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The consumer response to changing gasoline prices has long interested economists and policymakers, for it has
important implications for the effects of gasoline taxation and vehicle energy efficiency policies. This study exam-
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1. Introduction

The United States consumes over 130 billion gallons of gasoline an-
nually, with the vast majority used in the transportation sector. The use
of fossil fuel in transportation leads to nearly 2 billion metric tons of CO,
being emitted into the atmosphere every year in the US—approximately
one-third of US greenhouse gas (GHG) emissions (EPA, 2014). In an
effort to reduce these emissions and imported oil, policymakers have
implemented a variety of measures, from Corporate Average Fuel Econ-
omy (CAFE) standards and the Zero Emissions Vehicle (ZEV) mandate,
to Renewable Fuel Standards (RFS) and Low Carbon Fuel Standards
(LCFS). In addition, the gasoline tax has been falling in real terms across
the United States (Jenn et al., 2015). The effects of changes in policies
such as gasoline taxes and fuel economy standards depend critically
on the consumer responsiveness to changes in relative prices engen-
dered by the policies.
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This paper examines how consumers change the amount they drive
in response to changing gasoline prices—and the heterogeneity in this
response. Such heterogeneity could come about due to different prefer-
ences, different urban spatial structures, and differences in the cost or
appeal of driving different types of vehicles. In this study we address
the following questions: are some consumers more responsive than
others? Is the response greater for different types of vehicles than
others, perhaps by fuel economy or age of vehicle? To answer these
questions, we use a massive dataset of over 75 million inspection re-
cords, which include odometer readings, covering 2000 to 2010.

We find a point estimate for the one-year gasoline price elasticity of
driving of —0.10. However, quantile regressions reveal that a high per-
centage of the vehicles are almost entirely inelastic in response to gaso-
line price changes. Further, we find that the lowest fuel economy
vehicles in the fleet drive the responsiveness, with higher fuel economy
vehicles highly inelastic with respect to gasoline price changes. Similar-
ly, we find considerable heterogeneity in the response by the age of the
vehicle, with drivers of vehicles in the age bracket of 3 to 7 years being
the most responsive.

These results not only shed light on the differing effects of changes in
gasoline prices, but also have clear implications for policy. If consumers
respond in the same way to changes in gasoline prices and gasoline
taxes, as might be expected, then our estimates can be interpreted as
the effect on driving from a marginal increase in the gasoline tax.! Our

T Itis possible that consumers respond differently to changes in taxes than to changes in
prices, perhaps due to differences in salience (Li et al., 2014).
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results thus provide guidance for the additional driving that might be
expected due to declining real gasoline taxes.

In addition, they also have implications for the gasoline and green-
house gas savings possible from fuel economy standards. With an im-
provement in fuel economy, the cost per mile of driving decreases and
consumers would be expected to drive more. This effect has come to
be known in the energy economics literature as the direct rebound ef-
fect: an increase in energy use that reduces or even eliminates the ener-
gy and greenhouse gas savings that would have been expected from the
efficiency improvement (Azevedo, 2014; Gillingham et al., in press;
Sorrell, 2007; Thomas and Azevedo, 2014). Itis considered a key param-
eter in the analysis of the costs and benefits of fuel economy standards;
indeed findings of positive net benefits often turn on this parameter
(Gillingham et al, in press).

It is common convention to use the price elasticity of demand for
driving as a proxy for direct rebound effect, a convention that is valid
under several assumptions, including that there are few substitute
goods and that consumers respond the same way to changes in the
cost per mile of driving regardless of the source of the variation
(e.g., gasoline price changes or fuel efficiency changes) (Chan and
Gillingham, 2015; Thomas and Azevedo, 2013).% Thus, our baseline
result may be interpreted as a proxy for the rebound effect, while
the finding of heterogeneity in responsiveness by vehicle type may
extend to heterogeneity in the rebound effect. However, as the true
direct rebound effect is by definition calculated based on an unob-
served counterfactual where fuel economy (not fuel prices) change,
we are cautious in this interpretation. Moreover, our findings of het-
erogeneity in the response to gasoline prices by vehicle fuel economy
and age raise further questions about the validity of the assumption
that consumers respond the same way to changes in the cost per mile
of driving regardless of the source of the variation.

The remainder of our paper is structured as follows. The next section
discusses the relevant literature, while Section 3 describes our unique
and rich registration dataset. Section 4 covers our empirical strategy
for estimating driving demand. Section 5 presents our results and
Section 6 concludes.

2. Relevant literature

This paper relates to an extensive empirical literature on gasoline
price elasticities of demand, but is one of only a few papers to esti-
mate a gasoline price elasticity of demand for driving, rather than de-
mand for gasoline. Of course, the two elasticities are closely related,
for the price elasticity of gasoline demand can be decomposed into
responses on both the intensive margin (i.e., driving) and extensive
margins (i.e., new vehicle purchase and scrappage), with the gaso-
line price elasticity of driving capturing the response on the inten-
sive margin (Gillingham, 2011). One of the earliest reviews of
studies estimating the price elasticity of the demand for gasoline
finds a mean (across studies) short-run estimate of —0.26 based on
studies from 1979 to 1991 (Dahl and Sterner, 1991). A somewhat
more recent review of studies from 1967 to 2000 finds estimates in
the range of —0.09 to —0.31 (Greening et al., 2000).3 These earlier
reviewed estimates did not have the benefit of the rich datasets
available today and in many cases did not carefully consider possible
endogeneity concerns.

