 0.129 0.535 3 0.355 0.129 0.535
Su (2015) United States 2008 8 0.131 0.090 0.172 7 0.127 0.090 0.172
Wang and Chen (2014) United States 2008–2009 5 0.100 −0.203 0.700 5 0.100 −0.203 0.700
Weber and Farsi (2014) Switzerland 2010 4 0.528 0.187 0.814 2 0.501 0.187 0.814
Wheaton (1982) Cross-national 1972 3 0.074 0.057 0.103 2 0.083 0.063 0.103
Yu et al. (2016) Japan and China 2009 40 0.475 −0.411 1.329 2 0.356 0.287 0.425
All 203 0.267 −0.643 1.329 57 0.243 −0.203 1.152

Table A.III
Summary statistics for studies estimating the elasticity of travel with respect to per unit fuel costs.

Primary study Country Data years All estimates Sample of preferred estimates

N Mean Min Max N Mean Min Max

Ajanovic and Haas (2012) 6 EU countries 1970–2007 14 0.329 0.050 0.880 14 0.329 0.050 0.880
Ajanovic et al. (2012) 12 EU countries 1980–2007 2 0.290 0.160 0.420 2 0.290 0.160 0.420
Barla et al. (2009), Lamonde (2007) Canada 1990–2004 12 0.210 0.080 0.569 4 0.134 0.080 0.240
Bento et al. (2009) United States 2001 1 0.340 0.340 0.340 1 0.340 0.340 0.340
Chugh and Cropper (2014) India 2010 2 0.800 0.670 0.930 2 0.800 0.670 0.930
Concas (2012) United States 1980–2005 6 0.582 0.086 1.453 2 0.583 0.171 0.994
Dargay (2007) United Kingdom 1976–1995 10 0.131 0.090 0.180 2 0.120 0.100 0.140
De Jong (1996) Netherlands 1992 1 0.320 0.320 0.320 1 0.320 0.320 0.320
De Jong et al. (2009) Netherlands 2008 1 1.220 1.220 1.220 1 1.220 1.220 1.220
D'Haultfœuille et al. (2014) France 2007–2008 1 0.530 0.530 0.530 1 0.530 0.530 0.530
Feng et al. (2013) United States 1996–2000 10 0.054 0.024 0.117 5 0.039 0.024 0.070
Frondel et al. (2008) Germany 1997–2005 3 0.587 0.581 0.596 1 0.596 0.596 0.596
Frondel et al. (2012) Germany 1997–2009 2 0.540 0.459 0.620 1 0.459 0.459 0.459
Frondel and Vance (2009) Germany 1997–2006 2 0.506 0.490 0.521 2 0.506 0.490 0.521
Gately (1990) United States 1966–1988 2 0.080 0.070 0.090 1 0.090 0.090 0.090
Gillingham et al. (2015a) Denmark 1996–2009 2 0.542 0.419 0.665 1 0.419 0.419 0.419
Gillingham et al. (2015b) United States 2000–2010 3 0.108 0.076 0.150 1 0.097 0.097 0.097
Goldberg (1996, 1998) United States 1984–1990 17 0.043 −0.280 0.240 1 −0.040 −0.040 −0.040
Greene (1992) United States 1956–1989 15 0.178 0.059 0.450 1 0.134 0.134 0.134
Greene (2012) United States 1966–2007 4 0.108 0.035 0.204 2 0.097 0.037 0.157
Greene et al. (1999) United States 1979–1994 6 0.228 0.175 0.280 1 0.230 0.230 0.230
Greening et al. (1995) United States 1990 17 0.304 0.133 0.574 1 0.292 0.292 0.292
Haughton and Sarkar (1996) United States 1970–1991 12 0.204 0.074 0.580 2 0.193 0.156 0.230
Hensher et al. (1990) Australia 1981–1982 8 0.268 0.065 0.389 4 0.248 0.065 0.389
Hensher and Smith (1986) Australia 1981–1982 6 0.203 0.092 0.311 2 0.180 0.099 0.260
Hymel and Small (2015) United States 1966–2009 38 0.075 0.008 0.309 12 0.083 0.008 0.295
Hymel et al. (2010) United States 1966–2004 44 0.123 0.024 0.322 8 0.103 0.026 0.241
Johansson and Schipper (1997) 12 OECD countries 1973–1992 8 0.212 0.061 0.470 1 0.120 0.120 0.120
Jones (1993) United States 1966–1990 14 0.161 0.108 0.313 2 0.211 0.108 0.313
Kemel et al. (2011) France 1999–2007 2 0.369 0.278 0.460 2 0.369 0.278 0.460
Knittel and Sandler (2010, 2011) United States 1998–2010 19 0.229 0.096 0.440 1 0.224 0.224 0.224
Linn (2016) United States 2008–2009 5 0.442 0.125 0.894 2 0.493 0.174 0.811
Liu (2011) United States 2000–2001 10 0.289 0.026 0.867 1 0.232 0.232 0.232
Mannering (1983, 1986) United States 1979–1980 24 0.186 −0.264 0.543 4 0.289 0.132 0.543
Mannering and Winston (1985) United States 1978–1980 20 0.210 0.004 0.911 4 0.166 0.059 0.279
Mayo and Mathis (1988) United States 1958–1984 2 0.241 0.221 0.261 1 0.221 0.221 0.221
Munk-Nielsen (2015) Denmark 1997–2006 7 0.362 0.158 0.744 1 0.300 0.300 0.300
Schimek (1996) United States 1950–1994 6 0.185 0.050 0.410 2 0.180 0.070 0.290
Small and Van Dender (2007) United States 1966–2001 12 0.138 0.022 0.340 8 0.104 0.022 0.240
Stapleton et al. (2016) United Kingdom 1969–2011 34 0.182 0.023 1.420 1 0.245 0.245 0.245
Su (2011) United States 2001–2009 8 0.084 0.028 0.196 2 0.069 0.028 0.110
Su (2012) United States 2008–2009 33 0.154 0.097 0.224 8 0.151 0.106 0.193
All 445 0.196 −0.280 1.453 116 0.227 −0.040 1.220
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Appendix B. Summary statistics and meta-regression results for all estimates

