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Previous research suggests that the elasticity of light-duty motor vehicle travel with respect to fuel cost, known as
the “rebound effect,” is modest in size and probably declined in magnitude between the 1960s and the late
1990s. However, turmoil in energy markets during the early 2000s has raised new questions about the stability of
this elasticity. Using panel data on U.S. states, we revisit the simultaneous-equations methodology of Small and
VanDender (2007) andHymel et al. (2010) to seewhether structural parameters have changed. Using data through
2009, we confirm the earlier finding of a rebound effect that declines inmagnitudewith income, butwe also find an
upward shift in its magnitude of about 0.025 during the years 2003–2009. In addition, we find that the rebound ef-
fect ismuchgreater inmagnitude in yearswhengasoline prices are rising thanwhen they are falling. It is also greater
during times of media attention and price volatility, which explains about half the upward shift just mentioned.
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1. Introduction

Many empirical quantities determine the effectiveness of energy
policies toward light-duty motor vehicles. Analysts have come increas-
ingly to appreciate the importance of one: the elasticity of vehicle travel
with respect to fuel cost, the latter defined as the ratio of fuel price to
fuel efficiency. If it is large, this elasticity affects policy evaluation in
two notableways. First, it tends to undermine the effectiveness of direct
controls such as the Corporate Average Fuel Efficiency (CAFE) regula-
tions in the United States. This is because the induced travel offsets
some of the energy savings that would otherwise occur—the origin of
the name “rebound effect”. Second, external costs of motor vehicle
travel that are not directly related to energy use—mainly congestion,
accidents, and local air pollution—can loom large in a cost–benefit anal-
ysis of efficiency regulations; they therefore magnify the differences in
cost-effectiveness between policy measures that discourage driving
versus those that encourage driving.

The rebound effect is oftenmeasured as the negative of the elasticity
of driving with respect to fuel cost per unit distance—also known as the
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0, United States. Tel.: +1 818

all@uci.edu (K.A. Small).
price-elasticity of vehicle miles of travel (VMT), or simply the “VMT
elasticity”. This “direct” rebound effect is typically expressed as a per-
centage: for example, a VMT elasticity of −0.20 corresponds to a re-
bound effect of 20%. Most demand models assume that fuel efficiency
enters the VMT decision only via its role in determining the per-mile
price of driving, so that the elasticities of VMT with respect to fuel
price and fuel intensity (the reciprocal of fuel efficiency) are identical.
We follow this practice, except where we report testing whether VMT
indeed responds the same way to fuel price and to fuel intensity.

A substantial body of earlier empirical evidence mostly supported a
long-run rebound effect of 15% to 30% over the last few decades of the
twentieth century.1 Differences among the studies demonstrate the im-
portance of model specification: for example, the way dynamics are
dealt with, e.g., by whether or not lagged effects and autoregressive er-
rors are accounted for. Small and Van Dender (2007) conclude that
omitting dynamics is likely to cause the short-run rebound effect to be
overestimated, and to obscure the relationship between short and
long run.2 In addition, results of US studies are sensitive to how they
1 For literature reviews, see Greening et al. (2000), Small and Van Dender (2007), and
Hymel et al. (2010). For meta-analyses of results from these mostly pre-2000 studies,
see Goodwin et al. (2004), Graham and Glaister (2004), and Brons et al. (2008).

2 We use the term “short run” to designate one year, and “long run” to designate an as-
ymptotic result if a change is continued indefinitely.
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3 These numbers are the range of coefficients of log (dollars permile) in their Table 18.3
for Models 2, 4, and 5. In other models, the authors find heterogeneity with respect to the
size of the dollars per mile variable. They explore heterogeneity further in a more recent
working paper, in which they find the VMT elasticity to vary between−0.11 and −0.18
across quartiles of fuel efficiency (Knittel and Sandler 2013, TableA.2, next to last column).

4 The areas are “permit-issuing places, which are usually small municipalities” (Molloy
and Shan 2013, p. 1214).
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account for the influence of the US Corporate Average Fuel Efficiency
(CAFE) standards, which went into effect in 1978.

More recent literature has extended the earlier literature in several
directions. Two directions of special interest are how the rebound effect
may change over time, andwhether itsmeasurement is sensitive to bias
due to omitted variables. We begin with our own previous work, on
which the current paper builds.

Small and Van Dender (2007), using data on individual states in the
US for years 1966–2001, estimate a three-equation model system in
which VMT, vehicle ownership, and fuel efficiency are simultaneously
determined. They find that ignoring this endogeneity of fuel efficiency
(in particular, that the fuel efficiency chosen jointly by consumers and
manufacturers depends on amount of travel) leads to an overestimate
of the rebound effect. Furthermore, Small and Van Dender interact
fuel cost with other variables to allow the rebound effect to vary with
those variables. They find that the rebound effect declines substantially
with income and, to a lesser extent, it increases with fuel cost. As a re-
sult, although the long-run rebound effect is estimated to be 22.2% aver-
aged over their entire sample, it is only 10.7% averaged over the last five
years of their sample. Short-term rebound effects (response in one year)
are approximately one-fifth as large, resulting from their finding that
the lagged endogenous variable plays a strong role in the VMT equation.

Hymel et al. (2010) extend themodel of Small and VanDender to ac-
count for the interrelationship between travel and congestion. They ac-
complish this by adding a fourth equation predicting the average
amount of congestion in a state. At the same time, the equation for
VMT is modified to include an influence from congestion, and the data
set is extended through 2004. They obtain similar results to Small and
Van Dender, although with a somewhat less pronounced decline with
respect to income.

Greene (2012) carries out a number of analyses similar to those of
Small and Van Dender (2007), using national rather than state data
but extending the sample to 2007. Greene confirms several results of
Small and Van Dender: in particular, he finds a similar value for the
price-elasticity of VMT, and finds that it has declined over time and
that it declines with income.

Hughes et al. (2008) compare the price-elasticity of gasoline mea-
sured over two six-year periods: 1975–80 versus 2001–06. They find a
large decline in magnitude, from 0.21 to S0.08 in what appears to be
their favored specification. This finding is for the price elasticity of fuel
use, of which VMT is but one component; but it suggests that the VMT
elasticity declined in magnitude by a similar amount since there is no
evidence that the other component of the VMT elasticity, namely the
elasticity of fuel efficiency, has changed substantially. In their preferred
specification, which deals with possible endogeneity of fuel price,
Hughes et al. do not account for dynamics.

Hughes et al. also testwhether the price elasticity declines inmagni-
tudewith income, as found by Small and VanDender (2007) andHymel
et al. (2010). They find instead an effect in the other direction, and so
suggest that the observed decline in the rebound effect over time may
be due to suburbanization and declining public transit service, both of
which lock travelers more firmly into automobile use. Interestingly,
Litman (2013) cites these same factors as downward influences on the
rebound effect during the earlier period, suggesting that they have
wanedduring the 2000's.Wehave not seen any formal argument, either
theoretical or empirical, forwhy these factors should have amajor effect
in either direction.