More recently, there has been work indicating that the price elastic-
ity of gasoline demand has been decreasing over time in the United
States. Using different approaches and datasets, both Small and Van
Dender (2007b) (using pooled cross section data for the US states

2 An important reason for using gasoline price variation is that there is usually only
cross-sectional variation in fuel economy, which is less plausibly exogenous and perhaps
more difficult to instrument for than time series variation in gasoline prices.

3 Other notable reviews include Goodwin et al. (2004) and Graham and Glaister (2004),
both which review estimates ranging widely from near-zero to close to —1.

from 1966 to 2001) and Hughes et al. (2008) (who examined gasoline
demand from 1975 to 1980 and 2001 to 2006) show that during the pe-
riod of relatively low and stable gasoline prices in the late 1990s and
early-to-mid 2000s, consumers appear to have become even more in-
elastic, with estimated short-run gasoline demand elasticities in the
—0.03 to —0.08 range. These findings suggest that consumer respon-
siveness may vary depending on conditions, much as Gately and
Huntington (2002) show that there is an asymmetric consumer re-
sponse to increases and decreases in oil prices.

The possibility of varying consumer responsiveness is further
underscored by a set of more recent results that include data from
the late 2000s, when gasoline prices were rapidly changing. Hymel
and Small (forthcoming) update the previous Small and Van
Dender (2007b) analysis to 2009, and find evidence of a slightly
greater responsiveness during this time period. This result would
help reconcile the previous findings with recent results using odom-
eter reading data in the late 2000s showing a much more elastic re-
sponse in the gasoline price elasticity of driving in California;
Gillingham et al. (2013) estimates a “two-year” gasoline price elas-
ticity of driving for new vehicles of —0.22 and Knittel and Sandler
(2013) estimates a “two-year” gasoline price elasticity of driving
for all but the newest vehicles of —0.15. This difference already sug-
gests that consumers of vehicles of different ages may respond dif-
ferently, possibly due to different needs, preferences, or locations.

Our finding of a greater responsiveness for drivers of lower fuel
economy vehicles corresponds with similar findings from California by
Knittel and Sandler (2013) and Germany by Frondel et al. (2012).
What is new about our result is that it is based on actual annual odom-
eter reading data from all vehicles in a large area, rather than just older
vehicles in California or trip diary data from Germany. Similarly,
Gillingham (2011); Frondel et al. (2012) and Gillingham (2014) also
use quantile regression approaches to examine the driving responsive-
ness to gasoline prices, but this is the first paper to both examine all ve-
hicles using revealed odometer readings and include fixed effects in the
quantile regressions to address potentially correlated unobservables.

A few key points emerge from the literature, which are relevant to
interpreting our results. Since these estimated elasticities are often
being used in policymaking as a proxy for the rebound effect from fuel
economy standards, they suggest that the rebound effect may be chang-
ing over time and across geography. Furthermore, the few studies that
attempt to estimate the rebound effect more directly through an elastic-
ity of vehicle-miles-traveled (VMT) with respect to fuel economy, such
as Small and Van Dender (2007b), generally are in the same order of
magnitude, and with similar variation, as the studies discussed above
that focus on the fuel price elasticity (Azevedo, 2014). While we are
careful about interpreting our estimates directly as a rebound effect,
we believe that they contribute to the literature suggesting that the
price elasticity of driving and the rebound effect may be heterogeneous
and relatively close to zero in the short run.

3. Data
3.1. The Pennsylvania inspection program

This paper uses a dataset of over 7 million light duty vehicles, cover-
ing the years 2000 to 2010, resulting in over 75 million vehicle inspec-
tion records from mandatory annual inspections in Pennsylvania.
These annual inspections involve both a visual safety check and an on-
board diagnostic (OBD) test that electronically records and submits
emissions, odometer readings, zip code of the inspection station, other
vehicle information, and the date of inspection to the Pennsylvania De-
partment of Transportation. All light duty vehicles in Pennsylvania with
a model year after 1975, including hybrid electric vehicles, are required
to undergo the mandatory safety and emissions inspection. In addition,
anew inspection is required any time there is an update to a vehicle reg-
istration, such as a change of address or ownership. In the case of a failed
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Fig. 1. Zip codes by date for which the inspections requirements were introduced in Pennsylvania, from 2000 through 2010. Annual inspections are not required in the white areas of the

state.
Source: http://www.drivecleanpa.state.pa.us/.

inspection, drivers must repair the vehicle and follow up with a free
inspection within 30 days.*

The mandatory inspection program was rolled out over a several
year period and with start dates differing across Pennsylvania regions.
The roll out of the inspection program started with the most populated
regions (e.g., the Philadelphia and Pittsburgh metropolitan areas) in
2000. These regions have the greatest air quality challenges and thus
were prioritized for the program. In the following years, the program
was rolled out to other regions that also faced air quality challenges.

Fig. 1 illustrates the roll-out of the inspection program with a map of
Pennsylvania that shows when mandatory inspections began in each
zip code. This figure illustrates that all of the most populated areas in
Pennsylvania are required to undergo a mandatory inspection by
around 2005. The areas of the state that do not require mandatory in-
spections tend to be rural and mountainous, and host a smaller share
of the Pennsylvania light duty vehicle fleet.