Table B.I
Summary statistics of empirical estimates of the rebound effect in road transport; all estimates.

Rebound effect definition Observations Unweighted Weighted

Mean Median Std. dev. Mean Median Std. dev.

Elasticity w.r.t. fuel efficiency 203 0.267 0.245 0.333 0.177 0.103 0.207
Elasticity w.r.t. fuel costs 445 0.196 0.150 0.195 0.199 0.154 0.129
Elasticity w.r.t. fuel price 472 0.266 0.200 0.263 0.252 0.233 0.160

Note: Statistics of 1120 estimates. For elasticities with respect to fuel costs and fuel price, the table presents the negative of the estimates derived from the primary study. To compute the
weighted statistics, each estimate is weighted by the size of the sample used in the primary study.

Table B.II
Summary statistics of estimates by time horizon and elasticity measure; all estimates.

No. of estimates Unweighted mean Weighted mean Min Max

Elasticity w.r.t. fuel efficiency
Short-run 21 −0.131 0.046 −0.372 0.684
Long-run 51 0.264 0.356 −0.643 1.152
Unspecified 131 0.331 0.064 −0.411 1.329

Elasticity w.r.t. fuel costs
Short-run 189 0.103 0.092 −0.280 0.574
Long-run 170 0.272 0.239 −0.264 1.453
Unspecified 86 0.252 0.393 0.026 1.220

(continued on next page)

Table A.IV
Summary statistics for studies estimating the elasticity of travel with respect to fuel price.