Two recent studies make use of odometer readings from California's
smog test—arguably the most accurate available measure of VMT—to
provide estimates of the elasticity of VMT with respect to either fuel
price or fuel cost per mile. Both studies use very large samples of indi-
vidual vehicles. The first, by Knittel and Sandler (2012), takes advantage
of the existence of regions within California in which older vehicles
must take a smog test every two years. They use test data from 1998
through 2010 and a simple log–log specification, with control variables
for demographics and for whether the vehicle is a light truck. In some of
their specifications they also includefixed effects representing year, vin-
tage, andmake. Knittel and Sandler interpret the resulting elasticities as
covering a time period of two years, since that is the time interval over
which VMT ismeasured. The estimates of VMT elasticitywith respect to
fuel cost per mile vary between −0.14 and −0.26, depending on
whether or not themake is subdivided further in defining fixed effects.3

The second study using California smog test data is by Gillingham
(2013). Gillingham combines smog test data for years 2005–2009
with micro observations of new-vehicle registrations in 2001–2003 for
the same vehicles. In this way he observes VMT over a several-year pe-
riod, typically six or seven years due to the requirement that vehicles
are tested at those ages. He finds an elasticity of VMT with respect to
gasoline price of −0.25, a finding quite robust to various specification
checks. Gillingham interprets this as roughly a two-year elasticity, be-
cause it is identified mainly by a price spike between 2007 and 2009.
This means of identification is also a weakness of the study: during
this same time interval the US economy entered its most significant
recession since the 1930s, accompanied by turmoil in housing markets
including foreclosures requiring many people to move. Despite
Gillingham's having controlled for macroeconomic conditions through
a measure of unemployment and a consumer confidence index, one
must worry that gasoline prices are correlated with unobserved factors
related to changing economic conditions that also influence the amount
of driving.

The two studies just described have the advantage of very large sam-
ples of individuals, permitting greater precision in estimation and con-
trols for heterogeneity across individuals. However, both studies
assume that VMT responds to contemporaneous gasoline prices; yet
the descriptive data shown by Knittel and Sandler, comparing graphs
of gasoline prices and VMT over time, suggest a one to two year lag be-
tween movement in gasoline price and movement in VMT. As already
noted, omitting such dynamic effects may cause the estimated elastici-
ties to be somewhat larger in magnitude than the true short-run
(or even two-year) elasticities.

Why should long-run and short-run responses of VMT differ?
Molloy and Shan (2013) provide an intriguing look at one possible
reason: induced changes in household location. They analyzehowhous-
ing constructionwithin small areas responded to fuel prices over the pe-
riod 1981 to 2008.4 Their model includes lags up to four years, which
they found sufficient to account for virtually all the observed responses.
Their results imply that a 1% increase in gasoline price reduces construc-
tion over the next four years by 1%, which is 0.03% of the total housing
stock (their Table 2). Thus residential location provides a possible expla-
nation for why Small and Van Dender (2007) and Hymel et al. (2010)
find substantial lags in the response of VMT to changes in fuel cost.

Our conclusion from the more recent literature is that mounting
evidence raises the strong possibility that the rebound effect has be-
come larger during the 2000s. But not enough time has passed to
allow definitive tests, especially because other factors were changing
so drastically during that same time period. We respond here in three
ways. First, we re-estimate earlier models with data extending through
2009. Second, within those re-estimated models we test whether there
is a structural break in the determinants of VMT during the decade
2000–2009. Third, we consider other explanations for changes in be-
havior over that decade: specifically, asymmetries between response
to rising and falling gasoline prices, and behavioral responses to the in-
tense media attention that was sometimes given to fuel prices.
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2. Theory and data

2.1. Theory

Themodel of Small and VanDender (2007) explains how consumers
and manufacturers simultaneously choose howmuch to travel, the size
of their vehicle stock, and the fuel efficiency of their vehicle stock.
Conceptually, the structural model is:

M ¼ M V ; PM ;XMð Þ
V ¼ V M; PV ; PM ;XVð Þ
E ¼ E M; P F ;RE;XEð Þ

ð1Þ

where M is aggregate VMT per adult; V is size of the vehicle stock
per adult; E is average fuel efficiency of the entire vehicle stock; PV is
a price index for new vehicles; PF is the price of fuel; PM ≡ PF / E is
the fuel cost per mile; XM, XV and XE are exogenous variables
(including constants); and RE represents regulatory measures that di-
rectly or indirectly influence fleet-average fuel efficiency—namely, a
variable cafe representing how tightly CAFE regulations constrain
manufacturers.5

The standard definition of the direct rebound effect6 can be derived
from a partially reduced form of Eq. (1), which is obtained by substitut-
ing the second equation into the first and solving for M. Thus the solu-

tion M̂ is implicitly defined by:

M̂ ¼ M V M̂; PV ; PMXV

� �
; PM ;XM

h i
≡ M̂ PM ; PV ;XM ;XVð Þ: ð2Þ

The VMT elasticity is:

εM̂;PM ≡ PM

M
� ∂M̂∂PM

¼ εM;PM þ εM;VεV ;PM
1−εM;VεV ;M

ð3Þ

where εY,X is the direct structural elasticity of dependent variable Ywith
respect to independent variable X in equation set Eq. (1).

An important assumption in Eq. (1) is that M responds to E only
through the fuel cost per mile, PM ≡ PF / E. Small and Van Dender
(2007) were not able to confirm this assumption, but felt their dataset
contained year-to-year variation in fuel efficiency that was inadequate
to provide a satisfactory test. We discuss in Section 3 another attempt
to test this assumption explicitly, with more promising results.

We generalize Eq. (1) in two ways to handle dynamics. First, we as-
sume that the error terms in the empirical equations exhibit first-order
serial correlation, meaning that unobserved factors influencing usage
decisions in a given state will be similar from one year to the next.
Second,we allow for behavioral inertia by including the one-year lagged
value of the dependent variable as a right-hand-side variable. We spec-
ify the equations as linear in parameters andwithmost variables in log-
arithms, and for reasons explained later we add variables that are
5 Note that operating costs other than fuel are not included explicitly, mainly because
they either are fixed in nature (hence belong in the second rather than the first equation)
or donot vary enough across our data set to obtain useful coefficients. As a result,wemake
no attempt to measure a demand elasticity with respect to total operating cost, but only
with respect to fuel cost.

6 The “direct rebound effect” is distinguished from various further responses that may
occur in general equilibrium, such as responses to associated vehicle price increases, in-
duced changes in the consumption of other goods, and institutional changes in fuel-tax
rates. See Borenstein (2013) for a helpful taxonomy. Our view is that the direct rebound
effect is the most useful behavioral quantity that might be considered at least somewhat
generalizable across situations, and that other effects should bemodeled specifically with-
in any particular regulatory scenario. Specifically, we seek a measure that mainly reflect
the demand side of the market, rather than incorporating supply adaptations which will
be specific to market organization and manufacturer strategies. The one exception to this
is the equation explaining fuel intensity, which necessarily incorporates both demand-
side and supply-side features.
interactions between selected exogenous or endogenous variables Z1m

and fuel cost. Thus we estimate the following system:

vmað Þt ¼ αm � vmað Þt−1 þ αmv � vehstockð Þt þ βm
1 � pmð Þt þ γm

1 � Zm
1

� �
t pmð Þt þ βm

3 X
m
t þ um

t

vehstockð Þt ¼ αv � vehstockð Þt−1 þ αvm � vmað Þt þ βv
1 � pvð Þt þ βv

2 � pmð Þt þ βv
3X

v
t þ uv

t

fintð Þt ¼ α f � fintð Þt−1 þ α fm � vmað Þt þ β f
1 � pfð Þt þ β f

2 � cafeð Þt þ β f
3X

f
t þ uf

t

ð4Þ

with autoregressive errors:

uk
t ¼ ρkuk

t−1 þ εkt k ¼ m; v; f :

Note that fintmeasures fuel intensity (gallons permile), which is the
reciprocal of fuel efficiency. Here, lower-case notation indicates that the
variable is in logarithms.

In this notation, Eq. (3) and its long-run counterpart derived in Small
and Van Dender (2007) imply that the short- and long-run rebound
elasticities are:

εM̂;PM ¼ εM;PM þ αmvβv
2

1−αmvαvm ð5aÞ

εLM̂;PM ¼ εM;PM � 1−αv� �þ αmvβv
2

1−αmð Þ 1−αvð Þ−αmvαvm : ð5bÞ

These equations make explicit that our system accounts for the ef-
fects of a change in regulations through two potential pathways: the di-
rect effect of fuel cost on driving and the indirect effect arising through
induced changes in the vehicle stock. Empirically, we find that the first
path is by far the dominant one, so that one could ignore the second
path as an approximation; this may simply indicate that decisions on
number of vehicle to own are governed mainly by factors other than
the fuel cost of driving.