The inspection program only covers light duty passenger vehicles,
which make up roughly 70% of the vehicle fleet in Pennsylvania
(PennDOT, 2010). Fig. 2 shows the percentage of the total light duty ve-
hicle fleet in Pennsylvania covered by the inspection program in each
year. By the end of our sample, in 2010, roughly two-thirds of all light
duty vehicles undertook an inspection and are included in our dataset.
Any vehicles not recorded were either in violation of the law, in zip
codes that were not subject to the mandatory inspections or were sold
before 1975. Since the program roll out took some time to get started
in late 2000, the first inspections for most vehicles in Philadelphia and
Pittsburgh were in 2001. The same is true for vehicles in regions
where the program was rolled out in 2004; these vehicles generally
had their first inspections in 2005.

In the regions covered by the inspection program, there are impor-
tant patterns in the data that bear relevance to interpreting our results.
First, vehicles are not located uniformly. Certain regions of Pennsylvania
make up a much larger portion of our dataset than others, as is illustrat-
ed in Fig. 3, which plots the number of inspections by the zip code of the
inspection. Notably, the areas with the greatest number of inspections
appear to be in the larger Philadelphia and Pittsburgh metropolitan
areas (largely in the suburbs of these cities). Thus, these areas will be
heavily weighted in our regression results.

Second, the areas with the most vehicle inspections per household
are distributed across Pennsylvania in a somewhat more uniform pat-
tern (Fig. 4). In general it appears that the suburban areas in the

4 Drivers may also opt to receive a 1-year waiver if repair costs exceed $150.
5 A full list of exempted regions can be found at http://www.drivecleanpa.state.pa.us/
map.htm.

Philadelphia and Pittsburgh metropolitan areas have slightly more vehi-
cles per household than other areas, but there is no strong and obvious
pattern. One caveat to this is that we only observe the zip code where
vehicles are inspected, which may differ slightly from where the vehi-
cles are garaged.

3.2. Construction of the panel dataset

We begin with over 75 million vehicle inspection records over the
period 2000 to 2010, each with an odometer reading. We are interested
in the miles driven during the period between two inspections, and fol-
low the strategy from several other recent papers in the literature that
have odometer reading data (Gillingham, 2014; Knittel and Sandler,
2013) by using the vehicle-driving period as our unit of observation.
Consider a case where one inspection was on July 1, 2001, with an
odometer reading of 30,000, and the next inspection was on June 1,
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Fig. 2. Total registered vehicles (blue + green) and number of inspection records in our
dataset (green).

Sources: PennDOT inspection data and http://www.dmv.state.pa.us/stats/pennsylvania
MotorVehicleRegs.shtml.
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Fig. 4. Vehicles per household by zip code in Pennsylvania in 2010.
Source: PennDOT inspection data and households from the 2010 US Census.

2002, with an odometer reading of 41,000. Then a vehicle-driving
period level observation for this driving period would have a VMT
of 11,000, a time between inspections of 11 months, and a second
test date of June 1, 2002. For interpretability, we normalize VMT to
be in terms of VMT per year based on the number of days in the driv-
ing period. So in our simplified example, the VMT per year would be
coded to 12,000. Converting our data to the vehicle-driving period
level leaves us with 34,596,513 observations.®

Each vehicle in the dataset is indexed by a Vehicle Identification
Number (VIN), which we decode using a VIN decoder from DataOne,
Inc. to reveal the following vehicle information: make, model, model
year, body style, body type, engine type, engine size, fuel type, drive
type, highway fuel economy in miles per gallon (MPG), weight, and
manufacturer's suggested retail price (MSRP). We create a variable for
vehicle age by subtracting the model year from the year of the
inspection.” We are able to decode the VINs for 97% of the observations

6 34,6 million driving periods are less than half of the 75 million inspection records be-
cause of vehicles that only had one inspection, such as new vehicles or vehicles that left the
state shortly after the program began.

7 We recognize that some vehicles may be sold before the model year or after the model
year, so this is a proxy for the actual vehicle age. However, this proxy is what is typically
used for used car pricing (e.g., see the Kelley Blue Book), so it is as good as possible without
actual data on when the new vehicle was first purchased.

in the dataset. The remainder are either invalid VINs or for vehicles prior
to 1980 and we drop these observations.

Since we are interested in the response in VMT to changing gasoline
prices, we bring in monthly Pennsylvania gasoline price data from EIA
(2014). Similarly, we bring in macroeconomic conditions: the monthly
average U.S. gross domestic product (GDP) from the Bureau of Econom-
ic Analysis (BEA, 2014) and the average unemployment rate in Pennsyl-
vania based on data from the Bureau of Labor Statistics (BLS, 2014).
Finally, we also bring in data on major refinery supply disruptions in
the Gulf Coast (primarily due to hurricanes) from the Energy Informa-
tion Administration (EIA, 2011). All four of these variables are at the
monthly level in raw data form and are converted to the vehicle-
driving period level. This is accomplished by taking the average value
for each over the months of the driving period covered by each observa-
tion. This means that for vehicle i that performed an inspection in time ¢
and the subsequent inspection in time t + m, we compute the average
gasoline price, GDP, unemployment, and supply disruptions between t
and t + m for that observation. So, for example, we compute the price
of gasoline for the driving period of a vehicle inspected first on July
1st, 2001 and then on June 1st, 2002 as the average of the monthly gas-
oline prices in the 11 months between inspections.