Primary study Country Data years All estimates Sample of preferred estimates

N Mean Min Max N Mean Min Max

Bergel et al. (2002) France 1981–1999 8 0.173 0.081 0.249 1 0.128 0.128 0.128
Cervero and Hansen (2002) United States 1976–1997 2 0.201 0.179 0.223 2 0.201 0.179 0.223
De Borger et al. (2016) Denmark 2001–2011 13 0.554 −0.184 1.026 2 0.711 0.565 0.856
Dillon et al. (2015) United States 2008–2009 3 0.132 0.066 0.171 1 0.066 0.066 0.066
Ficano and Thompson (2014) United States 2008–2009 14 0.640 0.255 1.625 2 0.692 0.605 0.778
Fridstrøm (1998) Norway 1973–1994 2 0.183 0.109 0.257 2 0.183 0.109 0.257
Frondel et al. (2017) Germany 2000–2014 6 0.607 0.314 1.420 2 0.458 0.447 0.468
Frondel et al. (2007, 2008) Germany 1997–2005 5 0.616 0.476 0.801 3 0.633 0.476 0.801
Frondel et al. (2012) Germany 1997–2009 8 0.655 0.551 0.898 1 0.574 0.574 0.574
Frondel and Vance (2009) Germany 1997–2006 2 0.467 0.406 0.528 2 0.467 0.406 0.528
Frondel and Vance (2011) Germany 1997–2009 12 0.420 −0.027 0.689 4 0.518 0.448 0.584
Frondel and Vance (2013) Germany 1997–2012 4 0.498 0.438 0.573 2 0.490 0.439 0.541
Gillingham (2014) United States 2001–2009 33 0.303 0.120 0.690 1 0.220 0.220 0.220
Gillingham et al. (2015a) United States 2000–2010 17 0.120 0.007 0.411 1 0.099 0.099 0.099
Gillingham and Munk-Nielsen (2015) Denmark 1998–2011 51 0.354 0.228 0.866 1 0.304 0.304 0.304
Gonzalez and Marrero (2012) Spain 1998–2006 18 0.287 −0.030 0.615 2 0.444 0.282 0.607
Greene (2012) United States 1966–2007 6 0.107 0.004 0.299 2 0.140 0.051 0.229
Greene and Hu (1984) United States 1978–1981 24 0.199 −0.001 0.517 6 0.217 0.118 0.343
Hansen and Huang (1997) United States 1973–1990 4 0.093 0.080 0.100 1 0.090 0.090 0.090
Hymel and Small (2015) United States 1966–2009 1 0.054 0.054 0.054 1 0.054 0.054 0.054
Kemel et al. (2011) France 1999–2007 2 0.230 0.200 0.260 2 0.230 0.200 0.260
Knittel and Sandler (2010, 2011) United States 1998–2009 11 0.444 0.288 0.625 1 0.440 0.440 0.440
Lee (2015) United States 2002–2011 6 0.060 0.046 0.068 3 0.060 0.048 0.067
Leung (2015) United States 2008–2009 24 0.104 −0.033 0.265 1 0.087 0.087 0.087
Li et al. (2014) United States 1995–2001 6 0.251 −0.108 0.497 2 0.142 −0.108 0.391
Linn (2016) United States 2008–2009 25 0.150 0.093 0.587 2 0.112 0.107 0.116
Liu (2011) United States 2000–2001 7 1.328 0.974 1.686 1 1.686 1.686 1.686
Matiaske et al. (2012) Germany 1997–2003 1 0.329 0.329 0.329 1 0.329 0.329 0.329
Munk-Nielsen (2015) Denmark 1997–2006 2 0.504 0.282 0.725 1 0.282 0.282 0.282
Noland (2001) United States 1984–1996 67 0.093 −0.409 0.365 2 0.104 0.049 0.158
Noland and Cowart (2000) United States 1982–1996 10 0.015 −0.135 0.080 2 0.049 0.045 0.052
Odeck and Johansen (2016) Norway 1980–2011 4 0.213 0.110 0.358 2 0.173 0.110 0.235
Pickrell and Schimek (1999) United States 1995 6 0.147 0.040 0.340 1 0.040 0.040 0.040
Pirotte and Madre (2012) France 1985–2007 8 0.108 0.090 0.139 1 0.092 0.092 0.092
Puller and Greening (1999) United States 1980–1990 4 0.728 0.690 0.770 1 0.750 0.750 0.750
Rentziou et al. (2012) United States 1998–2008 6 0.158 0.034 0.310 2 0.062 0.035 0.088
Schimek (1996) United States 1950–1994 2 0.160 0.060 0.260 2 0.160 0.060 0.260
Stapleton et al. (2016) United Kingdom 1969–2011 31 0.130 −0.080 1.020 1 0.197 0.197 0.197
Steren et al. (2016) Israel 2007–2011 1 0.661 0.661 0.661 1 0.661 0.661 0.661
Su (2015) United States 2008 8 0.145 0.040 0.265 7 0.159 0.086 0.265
Wang and Chen (2014) United States 2008–2009 5 0.241 0.094 0.406 5 0.241 0.094 0.406
Wheaton (1982) Cross-national 1972 3 0.529 0.500 0.547 2 0.521 0.500 0.541
All 472 0.266 −0.409 1.686 82 0.299 −0.108 1.686
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Table B.II (continued)