2.2. Data and empirical specification

The data set used here is a cross-sectional time series, with each var-
iable measured for 50 US states (plus District of Columbia), annually for
years 1966–2009. Variables are constructed from public sources, mainly
from the US Federal Highway Administration (FHWA), US Census
Bureau, and US Energy Information Administration.7 In addition, we
have collected variables on media attention to gasoline prices, as
described in Section 3.4.

In Appendix A, we list the primary variables used in the statistical
estimation. All the dependent variables, and many others as well, are
measured as natural logarithms; variable names starting with lower
case letters are logarithms of the variable described. All monetary vari-
ables are real (i.e., inflation-adjusted). Each of these variables is updated
to 2009using the sameor a similar source as before. However, in several
cases, the responsible agency has revised the numbers for earlier years.
We have taken advantage of these revisions in the updated data series
used here.8

These data on VMT and fuel efficiency, two of our dependent vari-
ables, are subject to well-known quality problems, especially the inter-
related ways that FHWA calculates VMT and fuel efficiency based on
data obtained from individual states. Greene (2012, p. 18) provides an
excellent discussion. He concludes that the resulting errors are unlikely
to cause large errors in year-to-year changes in these variables. It is
those year-to-year changes that drive our results, due to our use of
state fixed effects.
7 See Small andVanDender (2007) for a full description of data sources and a discussion
of possible weaknesses.

8 In Small and Hymel (2013)we have compared estimates with andwithout these data
revisions, ascertaining that they did not have important effects on the results.
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The variable cafe measuring the stringency of CAFE standards is, as
before, constructed by using a reduced-form version of the model sys-
tem to predict the desired fuel intensity under a counter-factual scenar-
io where CAFE standards are absent, then taking the logarithm of the
ratio of that desired efficiency to the actual CAFE standard.9 This variable
is judged unsatisfactory by Greene (2012), who offers an alternative
based on the hypothetical fleet average fuel efficiency if manufacturers
were tomeet CAFE standards exactly in each year.While it would be in-
teresting and valuable to analyze these (and possibly other) approaches
in terms of their efficacy in explaining fuel intensity, doing so would
have little effect on the VMT elasticities onwhichwe focus here because
the variable cafe enters only the equation for fuel intensity, not that for
vehicle-miles traveled.10

As in Small and Van Dender (2007), the estimation uses three-stage
least squares, accounting for first-order autocorrelation by transforming
the equations into a nonlinear system and defining instrumental vari-
ables as described there. It includes state fixed effects, but not time
fixed effects (year dummies) because early experimentation revealed
that this removed toomuch of the needed variation in variables, leading
to very imprecise estimates.11
3. Empirical results

A major limitation of the previous literature is its inability to deter-
mine whether or not the rebound effect has changed over time.
Theoretical arguments, especially by Greene (1992), suggest that it
should. Basically, the argument is that the responsiveness to the fuel
cost of driving will be larger if that fuel cost is a larger proportion of
the total cost of driving. If initial fuel cost is high, that increases the pro-
portion; but if the perceived value of time spent in the vehicle is high,
either because of congestion (closely related to urbanization) or be-
cause of a high value of time (closely related to income), that decreases
the proportion. Thus we expect the rebound effect to increase with in-
creasing initial fuel cost, and to decreasewith increasing income and ur-
banization. On the few occasions when such factors are even discussed,
most analysts have presumed that income is the dominant one and
therefore have hypothesized a decline in the rebound effect over time,
due to rising real incomes. Most previously used data sets, however,
have covered too short a time span to test any of these arguments
satisfactorily.12

With the longer time span used here (44 years), there is a much bet-
ter opportunity to see such changes. We explore them in three distinct
ways. First (Section 3.1), we see whether the basic model, estimated
over different time periods but each with a constant rebound effect,
yields different results. We find a substantial diminution in the rebound
effect in the period since 1995. As for the decade beginning in 2000, the
data series is too short to apply this methodology.
9 We have not adjusted the estimated standard errors of our coefficient for the fact that
we use predicted values to construct an independent variable means. Thus our reported
standard errors are probably slightly understated.
10 See Small andVanDender (2007, Section 3.3.3) andGreene (2012, Section 4.1) for dis-
cussions of strengths and weaknesses of our cafe variable and two alternatives.
11 In addition, doing so wouldmake the identification of the VMT elasticity more depen-
dent on state-specific price fluctuations, whichmight be due to short-term turmoil in gas-
oline markets leading drivers to expect such price changes to be erratic and temporary.
(We are indebted to James Sallee for this point.)We do control for time through the dum-
my variable for years 1973 and 1979, and a single time trend in the vma equation and
three time trends in the fint equation; experimentation did not reveal more complex time
trends that could be reliably estimated.
12 Two recent exceptions are the studies by Wadud et al. (2007a, 2007b) using time-
series cross sections of individual households from the US Consumer Expenditure Survey.
Cross-sectionally, they find that the absolute value of the price elasticity of fuel consump-
tion has a U-shaped pattern with respect to income, taking values of 0.35 for the lowest
income quintile, falling to 0.20 for the middle, and rising again to 0.29 for the highest
(Wadud et al. 2007b, Table 2). Butwhen they hold other variables constantwhile allowing
income to vary both cross-sectionally and over time (1997–2002), they find that the elas-
ticity declines inmagnitude with income, from 0.51 in the lowest two income quintiles to
0.40 in the highest.
Second (Section 3.2), we explore income, fuel costs, and urbaniza-
tion as the causes of these changes. Each of these factors is entered in
the model in such a way that the rebound effect can vary with it rather
than varying over time in an unexplained manner. We find results con-
sistent with those of Small and Van Dender: the rebound effect declines
with increasing income and urbanization, and it increases with increas-
ing fuel cost. By far the most important of these sources of variation is
income, whose effect is large enough to greatly reduce the projected re-
bound effect for time periods of interest to current policy decisions.
Despite these controls, we find a consistent negative coefficient
(indicating a strengthening of the rebound effect) for a dummy variable
for years 2003–2009 when it is added to the vma equation, suggesting
some additional unaccounted-for factors that have strengthened the
rebound effect.

Third (Section 3.3), we consider asymmetry in the response to in-
creases and decreases in fuel prices, finding a much larger response to
increases. We also consider the possible role of media coverage and
price volatility in explaining this asymmetry, finding that they explain
about half of the previously mentioned upward shift in the rebound
effect during 2003–2009.

We focus on the three-equation model of Small and Van Dender
(2007) because it is simpler and somewhat less sensitive to specifica-
tion than the four-equation model of Hymel et al. (2010). While the
latter is theoretically more complete, it is more complex and estimating
it requires imputation of pre-1980 congestion values, thereby introduc-
ingmore places for data uncertainties to affect the results. However, we
have estimated most specifications described here using the four-
equation model, and occasionally comment on the results.

3.1. Variation by time period

This section presents the results of including variable pm (log fuel
cost per mile), without any interactions but with all other controls, in
the equation explaining vma (log vehicle-miles traveled per adult).
That is, we estimate system (4) setting γ1

m = 0. The coefficient of pm
is the “structural”VMT elasticity, i.e., εM,PM, which as noted earlier differs
little from the partial-reduced-form elasticity given by Eq. (2).

In order to see whether the rebound effect changes over time, we
carry out this estimation on the full sample and on two subsamples:
1966–1995 and 1996–2009. Table 1 shows that the estimated structural
elasticity falls inmagnitude by 46% between these two time periods. For
completeness, the table also shows the results of applying the samepro-
cedure to the four-equation model of Hymel et al. (2010); in that case
the decline in the later time period is even more pronounced. In both
cases, the estimated long-run rebound effect is approximately five
times as large as the short-run version, based mainly on the estimated
coefficient of the lagged dependent variable.13

This result of a falling rebound effect is consistent with results noted
earlier by Hughes et al. (2008) and Greene (2012).