Finally, to address potential outliers, we truncate our data and drop
observations where vehicles were not used (e.g. a VMT of 0), as well as
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vehicles with VMT per driving period greater than 100,000 miles or
odometer readings greater than 7,000,000 miles, which are likely in-
spection reporting errors. The final panel dataset contains 30,621,721
observations and 7,173,110 distinct vehicles. We convert all dollar-
valued variables to real 2010 dollars using the BLS Consumer Price
Index.

3.3. Data description

Table 1 presents summary statistics for key variables in the final full
dataset. The average annual VMT is 10,183 miles, with a standard devi-
ation that is nearly as large, at 7303 miles. The average gasoline price is
$2.46/gal, with a standard deviation of $0.55/gal.

Fig. 5 illustrates the variation in annual VMT in Pennsylvania over the
full 2000-2010 sample. The VMT distribution appears to have a zero-
truncated normal distribution, with a long tail of drivers who drive a sub-
stantial amount (e.g., 60,000 miles per year is over 160 miles per day).

The variation in driving may stem from a variety of sources, in-
cluding geographic heterogeneity. Fig. 6 shows how VMT differs con-
siderably across Pennsylvania (for observations from all years), with
vehicles being driven the most located in rural and suburban areas.
This likely reflects the greater need to drive in these areas.

Fig. 7 shows the changes in the average gasoline price and macro-
economic conditions over the time period of analysis. Gasoline prices
display considerable time-series variation, with a dramatic and
sustained increase in prices from 2004 to 2008, followed by a steep
decline in 2008 and a leveling off afterwards. This variation will be
leveraged for identifying our coefficients.

In Fig. 8, we provide descriptive evidence on trends in the average
annual gasoline price and average annual VMT over each driving period
in our full sample. The solid lines show that the mean VMT has de-
creased slightly over this period, while the mean gasoline price has in-
creased over this period. The wide bands of the dotted around the
solid lines show plus or minus one standard deviation in the variables
(based on the year of the second inspection of the driving period).

Fig. 8 descriptively suggests only a relatively minor response in driv-
ing to gasoline prices. Of course, as shown in Fig. 7, macroeconomic con-
ditions also changed, so our empirical specification will control for these
changes.

As mentioned above, vehicles in the Philadelphia and Pittsburgh
metropolitan areas not only have more vehicles, but also began receiv-
ing inspections much earlier than the rest of Pennsylvania, most of
which began inspections after 2004. To illustrate the differences be-
tween these two subsamples, Table 2 provides summary statistics for
the subsample of all vehicles that begin inspections in 2000 (Philadel-
phia and Pittsburgh) and all vehicles that began inspections in 2004
(many other parts of the state). Note that both the time frames and
the regions differ, so one must be cautious in interpreting these as
only regional differences or differences due to time.

Table 1
Summary statistics for selected variables in the full dataset.
Mean Std. Min. Max.
dev.
Annual VMT (mi) 10,183 7303 0.137 100,000
Average Gas Price (2010%/gal) 246 0.55 1.23 4,14
MPG Highway (mi/gal) 20.1 4.20 8.46 58.14
Age (years) 7.64 4.59 0.00 29.00
Avg Adjusted Unemployment (%) 5.45 0.97 423 8.62
Avg GDP (billions of 2010%) 14,015 710 12,634 15,056
Avg Refinery Disruptions 2.52 342 0.001 70.48

(millions of barrels)

Notes: All variables have 30,621,721 non-missing observations. The age of the vehicle is in
the number of years between the model year and the year of the second test in a driving
period.

Frequency
200,000 400,000 600,000 800,000 1000000

0

7 Y
0 20000 40000 60000

Annual VMT (miles)

Fig. 5. Histogram of the annual vehicle miles driven in Pennsylvania.
Source: PennDOT inspection data.

4. Empirical approach
4.1. Model specification

We model the demand for driving vehicle i with a test in year t and j
months between tests as a function of the Pennsylvania gasoline price
(Py), national GDP (G;), unemployment rate in Pennsylvania (U;,) the
age of the vehicle (A;), vehicle characteristics (6;), other broader time-
varying factors (1)), month-of-the-year seasonal factors (¢;) and any
factors that relate to the length of the driving periods (1):

VMT;; = f (P, Gie, Ui, A, 0.7y G lg) -

Controls for factors that relate to the length of the driving period are
included because there may be potentially correlated unobserved het-
erogeneity in drivers based on when they receive their inspection
(e.g., those who get a late inspection may drive differently than those
who get an on-time inspection, and their driving period will cover a dif-
ferent time frame of gasoline prices).

We further specify demand as follows:

VMT; = (Py)" (Gie)™ (Uie)™ exp(Bo + 8(Aic) + 0; + 1, + & + g + &),

where g( +) is a quadratic function in age, which flexibly captures the re-
lationship between vehicle age and driving. &;; is a mean-zero stochastic
error term. This specification implies the following log-log form:

log(VMTi) = B +Y1og(Pie) + > By log(X) + g(Air) + 6; + 1 + &
XEM
+ g + &t (1)

where M = {G;, U;;} and vy is our parameter of interest, which can be
interpreted as the elasticity of VMT with respect to the price of gasoline.
Given that inspections are generally once a year, any estimate is best un-
derstood as a one-year elasticity of driving (i.e., a short-run elasticity). 6;
are vehicle fixed effects. 1), {;, and , are indicator variables for the year
that the driving period finishes, the month-of-the-year that the driving
period finishes, and driving period length categories (early tests that are
less than 11 months, normal tests between 11 months and 13 months,
late tests between 14 and 21 months, and very late tests beyond this).®

We estimate this equation using a standard fixed effects regression
as well as using a quantile regression (Koenker and Bassett, 1978) to un-
derstand the heterogeneity in responsiveness across consumers. Fur-
thermore, to better understand the sources of heterogeneity, we also

8 Qur results are robust to the exact specification of these indicator variables.
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changed substantially over this time (Right).
Sources: US EIA, US BEA, US BLS.

estimate (1) using partitions of our dataset based on fuel economy and
vehicle age. The model in (1) follows most of the existing literature in
that it implies that consumers respond symmetrically to increases and
decreases in gasoline prices. In this sense, our results - just like most
others - should be viewed as estimating an average response.