No. of estimates Unweighted mean Weighted mean Min Max

Elasticity w.r.t. fuel price
Short-run 120 0.122 0.128 −0.108 0.587
Long-run 111 0.277 0.298 −0.080 1.020
Unspecified 241 0.333 0.350 −0.409 1.686

Note: Statistics of 1120 estimates. For elasticitieswith respect to fuel costs and fuel price, the table presents the negative of the estimates derived from the primary study. Estimates defined
in the primary study asmedium-run are considered here as long-run elasticities. To compute the weightedmean, each estimate is weighted by the size of the sample used in the primary
study.

Table B.III
Comparison of means of estimates published in academic journals with estimates extracted from other sources.

No. of estimates Unweighted mean Weighted mean

Journals Other types Journals Other types Difference p-value Journals Other types Difference p-value

Preferred estimates
Short-run 64 6 0.102 0.281 −0.178 0.141 0.098 0.097 0.001 0.906
Long-run 54 10 0.289 0.500 −0.212 0.140 0.255 0.295 −0.039 0.300
Unspecified 98 23 0.272 0.404 −0.132 0.112 0.261 0.341 −0.080 0.042

All estimates
Short-run 288 42 0.089 0.133 −0.043 0.274 0.122 0.091 0.030 0.000
Long-run 274 58 0.258 0.340 −0.081 0.209 0.256 0.288 −0.033 0.202
Unspecified 331 127 0.287 0.397 −0.110 0.075 0.321 0.344 −0.022 0.705

Note: Statistics for 255 preferred estimates (upper panel) and all 1120 estimates (lower panel). Estimates defined in the primary study as medium-run are considered here as long-run
elasticities. To compute theweightedmean, each estimate is weighted by the size of the sample used in the primary study. The p-values show the lowest level of statistical significance at
which the hypothesis that the difference between the twomeans is equal to zero can be rejected. The p-values are computed on the basis of robust standard errors, clustered by group of
primary studies.

Table B.IV
Description and summary statistics for the variables used in the meta-regression analysis; all estimates.

Explanatory variable Description Observations Mean Std. dev. Min Max

Short-run estimate =1, if estimate refers to the short run (usually 1 time period);
=0, otherwise.

1120 0.295 – 0 1

Unspecified response time =1, if estimate cannot be classified as short- or long-run;
=0, otherwise.

1120 0.409 – 0 1

Elasticity w.r.t. fuel costs =1, if estimate of elasticity w.r.t. fuel costs in primary study;
=0, otherwise.

1120 0.397 – 0 1

Elasticity w.r.t. fuel price =1, if estimate of elasticity w.r.t. fuel price in primary study;
=0, otherwise.

1120 0.421 – 0 1

Cross-sectional data =1, if primary data are cross-sectional;
=0, otherwise.

1120 0.313 – 0 1

Time series data =1, if primary data are time series;
=0, otherwise.

1120 0.157 – 0 1

Microdata =1, if primary study uses micro-level (e.g. survey) data;
=0, otherwise.

1120 0.601 – 0 1

Length of period covered by the data Length of time period covered by the data used in the
primary study (in years).

1120 14.871 14.213 1 45

Empirical model at the vehicle level =1, if econometric model is developed at the vehicle level;
=0, if model at the household level or on aggregate data.

1120 0.442 – 0 1

Vehicle capital costs =1, if vehicle capital costs taken into account in empirical model;
=0, otherwise.