3.2. Variation of rebound effect with income, fuel cost, and other variables

This section explores how the main specification of Small and Van
Dender is affected by the addition of new data covering years
2002–2009.

Table 2 shows selected results from our main specification (Model
1), in which three variables—income, fuel cost, and urbanization—are
13 In the three-equation models, that coefficient, denoted by αm in Eq. (4), varies be-
tween 0.82 and 0.84 for the “full” and “early” samples. Applying Eqs. (5a) and (5b) when
αmv and/orαvm are small, the ratio of long-run to short-run rebound effect is approximate-
ly 1 / (1 − αm), or 5.6 to 6.3. The coefficient is not well estimated in the “late” sample. The
elasticity formulas for the four-equation model are more complex (see Hymel et al. 2010,
Eq. (14)) and not as easily approximated. As noted in Hymel et al. (2010, p. 1227), persis-
tent measurement error in some of the variables could be interfering with an accurate
measurement of αvm, causing us to overestimate the ratio between long- and short-run
elasticities.



17 Even without the new CAFE standards recently promulgated for new cars of model
years 2017–2025, EIA (2012) projects new-vehicle fuel cost per mile to be roughly flat
over the period 2015–2035.
18 One possibility we do not explore is that the shape of the income distribution had
changed, specifically thatmuch of the increased average income in recent yearsmeasured
occurred only at the top of the income distribution, whereas most of the driving is
accounted for by people in the lower parts of the distribution.
19 The estimates from a version of Model 1 without years 2008 and 2009 also yielded
smaller rebound effect estimates compared to the 1966–2009 version.
20 We also estimated a version of Model 1 adding the national unemployment rate as a
variable in each of the three equations (see Appendix B, Table B2, Model 1a). We thank
Robert Mendelsohn for suggesting this improvement in the model. The variable is
expressed as a percentage. The result suggests that unemployment increases fuel intensi-
ty, probably because it causes drivers to keep older cars. Including this variable makes the
price variable in the fuel intensity equation stronger and statistically significant. It makes
very little difference otherwise, so we omit this variable in our subsequent discussion in
order to use the previously published version of themodel as our starting point for further
changes.
21 Specifically, when this decomposition of pm is applied to the four-equation counter-
part of Model 1, the coefficient of pf is −0.0544 (0.0035) and that of fint is −0.0232

Table 1
Short-run structural elasticity of VMT with respect to fuel cost, estimated over different
time periods (no interacting variables).

Sample: Full Early Late

1966–2009 1966–1995 1996–2009

Coefficient of pm (standard errors in parentheses)
Three-equation model −0.0447 −0.0458 −0.0246

(0.0029) (0.0037) −0.0071
Four-equation model −0.0440 −0.0469 −0.0131

(0.0030) (0.0058) (0.0075)

Note: This table shows the coefficient of log real fuel cost per mile (pm), which is an en-
dogenous explanatory variable in the equation explaining log vehicle-miles traveled per
adult (vma) in a state in the U.S. That equation is part of a three- or four-equation model
system also explaining number of vehicles, average fuel efficiency, and (in the 4-equation
version) congestion. The control variables are described in Appendix A. The set of control
variables for this table is similar to the set used inModel 1 in Table 2, differing only by not
including any interacting variables.
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interactedwith fuel cost, thereby allowing the estimated structural VMT
elasticity to vary with those three variables.14 All three are entered in
normalized form, meaning their mean values have been subtracted
off, so that the coefficient of pm itself gives the structural VMT elasticity
computed at mean values of these three interacting variables. Note
that one of the interacting variables is pm itself, meaning that the
interacted variable is pm2. In each case, the incremental effect of vari-
able Z on the rebound effect is given by ∂(∂vma/∂pm)/∂Z.15 Since
∂vma/∂pm b 0 atmost variable values, a negative coefficient on γ1

m indi-
cates that higher values of Z imply larger absolute elasticities, i.e., larger
rebound effects.

The results for Model 1, our base specification, have only one impor-
tant difference from the results of using the shorter sample, 1966–2001,
of Small and Van Dender (2007). On that shorter sample, the coefficient
on pm2 was estimated to be smaller and statistically insignificant.16 We
think the additional variation in fuel prices during the 2000s enables us
to measure this coefficient more precisely.

Table 2 also shows amodel, namedModel 2, that allows for an addi-
tional unexplained shift in the structural VMT elasticity starting in 2003.
This starting year, chosen mostly by trial and error, marks roughly the
time when it became apparent that a major rise in fuel price was
underway.

The lower panel of the table shows elasticities calculated at two dif-
ferent sets of average values of interacting variables: the average over
the full sample and that over the last ten years of the sample. As in the
earlier paper, there is a substantial drop in their absolute values, al-
though it is much less in Model 2 due to the boost given by the
dummy variable for 2003–2009. Model 2 shows a strong upward shift
of 0.025 in the absolute value of the short-run structural VMT elasticity
starting in 2003. Nevertheless, the effect of income remains strong,
in fact slightly stronger. As a result, it fully counteracts the upward
structural shift, so the rebound effect is again smaller in magnitude
during the last ten years of the sample than over the entire sample.
Furthermore, one can anticipate that the downward influence of income
on the rebound effect will continue as incomes grow, whereas we have
no reason at this point to expect a further structural shift or even the
continuation of the one exhibited by the variable Dummy_2003_09.
And even if fuel prices continue to rise, the resulting upward pressure
will not likely overcome the downward pressure because the coefficient
14 Income per capita (inc) and fuel cost per mile (pm) are in logarithms; urbanization
(Urban) is a simple ratio (fraction of population living in urban areas). Our naming con-
vention uses all lower case for variables in logarithms, but a capitalized name otherwise.
15 Hence if γ1

m = (γ1k
m , k= 1, 2, 3) is the coefficient vector of these three interacted var-

iables, as in Eq. (4), this incremental effect is equal to γ1k
m for the appropriate value of k in

the case of variables inc and Urban, and is equal to 2γ1k
m in the case of variable pm.

16 Coefficient estimate −0.0074, standard error 0.0069. The 1966–2001 results de-
scribed here do not precisely match the published results from the earlier paper because
we have taken advantage of some data revisions to improve the accuracy of our variables.
of pm2 is too small, and projected increases in fuel efficiency are likely to
offset some or all of the increases in fuel price.17

Model 2 does not fully account for the large differences by time
period illustrated by Table 1. This is not surprising, since the use of
this dummy variable is an admission of ignorance about what might
be changing. Thus, in subsequent sections of the paper we pursue a
more complete explanation of what changed starting in the early
2000s.18

We also estimated Model 2 omitting years 2008 and 2009, in
order to evaluate the effect of the financial crisis on the rebound effect.
This change decreases the rebound effect through changes in pm, pm2,
and pm ∗ inc. The short run rebound effect falls by about 1 percentage
point and the long run rebound effect falls by about 8 percentage
points, relative to the version of Model 2 that includes years 2008
and 2009. One would expect that drivers would be more sensitive to
driving costs following the financial crisis, and our estimation bears
that out.19

As detailed in Small and Hymel (2013), we obtain comparable re-
sults with the four-equation model of Hymel et al. (2010).20