4.2. Identification and potential estimation concerns

With the inclusion of such a rich set of fixed effects, the model
specifications we estimate address a variety of potential empirical
concerns. For example, vehicle fixed effects capture unobserved het-
erogeneity in time-invariant vehicle characteristics, location, and
driver attributes.® Gillingham (2013) shows that estimates of the de-
mand for driving can be biased upwards due to unobserved preferences
for driving that lead consumers to purchase a more efficient vehicle. By
including vehicle fixed effects, we address this unobserved heterogene-
ity in a flexible non-parametric way. Year-of-test indicator variables ad-
dress time-varying factors besides the macroeconomic conditions that
we already control for. Month-of-the-year indicator variables capture

9 Note that some vehicles move the location of their inspections during our time period.
These movers correspond to much less than 1% of the observations in the dataset. We ob-
serve these movers and find that excluding the movers from our analysis makes little dif-
ference. Thus we opt to include them and simply use vehicle fixed effects.

the possibility that different types of consumers purchase vehicles at
different times of year (Copeland et al., 2011), and thus have inspec-
tions performed during that time of year in subsequent years. Finally,
indicator variables for the length of the driving period flexibly control
for possible heterogeneity in consumers who have their inspection
done on time or at different times.

Including the rich set of fixed effects is very useful for identifying the
relationship between gasoline prices and VMT by addressing a variety of
potential confounders. Yet, we recognize that there remains a possible
concern about the classic simultaneity of supply and demand. This
issue is beautifully described on page 1 in Kennan (1989):“For example,
even if each buyer has a negligible influence on the market price, there
may still be an important correlation between the price and the distur-
bance in an individual demand equation, so that treating price as econo-
metrically exogenous gives biased coefficient estimates.”

Fundamentally, the concern is that unobserved local demand shocks
will shift demand, increasing the gasoline price in equilibrium and lead-
ing to a supply response (e.g., immediately refining more gasoline and
moving it to Pennsylvania). We would then be estimating an equilibri-
um response, rather than actually pinning down the demand curve.

While we expect that our rich set of fixed effects should address
most of these issues, we grant that some may remain. Thus, in our pre-
ferred specification, we instrument for the gasoline price with an exog-
enous supply shifter: major gasoline refining supply disruptions in Gulf
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Fig. 8. The average annual gasoline price and VMT are shown in the solid lines, with +/— one standard deviation shown in the dotted lines for each. The year on the x-axis denotes the year

of the second test of a driving period.
Sources: US EIA and PennDOT inspection data.

Coast due to hurricane activity. This instrument is highly correlated with
the Pennsylvania gasoline price, due to the integration of the gasoline
market in much of the United States. Yet there is no reason to believe
that it is correlated with local demand factors in Pennsylvania, except
through the gasoline price. A similar oil price shock instrument was
also used in Hughes et al. (2008).

It is worth noting that our empirical strategy, while flexibly con-
trolling for key estimation concerns, does impose some structure to
the relationship between gasoline prices and VMT. There has been a se-
ries of papers on the gasoline price elasticity of demand that use semi-
parametric or non-parametric estimation approaches (Blundell et al.,
2012; Hausman and Newey, 1995; Liu, 2014; Schmalenesee and
Stoker, 1999; Wadud et al., 2010b; Yatchew and No, 2001). While of
merit, these approaches often also impose some structure, albeit less
than in our specification. But more importantly these approaches can-
not flexibly control for potential confounders with a rich set of fixed ef-
fects (usually because the data available for estimation does not permit
rich sets of fixed effects). We deem that the value of the fixed effects

Table 2
Summary statistics by geographic region based on introduction of OBD inspections.
Mean Std dev. Min. Max.

OBD inspections begun in 2000

Annual VMT (mi) 9951 7342 0.138 100,000
Average gas price (2010$/gal) 225 0.57 1.23 4.14
Combined MPG (mi/gal) 20.1 4.09 8.80 58.14
Age (years) 8.07 443 0.00 29.00
Avg adjusted unemployment (%) 5.45 0.97 4.23 8.62
Avg GDP (trillions of 2010%) 14,015 710 12,634 15,056
Avg refinery disruptions (millions 2.64 3.64 0.001 70.48

of barrels)

OBD inspections begun in 2004

Annual VMT (mi) 9861 6376 0.31 100,000
Average gas price (2010$/gal) 2.77 0.55 1.23 4.14
Combined MPG (mi/gal) 19.8 427 8.80 58.14
Age (years) 7.48 435 0.00 29.00
Avg adjusted unemployment (%) 5.78 1.55 423 8.62
Avg GDP (trillions of 2010%) 14,640 197 13,256 15,056
Avg refinery disruptions (millions 2.62 3.37 0.007 60.47

of barrels)