1120 0.207 – 0 1

Single car =1, if elasticity estimate is specific to households with one car;
=0, otherwise.

1120 0.113 – 0 1

Country-specific =1, if estimates are based on an analysis for a single country;
=0, if estimates are based on a cross-country analysis.

1120 0.984 – 0 1

Trend Time trend based on the average year of the period used to
estimate the elasticity
(base year is 1971)

1120 24.766 10.820 −7.5 39

Percentage of years in oil crisis Percentage of years in the period 1974–1981 in the total time
period considered
in the study.

1120 14.439 28.002 0 100

GDP per capita Average GDP per capita (1000s of 2010 USD PPP) in the time
period covered by the data

1102 37.056 8.896 4.363 51.156

Gasoline price Average gasoline price per litre (2010 USD PPP) in the time
period covered by the data

1099 0.880 0.392 0.420 3.600

Land per 100 people Average land area (in sq. kilometres) per 100 people in the time
period covered by the data

1102 3.476 6.293 0.205 51.037

Note: Data on GDP per capita are extracted from the OECD National Accounts database. Population density data used to compute land per 100 people are extracted from the World De-
velopment Indicators database of the World Bank. Data on gasoline prices are calculated from IEA energy price data. Databases were last accessed in January 2016.
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Table B.V
Meta-regression results; all estimates.

OLS WLS Fixed effects Random effects

Estimate Std. error Estimate Std. error Estimate Std. error Estimate Std. error

Short-run estimate −0.195*** (0.027) −0.257*** (0.028) −0.200*** (0.027) −0.198*** (0.027)
Unspecified response time −0.066* (0.035) −0.138 (0.097) −0.122*** (0.035) −0.101*** (0.025)
Elasticity w.r.t. fuel costs 0.092 (0.060) 0.179** (0.083) 0.098 (0.061) 0.098* (0.058)
Elasticity w.r.t. fuel price 0.100 (0.060) 0.241*** (0.075) 0.146* (0.080) 0.142* (0.077)
Cross-sectional data −0.106** (0.046) −0.228*** (0.046) – – −0.007 (0.062)
Time series data −0.090 (0.067) −0.356* (0.207) – – −0.091 (0.063)
Microdata 0.294*** (0.075) 0.652*** (0.136) – – 0.216*** (0.068)
Microdata × length of period covered by the data −0.013** (0.005) −0.043*** (0.010) −0.007 (0.006) −0.010* (0.005)
Empirical model at the vehicle level 0.022 (0.034) 0.092** (0.041) −0.019 (0.048) −0.025 (0.035)
Vehicle capital costs −0.040 (0.040) −0.208 (0.151) 0.019 (0.022) 0.005 (0.024)
Single car 0.112*** (0.041) 0.141** (0.056) 0.082** (0.034) 0.083*** (0.032)
Trend −0.004 (0.003) −0.036** (0.015) −0.003*** (0.001) −0.003** (0.001)
Percentage of years in oil crisis −0.003*** (0.001) −0.011*** (0.004) 0.001 (0.001) −0.001** (0.001)
Country-specific −0.212*** (0.075) 0.038 (0.189) −0.129*** (0.018) −0.145*** (0.045)
Country-specific × (GDP per capita)−1 3.170** (1.272) 0.783 (1.495) 5.035*** (0.489) 3.522*** (1.234)
Country-specific × ln(gasoline price) 0.102* (0.058) 0.257* (0.129) 0.135* (0.074) 0.147*** (0.056)
Country-specific × land per 100 people −0.0003 (0.001) −0.009 (0.008) −0.045*** (0.007) −0.002 (0.002)
Constant 0.436*** (0.104) 1.183*** (0.419) 0.498*** (0.051) 0.339*** (0.070)
Observations 1120 1120 1120 1120
R-squared 0.316 0.493 0.498 0.277a

Adjusted R-squared 0.305 0.485 0.465 –
Intraclass correlationb – – – 0.447

Note: Robust standard errors, clustered bygroupof primary studies (58 groups), in parentheses. ***, ** and * indicate that theparameter is statistically significant at the 1%, 5% and 10% level
respectively. Types of data used (cross-sectional, time series and microdata) do not vary within groups of studies, so their effect is unidentifiable in the fixed-effects model. The Sargan-
Hansen test for overidentifying restrictions suggests that the fixed-effects model should be preferred to the random-effects one (p-value = 0.00).

a Weighted average of R-squared within and between panels.
b The intraclass correlation shows the proportion of the variance attributed to differences between panels.