We hoped our longer data set would enable us to better test the as-
sumption implicit in Eq. (1) that consumers respond equally, in elastic-
ity terms, to fuel price and fuel intensity (the inverse of fuel efficiency).
This assumption is tested by simply replacing the variable pm by two
variables equal to its two constituents, namely pf and fint. When we
do this, we find the variable fint to have a very small but imprecisely
measured coefficient, just as in our earlier papers. However, in the
four-equation model, we obtain statistically significant and quite
different coefficients on the two variables.21 Like Gillingham (2011,
Table 3.4 and Section 3.1.3) and Greene (2012), we find that fuel inten-
sity has a smaller impact on driving than does fuel price. Nevertheless
we remain agnostic about whether the difference in coefficients of
fuel price and fuel intensity reflects a real difference in behavior or a
measurement problem.22 By maintaining the hypothesis of equality,
we are conservative both in the sense of adhering to standard theory
and of ensuring that we do not underestimate the rebound effect on
this account, so that our overall finding of rather low rebound effects
is not undermined.
(0.0107), with standard errors in parentheses.
22 Greene (2012) offers two possible explanations for why the theoretically expected
equal and opposite elasticities with respect to fuel price and fuel efficiency seems not to
be found empirically in most studies. First, historically the changes in fuel efficiency are
closely tied to CAFE regulations which also raise vehicle purchase costs; we try to control
for this through the vehicle price variable in our vehstock equation, but that variable's es-
timated coefficient is very small and it may inadequately measure this effect. Second, his-
torical changes in fuel efficiencyhavebeenverygradual and somaybe empirically difficult
to distinguish fromother factors—in contrast to changes in fuel price,which have occurred
suddenly and frequently. We would add a third explanation, which is perceptual: drivers
may simply pay more attention to changes in fuel price, which is visible and prominently
publicized, than to fuel efficiency.



Table 3
Selected coefficient estimates: base model and asymmetric model (three-equation
models).

Equation and variable: Model 1 Model 3

Coeff. Std. error Coeff. Std. error

vma equation:
pm = pf + fint −0.0466 0.0029 −0.0639 0.0049
pf_cut + fint 0.0340 0.0078

Table 2
Equations explaining vehicle-miles traveled (selected coefficients and elasticities: three-equation models).

Variable Model 1 Model 2 Model 2

1966–2009 1966–2009 1966–2007

Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.

pm −0.0466 0.0029 −0.0464 0.0029 −0.0413 0.0031
pm ∗ Dummy_2003_09 −0.0251 0.0076
pm ∗ Dummy_2003_07 −0.0176 0.0080
pm ∗ inc 0.0528 0.0108 0.0699 0.0121 0.0791 0.0123
pm2 −0.0124 0.0059 −0.0113 0.0060 −0.0111 0.0060
pm ∗ Urban 0.0119 0.0094 0.0078 0.0096 0.0124 0.0096
vma lagged 0.8346 0.0102 0.8279 0.0105 0.8151 0.0110

Calculated rebound elasticities:
1966–2009 1966–2009 1966–2007

Short run −0.047 −0.050 −0.041
Long run −0.295 −0.309 −0.231

2000–2009 2000–2009 2000–2007
Short run −0.028 −0.042 −0.026
Long run −0.178 −0.255 −0.148

Note: See note to Table 1. Variables inc andUrban are log real per capita income and the (unlogged) fraction of the state that is urbanized, respectively. The full list of other control variables,
and their estimated coefficients for Model 1, can be found in Table B2 in Appendix B.
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3.3. Asymmetry in response to price changes

We now consider factors that may have contributed to the apparent
structural break in 2003. In this section we consider asymmetric re-
sponse to price changes; in Section 3.4 we consider media coverage
and price volatility.

Evidence suggests that for various types of energy purchases, de-
mand is more responsive in the short run to increases than to decreases
in operating cost.23 In this section, we investigate whether such asym-
metry applies to vehicle-miles traveled.

3.3.1. Models based on rises versus falls of fuel price
We decompose our fuel price variable into separate components,

similarly to Dargay and Gately (1997). We have simplified their three-
way decomposition into a two-way decomposition, and do so for each
state in our sample.24 In this subsection, we decompose pf, the loga-
rithm of fuel price; in the next subsection we decompose pm, the loga-
rithm of fuel cost per mile.

The decomposition of fuel price for state i in year t is as follows:

pf i;t ¼ pf i;1966 þ pf risei;t þ pf cuti;t ;

where pf_risei,t and pf_cuti,t are the cumulative effects of all annual in-
creases and decreases, respectively, since the start of the sample (here
1966):

pf risei;t ¼
Xt

1967

max pf i;t−pf i;t−1

� �
;0

h i

pf cuti;t ¼
Xt

1967

min pf i;t−pf i;t−1

� �
;0

h i
:

Thus the coefficients of pf and variables constructed from it are re-
placed, in our asymmetric specifications, by two separate coefficients,
one depending on upward annual changes and the other on downward
23 For example, energy and oil demand (Gately andHuntington 2002, Dargay andGately
2010); transportation fuels (Dargay and Gately 1997); and motor vehicle ownership
(Dargay et al. 2007).
24 We do this by not distinguishing between increases that occurred before and after the
maximum price observed in the data. In addition, we do not place special importance on
the year 1973 as do Dargay and Gately (1997), in part because we already have a dummy
variable in our specification to capture special influences on travel behavior during that
year.
annual changes. Because we account for state fixed effects in our speci-
fication (i.e., there is a constant term for every state), pfi,1966 is absorbed
into the fixed effects andwe need only any two of the three variables pf,
pf_rise, and pf_cut. Themost convenient choice proves to be the two var-
iables, pf and pf_cut; the effect of price increases is then given by the co-
efficient of pf, while the effect of price decreases is given by the sum of
the coefficients of pf and pf_cut. These variables replace pf in both the
equation explaining the logarithm of vehicle-miles traveled (vma) and
that explaining the logarithm of fuel intensity (fint).We also include in-
teractions of one or both of these variables with income, fuel cost per
mile, and urbanization.

The results for our preferred specification, labeledModel 3, are sum-
marized in Table 3. The symmetric Model 1 is shown for comparison.
These results suggest that the fuel-cost elasticity of vma becomes mod-
estly larger in absolute value when it applies only for price increases,
and smaller for price cuts. Specifically, the direct short-run effect on
driving of a price increase is more than twice as large as that of a price
cut (−0.0639 compared to −0.0639 + 0.0340); and it is one-third
larger than the effect measured in the model assuming symmetry.
Greene (2012) measures similar differences between the effects of ris-
ing and falling prices, although he cannot rule out statistically that
they are identical.

In the asymmetric model just described (Model 3), a change in fuel
efficiency, unlike a change in fuel price, has the same impact on vma
regardless of whether fuel efficiency is increased or decreased.
Furthermore, the model posits that an increase in fuel efficiency has
the same impact (in percentage terms) as that of a fuel price cut. This
pm ∗ inc 0.0528 0.0108 0.0577 0.0107
pm2 −0.0124 0.0059 −0.0207 0.0061
pm ∗ Urban 0.0119 0.0094 0.0131 0.0093
vma lagged 0.8346 0.0102 0.8334 0.0104

fint equation:
pf + vma −0.0050 0.0041 −0.0097 0.0060
pf_cut + vma 0.0143 0.0123

Note: See note to Table 2. The fint equation explains fuel intensity (the inverse of fuel
efficiency). The variable pf is log real fuel price. See text for pf_cut.



Table 4
Alternate estimators: selected coefficients from the vma equation (three-equationmodel).