Notes: All variables in the 2000 inspections panel have 18,642,460 non-missing values,
while all variables in the 2004 inspections panel have 3,097,592 non-missing values.
Note that these do not add up to 30 million because the remaining vehicles entered the
dataset in other years. The age of the vehicle is in the number of years between the vehicle
model year and the year of the second test in a driving period.

approach, and especially vehicle fixed effects, for identification of our
coefficients is sufficient to opt for our approach rather than a semi-
parametric or non-parametric approach.'®

5. Results
5.1. The gasoline price elasticity of driving

We begin by estimating (1) on the full dataset of over 30 million ob-
servations. Table 3 shows our primary results. Column 1 contains year
(1), month-of-the-year (¢;), and driving period length (1) indicator
variables. Column 2 contains vehicle fixed effects (6;), but none of the
other indicator variables. Column 3 contains year, month-of-the-year,
and months-to-test indicator variables, as well as vehicle fixed effects.
Column 4 is the same as column 3, but with the log of the average gas-
oline price instrumented for using the log of the average size of the oil
refinery disruptions (in millions of barrels of oil). The first-stage results
from this IV estimation are available in the appendix. The instrument is
very strong: the t-statistic on the log refinery disruptions coefficient in
the first-stage is over 1000 (the model is just-identified, so this is the
most relevant test).

In all four specifications, the coefficient on the log of the average gas-
oline price—our estimated gasoline price elasticity of driving—indicates
a highly inelastic response to gasoline prices. The coefficient ranges
from —0.10 to —0.21. Our preferred specification is in column 4,
which implies a one-year price elasticity of demand for driving of
—0.10. This result of an inelastic short-run response to gasoline prices
is in line with much of the literature for the United States. For context,
it implies slightly more responsiveness than Small and van Dender
(2007a) and slightly less responsiveness than estimates by Gillingham
(2014) and Knittel and Sandler (2013) for California. It also implies
much less responsiveness than estimates using German travel diary
data by Frondel et al. (2012), which show elasticities in the range of
—0.4 to —0.7. These differences across studies over different times
and locations may belie the heterogeneity in responsiveness by time
frame and location.

Our other coefficients in Table 3 are included as controls. The macro-
economic variables are positive and statistically significant in all

10 Gillingham and Munk-Nielsen (2015) explore this issue in more detail using rich data
from Denmark and find similar results with semi-parametric and vehicle fixed effects ap-
proaches. We also explore other functional forms, such as a linear form, and find largely
similar results.
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Table 3
Primary regression results with full dataset.

(1) Time (2) Vehicle (3) AILFE  (4) All FE; IV
Controls FE

In(gasoline price) —0.143""  —0132""  —0219"" —0.099""
(0.004) (0.003) (0.003) (0.008)

In(GDP) 632" 2.09"" 3.85"" 3.18""
(0.033) (0.021) (0.041) (0.056)

In(unemployment) 0.765™" 0.213"" 0.311"" 0.328™"
(0.004) (0.002) (0.005) (0.004)

Age —0.011"*  —0059™* —0.008"" —0.091"**
(221E—4) (4.19E—4) (8.40E—4) (7.38E—4)

Age? —0.003"  —0.002""" —0.002"" —1.79E—3""
(1.24E—5) (1.66E—5) (1.66E—5) (1.52E—5)

Vehicle fixed effects X X X

Year dummies X X X

Month-of-year dummies X X X

Driving period dummies X X X

R-squared 0.18 0.71 0.71 0.05

N 30,621,721 30,621,721 30,621,721 30,621,721

Notes: Dependent variable is the log average VMT over a driving period. Column 4 instru-
ments for the log gasoline price with the log of the average size of the refinery disruptions
over the driving period. For column 4, the within R-squared is reported. Robust standard
errors clustered on vehicle in parentheses.

*** Denotes significant at the 1% level.

specifications. There is a sensible interpretation for GDP: more economic
growth implies more driving. The positive coefficient on unemployment
may indicate that when unemployment is high workers are more likely
to take jobs further away from home, leading to more driving. This espe-
cially makes sense after controlling for GDP, since GDP most likely cap-
tures changes in leisure driving due to increased income that could
possibly correlated with gasoline prices.!!

The vehicle age coefficients suggest that vehicles are driven less
as they age, consistent with previous findings in other settings
(Gillingham, 2011). The quadratic term is very close to zero, so the
relationship appears to be close to linear. The relationship is slightly con-
cave, consistent with driving a similar amount for several years as a vehi-
cle ages and then dropping more steeply in driving once the vehicle is
older, as one might expect. Older vehicles are often kept as a second or
third vehicle in a household and they may be driven by retired drivers.
We cannot test these possible explanations in our data. However, we
do explore the responsiveness by the age the vehicle in Section 5.4.

One interesting feature of our dataset is that in the first few years of
our sample we only observe vehicles in the Philadelphia and Pittsburgh
metropolitan areas, while mid-way through the sample, we begin to ob-
serve vehicles from many other areas in Pennsylvania (Fig. 2). While our
year fixed effects should largely address any concern from the sample
changing over time, we also perform the estimations separately on the
Philadelphia and Pittsburgh metropolitan areas and on the remaining
areas in Pennsylvania to provide insight into how the response may
differ.