Appendix C. Additional estimation results

Table C.I
Results of meta-regression models considering whether endogeneity of variable of interest is treated in primary empirical model; subset of preferred estimates.

OLS WLS Fixed effects Random effects

Estimate Std. error Estimate Std. error Estimate Std. error Estimate Std. error

Short-run estimate −0.193*** (0.031) −0.459*** (0.034) −0.185*** (0.031) −0.194*** (0.031)
Unspecified response time −0.131** (0.057) −0.217*** (0.058) −0.183** (0.069) −0.126** (0.054)
Elasticity w.r.t. fuel costs 0.111** (0.055) 0.309*** (0.045) 0.081* (0.046) 0.091* (0.048)
Elasticity w.r.t. fuel price 0.117* (0.069) 0.314*** (0.049) 0.113 (0.069) 0.111* (0.066)
Cross-sectional data −0.133* (0.073) −0.214*** (0.038) – – −0.028 (0.072)
Time series data −0.071 (0.074) −0.348** (0.169) – – −0.064 (0.066)
Microdata 0.289*** (0.087) 0.597*** (0.104) – – 0.301*** (0.071)
Microdata × length of period covered by the data −0.020*** (0.006) −0.044*** (0.007) −0.018 (0.017) −0.021*** (0.005)
Endogeneity treated 0.067 (0.061) 0.216*** (0.036) 0.108 (0.103) 0.101** (0.051)
Empirical model at the vehicle level 0.056 (0.050) 0.072 (0.052) −0.031 (0.079) −0.028 (0.044)
Vehicle capital costs −0.083 (0.052) −0.367*** (0.109) −0.016 (0.136) −0.040 (0.054)
Single car 0.097 (0.060) −0.039 (0.046) 0.055 (0.034) 0.067* (0.038)
Trend −0.009*** (0.003) −0.042*** (0.012) −0.008*** (0.003) −0.007*** (0.002)
Percentage of years in oil crisis −0.003** (0.001) −0.011*** (0.003) −0.001 (0.002) −0.002* (0.001)
Country-specific −0.064 (0.066) 0.097 (0.196) 0.021 (0.022) −0.043 (0.031)
Country-specific × (GDP per capita)−1 0.708 (0.849) 0.467 (0.874) 1.796*** (0.609) 0.515 (0.809)
Country-specific × ln(gasoline price) 0.245*** (0.070) 0.370*** (0.076) 0.042 (0.085) 0.201*** (0.071)
Country-specific × land per 100 people −0.002 (0.001) −0.022** (0.010) −0.054*** (0.007) −0.004** (0.002)
Constant 0.533*** (0.145) 1.414*** (0.430) 0.705*** (0.124) 0.436*** (0.128)

Observations 255 255 255 255
R-squared 0.384 0.849 0.659 0.315a

Adjusted R-squared 0.337 0.838 0.525 –
Intraclass correlationb – – – 0.451

Note: Robust standard errors, clustered by group of primary studies (58 groups), in parentheses. ***, ** and * indicate that the parameter is statistically significant at the 1%, 5% and 10%
level respectively. Types of data used (cross-sectional, time series and microdata) do not vary within groups of studies, so their effect is unidentifiable in the fixed-effects model. The
Sargan-Hansen test for overidentifying restrictions suggests that the fixed-effects model should be preferred to the random-effects one (p-value = 0.00). Endogeneity is treated in
42.8% of the cases in the subset of preferred estimates. The correlation between the dummy indicating treatment of endogeneity and the dummy for a short-run estimate is approximately
0.93 in the WLS model.

a Weighted average of R-squared within and between panels.
b The intraclass correlation shows the proportion of the variance attributed to differences between panels.
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Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.eneco.2018.07.021.
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