Variable Model 3 Model 3 Model 3

3SLS 3SLS no trend
variable

GMM no trend
variable

Coefficient Std.
error

Coefficient Std.
error

Coefficient Std.
error

Trend 0.0013 0.0004
vma lagged 0.8334 0.0104 0.8347 0.0101 0.8462 0.0141
pm=pf+ fint −0.0639 0.0049 −0.0545 0.0035 −0.0480 0.0034
pm2 −0.0207 0.0061 −0.0291 0.0056 −0.0146 0.0060
pm ∗ inc 0.0577 0.0107 0.0498 0.0105 0.0354 0.0117
pm ∗ Urban 0.0131 0.0093 0.0186 0.0092 0.0218 0.0100
pf_cut + fint 0.0340 0.0078 0.0142 0.0038 0.0096 0.0039

Note: See note to Table 2; this table refers to the first equation (vehicle-miles traveled) of
the 3-equation system.
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makes sense from a theoretical standpoint becausemost of the changes
in fuel efficiency we are interested in are improvements, i.e., they lower
the fuel cost per mile just like price cuts. Furthermore, the pathways by
which consumers consider fuel efficiency are quite different from those
by which they consider fuel prices, so whatever is causing asymmetry
need not affect both parts of fuel cost in the same way.25

The estimated coefficients of the interaction terms fromModel 3 are
similar to those from Model 1; the rebound effect increases with fuel
price and decreases with income. But in the asymmetric model, the co-
efficient on pm2 is larger in magnitude than in the model without
asymmetry.26 27

We also estimated Model 3 using the generalized method of mo-
ments (GMM) estimator instead of three stage least squares (3SLS).
One drawback of the 3SLS estimator is the difficulty involved in calculat-
ing clustered standard errors for amodel as complex asModel 3. If there
is indeed correlation in the standard errors within an individual state
across years, the usual standard errors are not consistent. We can,
however, calculate standard errors clustered at the state level for our
primary model (3) by using the GMM estimator if we omit the time
trend variables. Doing so also enables us to compare results across
these two types of estimators.

Table 4 shows select results for three versions of Model 3: the left
column uses 3SLS as before, the middle column uses 3SLS but drops
the time trend variable, and the right column uses GMM without the
time trendvariable. TheGMMpoint estimates and standard errors relat-
ed to the rebound effect have a pattern broadly similar to those obtained
from the 3SLS estimator, although they are all smaller in magnitude.
Some of the difference is a result of excluding the time trend variable,
while some is attributable to the change in estimator. Nevertheless,
the implications of the GMM results are mainly consistent with those
from 3SLS, and this remains true for alternate model specifications pre-
sented below. Finally, using the GMMestimator, we find that clustering
the standard errors either by state or by year changes the standard er-
rors of coefficients very little (not shown in the table).28

An alternative view of how asymmetrymightwork is that the differ-
ence in response between fuel price rises or cuts is not so much in the
magnitude, but in the speed with which the response occurs. All the
models considered in this paper already have an “inertia” built into
them, in the form of a lagged dependent variable which governs the
speed of response to all variable changes. But in Model 4 in Table 5,
we allow also for the possibility that the speed of the response differs
25 Nevertheless, from a purely empirical point of view, the specification is arbitrary in
that we could equally easily have used the variable pf_cut instead of pf_cut + fint—that
is, we could have assumed that a change in fuel efficiency is viewed like a rise in price,
not like a fall in price. Ideally we would include both variables, but this would effectively
amount tomeasuring separate elasticities on pm and fintwhich, as explained inSection3.2,
our data seem mostly incapable of distinguishing. Also, for Model 3 the regression
predicting desired fuel efficiency (which is an input to the cafe strictness variable) did
not perform as expected. Its estimated coefficient for pf_cut + fint has the incorrect sign
and is insignificant. We performed a sensitivity test by using the cafe variable fromModel
1 in the Model 3 regression; we found that this had a negligible impact on the estimates
shown here.
26 We find very similar behavior if the unemployment rate is included in both the vma
and fint equations, just as in Model 1a (as described at the end of Section 3.2). This model
is reported in Appendix B asModel 3a. Just as withModel 1a, this model is superior in that
it exhibits the expected effect of fuel price on desired fuel efficiency, in the form of a sta-
tistically significant coefficient for pf + vma in the fint equation. Nevertheless, this im-
provement makes essentially no difference to the results discussed in this paper.
27 We also estimated a version of Model 3 in which the fuel-price variables were mea-
sured innominal rather than real dollars; (We thank Stuart Rosenthal for this suggestion.).
Themotivation for thismodel was the possibility that nominal price changes aremore no-
ticeable to drivers than real changes. The results, however, showed only a small and non-
significant difference between drivers' responses to fuel price rises and cuts. This finding
lends support to our primary asymmetric models and suggests that drivers are most re-
sponsive when fuel prices rise faster than inflation.
28 Clustering does not change the statistical significance of any of the variables in the
model, except that the coefficient of pm ∗ Urban becomes statistically significant when
the GMM estimator is used to cluster by year (mainly because the coefficient becomes
larger).
between rises and cuts in fuel price. This is done by adding various
lags of pf_rise and pf_cut.

The results suggest that adjustment to price rises takes place quickly;
the response elasticity is large in the year of and the first year following
a price rise, then diminishes to a smaller yet substantial value. But the
adjustment to price cuts occurs more slowly: in absolute value it is the
smallest in the year of the change (0.0140); takes its largest value
after one year (0.0626, from the sum of pf_cut + fint and pf_cut(-1)
+ fint in Table 5); then retreats to a value of 0.0215 (sum of all four co-
efficients) after three years. These response patterns are shown in Fig. 1.
3.3.2. Models based on rises versus falls of fuel cost
We also estimated models that base the asymmetry on the variable

measuring fuel cost per mile (pm), instead of on fuel price (pf). These
models assume that people respond differently depending on whether
their fuel cost per mile is rising or falling, regardless of whether this is
due to a change in fuel price or in fuel efficiency. The variables used
are formed analogously to the previous subsection: fuel cost per mile,
pm (the price of mileage), is decomposed into pm_rise and pm_cut.

This decomposition raises a new problem because pm_rise and
pm_cut are, like pm, endogenous. In the symmetric model, endogeneity
Table 5
Selected coefficient estimates: asymmetry in response to fuel price (three-equation
models).

Equation and variable: Model 3 Model 4

Coeff. Std. error Coeff. Std. error

vma equation:
pm = pf + fint −0.0639 0.0049
pf_rise −0.0792 0.0144
pf_rise(−1) −0.0023 0.0197
pf_rise(−2) 0.0381 0.0130
pf_cut + fint −0.0140 0.0095
pf_cut(−1) + fint −0.0486 0.0141
pf_cut(−2) + fint 0.0171 0.0150
pf_cut(−3) + fint 0.0239 0.0108

pm ∗ inc 0.0535 0.0112 0.0340 0.0121
pm2 −0.0180 0.0062 −0.0322 0.0069
pm ∗ Urban 0.0187 0099 0.0328 0.0103
pf_rise ∗ media
pm ∗ sqrt(fuel price var)
vma lagged 0.8334 4 0.8571 0.0125

fint equation:
pf + vma −0.0097 0.0060
pfrise 0.0020 0.0063
pf_cut + vma
pf_cut −0.0215 0.0099
vma −0.0147 0.0172

Note: See note to Table 3. See text for definitions of pf_rise, pf_cut, and their lagged values
(given in years).



Table 6
Selected coefficient estimates: asymmetry in response to fuel price or fuel cost per mile.

Equation and variable: Model 3 Model 5

Coeff. Std. error Coeff. Std. error

vma equation:
pm = pf + fint −0.0639 0.0049 −0.0623 0.0055
pf_cut + fint 0.0340 0.0078
pm_cut_hat 0.0284 0.0093

pm ∗ inc 0.0577 0.0107 0.0535 0.0112
pm2 −0.0207 0.0061 −0.0180 0.0062
pm ∗ Urban 0.0131 0.0093 0.0187 0.0099
vma lagged 0.8334 0.0104 0.8084 0.0122

fint equation:
pf + vma −0.0097 0.0060
pfrise −0.0133 0.0062
pf_cut + vma 0.0143 0.0123
pf_cut 0.0042 0.0096
vma 0.0107 0.0166

Note: See note to Table 3.
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Fig. 1. Short-run elasticity of VMT with respect to a sustained change in fuel price (Model 4).
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of pm is accounted for as part of the three-equation model.29 But here
the problem is worse: the values of these new variables in any given
year depend on values taken by an endogenous variable (fuel intensity)
in previous years. A fully endogenous treatment of pm_rise and pm_cut
is thus not feasible, sowe have used an approximation: the variables are
replaced by predicted values, pm_rise_hat and pm_cut_hat, each of
which is the value predicted by a regression of the corresponding vari-
able on all the exogenous variables in the system— that is, on the instru-
ments in the 3SLS estimation routine. This procedure basically
replicates what instrumental variables do in the case of a simpler en-
dogenous variable, so the result of this approximation should be reason-
ably accurate although the standard errors of these variables may be
inaccurately measured.