Table 4 shows the results of these estimations of Eq. (1) on the two
subsamples. Columns 1 and 2 estimate the model for the metropolitan
areas in Pennsylvania (from 2000 to 2010), while columns 3 and 4 esti-
mate the model on the remaining areas of Pennsylvania that require an
inspection starting in 2004 (from 2004 to 2010). All columns have the
full set of fixed effects and indicator variables, while columns 2 and 4 in-
strument for the gasoline price.

We find that our results are relatively robust to partitioning the data
into these two samples. At —0.08, the estimated elasticity in the Phila-
delphia and Pittsburgh municipality regions is just slightly less than the
elasticity in column 4 of Table 4. In the remaining regions (with data
only available from 2004 onwards and excluding Pittsburgh and Phila-
delphia), the estimate is —0.15. These results appear to contrast with

1 Removing unemployment altogether from the regression does not change our coeffi-
cient on the gasoline price in any substantive way.

the results in Wadud et al. (2010a), which use U.S. survey data to find
that drivers in urban areas in the United States are more responsive
than those rural areas.

One explanation for this greater responsiveness may be that the
sample only includes a later time period that has higher and more vol-
atile gasoline prices. Lin and Prince (2013) provide evidence indicating
that the price elasticity of gasoline demand is nearly twice as high dur-
ing the 2007 to 2012 period (e.g., a period of high volatility) than the
2000 to 2006 period using aggregate monthly time series data for the
United States. However, when we estimate the elasticity using the
OBD 2000 vehicles (Philadelphia and Pittsburgh), but only for tests
after 2005, we find only a slight change in the elasticity, with an estimat-
ed coefficient of —0.10 in the IV specification.

Another explanation is that the more rural areas have a different
population and vehicle stock than the Philadelphia and Pittsburgh met-
ropolitan areas. As shown in Table 2, the average age of vehicles is lower
in the remaining regions than in metropolitan areas, perhaps suggesting
that heterogeneity in the response by vehicle attributes may be an im-
portant part of the explanation.

5.2. Heterogeneity in responsiveness by quantile

Quantile regressions are well-suited for examining the heteroge-
neity in the response across consumers. There are several approaches
used in the literature to estimate quantile regression models with panel
data. We adopt the approach of Canay (2011). The approach is quite sim-
ple. First we perform our instrumental variable within-estimation with
vehicle fixed effects (6;). We then estimate these individual fixed effects
as the sample mean of the residual taken over each vehicle. Finally, we

perform a standard quantile regression of log(VMT) = log(VMT;)—

6; on all of the covariates in (1), but with no vehicle fixed effects. Canay
(2011) shows that this approach provides a consistent quintile fixed ef-
fects estimator as T — « and n — .

By comparing the 0.25 quantile estimated elasticity to 0.5 (median)
and 0.75 quantile elasticities in Table 5, we can see the breadth of re-
sponsiveness to gasoline price changes across the population. For com-
putational reasons, we estimate the model on a randomly drawn
subsample of 10% of the vehicles in the full dataset.

The results in Table 5 show clear heterogeneity in the response to
gasoline prices. At the 0.25 quantile of the responsiveness, the elasticity
is near-zero and statistically insignificant. The estimated elasticity from
the median regression is statistically significant and closer to zero than
our estimated elasticity in our mean regression in Table 3, at —0.04. On
the other end, the 0.75 quantile elasticity is statistically significant and
larger than our mean elasticity, at —0.15.

The heterogeneity we find in this setting is consistent with findings
in Gillingham (2014), but the magnitude of the response is substantive-
ly less here. Such a difference may be due to differences in the sample:
our sample contains most vehicles in Pennsylvania, rather than new ve-
hicles in California. We now seek to explain some of this heterogeneity
in responsiveness in two key vehicle attributes with policy relevance:
fuel economy and age.

5.3. Heterogeneity in responsiveness by fuel economy

One might expect that consumers who drive less efficient vehicles
would be more responsive to gasoline price changes since they face a
greater burden at the pump. This would be particularly interesting for
two reasons. First, if less efficient vehicles are more responsive, as fuel
economy standards in the United States ramp up consumers may be-
come even less responsive to changes in gasoline prices into the future.
Second, if less efficient vehicles are more responsive, the emissions may
be reduced by more than would be expected based on the mean elastic-
ity, for less efficient vehicles have a higher emissions rate (Knittel and
Sandler, 2013).
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(1) OBD 2000

(2) OBD 2000; IV

(3) OBD 2004

(4) OBD 2004; IV

ok

ok

Fokk

Hxk

In(gasoline price) —0.066 —0.076 —0.193 —0.150
(0.063) (0.015) (0.011) (0.0237)

In(GDP) 2317 333" 438" 431"
(0.053) (0.082) (0.164) (0.240)

In(unemployment) 0301 0.398™"" 0.412"™" 0.429""
(0.006) (0.006) (0.016) (0.014)

Age —0.0763"" —0.0973""" —0.0852""" —0.0891"""
(0.001) (9.25E—4) (0.003) (0.002)

Age? —1.69E—3""" —1.76E—3"" —246E—3"" —242E—3"""
(2.07E—5) (1.84E—5) (4.49E—5) (3.98E—5)

Vehicle fixed effects X X X X

Year dummies X X X X

Month-of-year dummies X X X X

Driving period dummies X X X X

R-squared 0.62 0.05 0.76 0.05

N 18,642,460 18,642,460 3,097,592 3,097,592

Notes: Dependent variable is the log average VMT over a driving period. Columns 1 and 2 are estimated on the subsample that first required inspections in 2000 (i.e., Philadelphia and
Pittsburgh metro areas). Columns 3 and 4 are estimated on the subsample that first required inspections in 2004. Columns 2 and 4 instrument for the log gasoline price with the log of
the average size of the refinery disruptions over the driving period. The within R-squared is presented for columns 2 and 4. Robust standard errors in parentheses, clustered at the vehicle

level.
*** Denotes significant at the 1% level.