Table 6 shows selected results of a specification, named Model 5,
analogous to that of Model 3 (which is also shown for comparison).
Note that each model contains three pm interaction variables. The coeffi-
cient on pm_cut_hat tells us the degree of asymmetry: it is positive, show-
ing that themagnitude of the elasticity is smaller for cost cuts than for cost
rises. The short-run rebound effect is given by elasticity −0.0623 when
per-mile fuel costs are rising, and −0.0339 (=− 0.0623 + 0.0284)
when costs are falling. The rebound effect is influenced by pm, income,
and Urbanmuch as before.

In Model 5, unlike those in the previous subsection, the response to a
change in fuel efficiency depends on what's happening to overall fuel
costs. If fuel price is rising more rapidly than fuel efficiency, then these
models predict that people would still respond to a small change in fuel
efficiency according to the combination of coefficients multiplying vari-
able pm—that is, they respond as they would to a rise in fuel price, even
if they are actually responding to a fall in fuel efficiency. The behavioral ra-
tionale is as follows: if fuel costs are rising due to increasing fuel prices
and this has heightened people's awareness, then an improvement in
fuel efficiencywould have a large effect on their driving decisions because
29 Formally, this is accomplished by entering the variable pm as the sumof two variables,
pf+ fint, where fint is the logarithmof fuel intensity (see Section 3, “Dependent variables”,
definition of 1/E). Since fint is the dependent variable of the third equation of our model
system, the simultaneous estimation performed by the three-stage least squares proce-
dure treats it as endogenous where it enters the first equation as part of pm.
it would help offset that fuel price rise at a time when they are highly
sensitive to it. This is a debatable assumption, as it implies a degree of ra-
tionality in calculating fuel costs that peoplemay not have in reality.30 For
this reason, we prefer the models of Section 3.3.1.
3.4. Media attention and expectations

Two important findings of previous sections are that the responsive-
ness of vehicle travel to costs sharply increased starting around 2003,
and that this responsiveness is much larger when fuel prices or costs
are rising than when they are falling. But why? In this section, we
consider two factors that may help explain these variations in
responsiveness.

The first factor is variations in media attention to fuel prices and
costs. Consumers tend tobemindful of gasolineprices, but not necessar-
ily at all times. So an increase in newsmedia coverage of gasoline and oil
marketsmayheighten consumers' attentiveness to price changes. Aswe
30 For example, Larrick and Soll (2008) find that consumers have difficulty calculating
the impact of fuel economy changes on fuel consumptionwhen fuel economy ismeasured
in miles per gallon. The authors refer to this phenomenon as the “MPG Illusion”.
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show in what follows, such coverage is not especially highly correlated
either with prices themselves or with their fluctuation. This could be for
several reasons. Newsmedia often reportmilestones regarding nominal
gasoline prices, such aswhen prices exceed their historical peak or cross
integer thresholds (e.g., going from $3.99 to $4.00 per gallon). Also,
news media may pay more attention when elections are near, when
there is political turmoil in oil-producing nations, or when domestic
oil-related issues such as a controversial pipeline or expanded produc-
tion from shale oil are contentious.

The second factor is volatility in fuel costs. Volatility could cause
consumers to adopt contingency plans and thus pay more attention to
fuel prices, even without help from the media. On the other hand,
consumers could ignore what they think are temporary price fluctua-
tions; for example, although consumers' most common expectation of
future prices is the current price, under some circumstances they appar-
ently expect some reversion to previous price levels.31 Volatility may
also activate risk aversion, but again it is not clear in which direction
this would work: would purchasers of motor vehicles regard fuel effi-
ciency as a risky investment, or as a hedge against the risk of higher fu-
ture operating costs? Thus it is unclear theoretically in which direction
volatility should affect consumers' responsiveness to price changes.
3.4.1. Data description
We construct measures of media coverage based upon gas-price-

related articles appearing in the New York Times newspaper. Using the
Proquest historical database, we tally the annual number of article titles
containing thewords gasoline (or gas) and price (or cost). We then form
a variable equal to the annual fraction of all New York Times articles that
are gas-price-related. This fraction ranged from roughly 1/4000 during
the 1960s to a high of 1/500 in 1974. Its logarithm, normalized by
subtracting its mean, is shown in Fig. 2. In the specifications shown
here, we use a dummy variable Media_dummy equal to one when the
ratio exceeds its 1996–2009 median value.32
31 Supporting evidence comes from two separate surveys, reported by Anderson et al.
(2013) and Allcott (2011), both of which asked people directly about their price expecta-
tions. Anderson et al. (2013) find that a randomwalk assumption accurately explains their
answers except in late 2008, when people expected (correctly, as it turned out) that the
recent fall in prices would prove to be temporary.
32 Media_dummy is equal to one in years 1973–1981, 1983, 1990–1992, 1994–1997,
2000, 2004–2006, and 2008. It is not normalized.
The validity of this variable relies in part on the New York Times' in-
fluence on other media outlets. Evidence of so-called “inter-media
agenda setting” suggests that other media follow the New York Times
when choosing their news topics. One study by Golan (2006) finds
that the topics covered by theNewYork Times in themorningwere cor-
related with evening broadcast news coverage topics, with correlation
coefficients between 0.14 and 0.26. In addition, it is reasonable to as-
sume that national topics such as gas-price changes would be similar
across news outlets even in the absence of direct influence of the New
York Times.

To measure volatility in fuel prices, we construct a variable whose
value in year t is the standard deviation of annual fuel prices over the
years t − 4 through t.33 (We choose this five-year interval as the most
likely time over which new vehicle purchasers would be aware of vola-
tility.) This measure, named Price_volatility, varies across states; the
average of its logarithm, by year, is plotted in Fig. 3.

Our measures of media attention and price volatility are only very
slightly correlated with each other (ρ=0.02), and onlymildly correlat-
ed with fuel cost per mile pm (ρ = 0.28 and 0.27). Furthermore, when
fuel cost per mile is regressed on these other two variables, the R2 is
only 0.19, and a residual plot (see Appendix A) shows substantial
33 Although use ofmonthly or quarterly fuel price datawould have been preferable, such
data do not exist at the state level prior to 1976.



Table 7
Selected coefficient estimates: asymmetry with media coverage and/or fuel-price uncertainty.

Equation and variable Model 3 Model 6 Model 7 Model 8 Model 9

Coeff. Std. error Coeff. Std. error Coeff. Std. error Coeff. Std. error Coeff. Std. error

vma equation:
pm = pf + fint −0.0639 0.0049 −0.0710 0.0052 −0.0587 0.0052 −0.0325 0.0088 −0.0351 0.0097
pf_cut + fint 0.0340 0.0078 0.0394 0.0080 0.0286 0.0081 0.0242 0.0089 0.0246 0.0092
pm ∗ Dummy_0309 −0.0277 0.0076 −0.0144 0.0086
pf ∗ Media_dummy −0.0301 0.0101 −0.0412 0.0102 −0.0443 0.0105
pm ∗ Price_volatility −0.0018 0.0005 −0.0011 0.0005
pm ∗ inc 0.0577 0.0107 0.0759 0.0122 0.0583 0.0109 0.0620 0.0113 0.0671 0.0131
pm2 −0.0207 0.0061 −0.0216 0.0061 −0.0053 0.0075 0.0204 0.0100 0.0107 0.0105
pm ∗ Urban 0.0131 0.0093 0.0099 0.0094 0.0118 0.0094 0.0025 0.0099 0.0056 0.0102
vma lagged 0.8334 0.0104 0.8265 0.0106 0.8325 0.0106 0.8439 0.0108 0.8397 0.0115

fint equation:
pf + vma −0.0097 0.0060 −0.0078 0.0059 −0.0124 0.0059 −0.0109 0.0058 −0.0093 0.0058
pf_cut + vma 0.0143 0.0123 0.0069 0.0120 0.0220 0.0120 0.0210 0.0119 0.0120 0.0117

Note: See note to Table 3. Dummy_0309 is a dummy variable for years 2003 and higher. See text for definitions of Media_dummy and Price_volatility.
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remaining unexplained variation. (These tests were performed on na-
tional average time series, since we observe media coverage only at
the national level, and they were performed before converting media
to a dummy variable.) Furthermore, our main specification includes a
quadratic of pm and interactions of it with two other variables. Thus,
we do not believe that these new variables will merely pick up nonlin-
earities or other specification errors in the price variable.

3.4.2. Specification and results
Table 7 shows several models which include the one or both of the

variables for media coverage and price volatility, each interacted with
either fuel price or fuel cost.34 The media variable is specified to influ-
ence the response to fuel price but not to fuel efficiency, because the
variable involves news about fuel prices; this is accomplished by
interacting it with pf and not pm. This implies that media coverage im-
pacts the rebound elasticity only indirectly, via changes in estimated co-
efficients. The volatility variable, by contrast, reflects a consumer's own
experience with variation in fuel costs, and therefore we specify it so as
to influence the response to both price and fuel efficiency (i.e., it is
interacted with pm rather than pf). For comparison, the table also
shows two models incorporating asymmetry but not media or uncer-
tainty (Models 3 and 6).

Models 7 and 8 show that both media coverage and price volatility
exert strong influences on theprice-elasticity ofmotor vehicle travel, in-
creasing the response to fuel price changes and, in the case of volatility,
to fuel efficiency changes aswell.35 In fact, the effect of price volatility is
so strong as to eliminate the previously observed positive effect of fuel
cost itself on the magnitude of the rebound elasticity: the coefficient
of pm2 is now reversed in sign and just barely statistically significant.
This suggests that the rise in themagnitude of the elasticity of VMT dur-
ing the 2000s was due more to volatility than to the higher level of fuel
price.36

Because we specified the media variable to interact with fuel price
but volatility to interact with fuel cost, the “rebound effect”, defined as
the response to changes in fuel efficiency, is increased in magnitude
34 As with other interacting variables, we normalize each variable by subtracting its
mean value on the entire sample; this is done for convenience so that the coefficient of
pf or pm measures the short-run structural VMT elasticity when all interacting variables
take their mean values in the sample.
35 The base response (coefficient of pm) is negative; therefore a negative coefficient on
an interaction term means that the magnitude of the response increases with the
interacting variable. Because these variables are multiplied by pf or by pm ≡ pf + fint,
and because pf ≡ pf_fire + pf_cut, the coefficients of the interactions are part of both
∂vma/∂pf_rise and ∂vma/∂pf_cut. The coefficient of pf_cut indicates a wedge between the
response to price rises and price cuts, a wedge whose size does not depend on the media
or volatility variable.
36 These same characteristics persist in the presence of a variable measuring unemploy-
ment, and if additional lags are added aswithModel 4. (The effects of those additional lags
show the same pattern, and nearly the same magnitudes, as in Model 4.)
by fuel-price volatility but not by media coverage. To put it differently,
given the assumptions of the specification, we find that media coverage
tends to intensify the effect of fuel prices, while fuel price volatility in-
tensifies the effect of per mile fuel costs whatever their source.
Furthermore,media coverage undoubtedly responds to consumer inter-
est and therefore could be correlated with other variables affecting
VMT, thusmaking it endogenous and limiting its usefulness for drawing
policy implications.

We noted earlier the appearance of a shift in the structural elasticity
toward higher values during the period 2003–09.Model 6 confirms that
this shift exists even in models with asymmetric responses.37 Model 9
reveals, however, that our media and volatility variables can explain
about half this shift. (Other models, not shown, demonstrate that
those two variables share approximately equally in this task of
explaining the shift.) The remainder of the shift (1.44 percentage points
of elasticity) is still unexplained, leaving room for future research to
uncover the missing factors.

3.4.3. Caveats and summary of quantitative results
The two new variables presented in this section explain approxi-

mately half of the observed increase in the rebound effect starting in
2003. But the extent to which these variables are useful in forecasting
future values of the rebound effect is somewhat limited, because they
are themselves difficult to forecast. Nevertheless, these findings could
guide future research aimed at predicting fuel consumption. Such re-
search may involve gaining a better understanding of the underlying
factors that govern media attention and fuel price volatility.

For completeness, Table 8 shows the long-run price elasticities and
fuel-cost elasticities of VMT, fuel efficiency, and fuel consumption
using our most preferred models. The elasticities are calculated using
Eqs. (5a) and (5b) and their counterparts as described by Small and
Van Dender (2007). The full estimation results for these three models
are listed in Appendix B.2.

4. Conclusion

The research reported here, extending Small and VanDender (2007)
with data through 2009, confirms the findings of previous studies
that the long-run rebound effect, measured over a period of several de-
cades extending back to 1966, is close to 30%. We also find a short-run
(one-year) rebound effect, again averaged over that entire period, of
about 4.7%.

Furthermore, we confirm earlier findings that the rebound effect
became substantially smaller in magnitude over the course of that
37 The variable Dummy_0309 is equal to one for years 2003–2009 and zero otherwise,
except here it has been normalized (like other variables interacted with pm) by
subtracting its mean, which is 7 / 44 = 0.159. (In Model 2, it was not normalizEd.)



Table 8
Long-run elasticities implied by preferred models.

Elasticities: Model 1 Model 3 Model 8

Price
rising

Price
falling

Price
rising

Price
falling

VMT with respect to fuel
efficiency:
At sample averagea −0.295 −0.184 −0.184 −0.052 −0.052
At US 2000–2009 avg.b −0.178 −0.042 −0.042 −0.040 −0.040

VMT with respect to fuel price:
At sample averagea −0.295 −0.397 −0.184 −0.214 −0.052
At US 2000–2009 avg.b −0.178 −0.255 −0.042 −0.202 −0.040

Fuel consumption with respect
to fuel price:
At sample averagea −0.322 −0.433 −0.249 −0.279 −0.146
At US 2000–2009 avg.b −0.213 −0.309 −0.130 −0.269 −0.136

a Elasticities measured at sample average values of pm, inc, & Urban for years 1966–2009.
b Elasticities measured at sample average values of pm, inc, & Urban for years 2000–2009.
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time period, probably due to a combination of higher real incomes,
lower real fuel costs, and higher urbanization. Our base model (Model
1) implies that the long-run rebound effect is 17.8% when evaluated at
average values of income, fuel cost, and urbanization over the years
2000–2009.

We also report somenew findings. There is strong evidence of asym-
metry in responsiveness to price increases and decreases. Thismakes in-
terpretation of the rebound effect more difficult, because it accentuates
the unresolved question as to whether travelers respond to a change in
fuel efficiency in the same way as to a change in fuel price.

In both symmetric and asymmetric responsemodels, there is an up-
ward shift in the rebound effect, of 2.5 to 2.8 percentage points, starting
in 2003.We introduce two new variables, which together explain about
half of this shift. The first is media coverage of fuel prices; the second is
fuel-price volatility. Both substantially increase travelers' responsive-
ness to changes in fuel price and/or fuel cost. Nevertheless, these influ-
ences are small enough in magnitude that they do not fully offset the
downward trend in VMT response elasticities due to higher incomes
and other factors. Hence even assuming that the variables retain their
2000–2009 values into the indefinite future, they would not prevent a
further diminishing of the magnitude of the rebound effect if incomes
continue to grow at anything like historic rates.
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