We examine heterogeneity based on vehicle fuel economy by esti-
mating the model given in (1) on three partitions of the dataset. Our re-
sults are robust to the exact partitions we choose, so for ease of
interpretability, Table 6 presents the results for three groups: vehicles
with fuel economy less than 20 MPG (column 2), vehicles with fuel
economy between 20 and 30 MPG (column 3), and vehicles with fuel
economy greater than 30 MPG (column 4). Column 1 provides the esti-
mation results using the full dataset for reference.

The results from Table 6 show that drivers of vehicles in the lowest
fuel economy bracket are the most responsive, with an elasticity of
—0.19. Interestingly, the coefficient on the gasoline price is close to
zero and statistically insignificant in columns 3 and 4, suggesting that
drivers of vehicles of higher fuel economy are barely responsive to
changes in gasoline prices. These results provide strong evidence that
the lowest fuel economy vehicles are the force behind the responsive-
ness to gasoline prices.

There are several possible explanations for this result. One is that
gasoline prices are simply more salient to consumers of lower fuel econ-
omy vehicles, due to their higher fuel bill. Another is the drivers of lower

Table 5
Quantile regression results.
(1) 0.25 quantile; (2)0.5 (3)0.75
1\% quantile; IV quantile; IV
In(gasoline price) —0.020 —0.036"" —0.153""
(0.021) (0.001) (0.002)
In(GDP) 6.232"" 71177 4.483"""
(0.376) (0.342) (0.375)
In(unemployment) 0.835"" 0.944™ 0.692""
(0.053) (0.049) (0.053)
Age —0.017"* —0.009"" 0.001
(0.002) (0.001) (0.002)
Age? —0.002"" —0.003""* —0.005™"
(7.48E—5) (4.73E—5) (6.80E—5)
Vehicle fixed effects X X X
Year dummies X X X
Month-to-test dummies X X X
Driving period dummies X X X
N 3,062,172 3,062,172 3,062,172

Notes: Dependent variable is the log average VMT over the driving period scaled to one
year. The results are based on a randomly drawn subsample of 10% of the full dataset.
All columns instrument for the log gasoline price with the log of the average size of the re-
finery disruptions over the driving period. Standard errors in parentheses. Vehicle fixed ef-
fects accounted for using the Canay (2011) quantile fixed effects estimator.

*** Denotes significant at the 1% level.

fuel economy vehicles are less wealthy and thus face a tighter budget
constraint. Still another is that there may be within-household vehicle
switching occurring, consistent with previous results in the literature,
such as in Knittel and Sandler (2013). All these effects could also be oc-
curring concurrently, and we cannot disentangle them with our data.
However, future work to understand these mechanisms could be
valuable.

5.4. Heterogeneity in responsiveness by age of vehicles

Understanding how the responsiveness to changing gasoline prices
differs by the age and cohort of vehicles is useful for both forecasting
driving by the fleet, as well as determining the changes in local air pol-
lution from a policy. Specifically, many older vehicles are more polluting
than new vehicles (although within the mandated guidelines from
emissions inspections). If older vehicles are more responsive to changes
in gasoline prices, this may imply that meeting local air pollution targets
will be disproportionately easier when gasoline prices increase.!?

Table 7 provides similar results to previous tables, only using sub-
samples of the dataset based on the vehicle age. Again for ease of inter-
pretation we choose three subsamples: vehicles with age less than 3
years, age between 3 and 7 years, and age greater than 7 years. The
logic for these cut-offs is that vehicles less than three years old are
very new and often leased, vehicles between 3 and 7 years make up
the bulk of VMT of owned vehicles, while vehicles older than 7 years
are driven less. Columns 2, 3, and 4 in Table 7 present the results from
each of these subsets of the data respectively. Column 1 again shows
the results estimated on the full dataset for reference.

Our results indicate that drivers of vehicles that are 3 to 7 years old
are the most responsive to changes in gasoline prices, with an elasticity
of —0.41. Vehicles in these age brackets are driven the most, so perhaps
there is the most room to make changes. In contrast, the newest vehicles
have an elasticity of —0.08, which is not quite as statistically significant.
Drivers of the newest vehicles may be wealthier, which may influence
the elasticity. The oldest vehicles have an elasticity very close to zero
and statistically insignificant. There are a variety of possible explana-
tions for this result. For example, one possibility is that drivers of older
vehicles may be more likely to be in rural areas, so they must drive

12 Note that the average fuel economy of the fleet has not changed significantly over the
2000-2010 time period; it has hovered around 21 mpg in all of those years.
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Table 6
Regression results on subsamples of the dataset based on fuel economy groups.
(1) (2) (3) (4)
Full dataset; IV FE-20 mpg; IV FE20-30 mpg; IV FE-30 mpg; IV
In(gasoline price) —0.099"* —0.192"" —0.008 —0.059
(0.008) (0.013) (0.012) (0.067)
In(GDP) 3.18"" 3.92"" 2.66™" 3.94""
(0.056) (0.089) (0.081) (0.525)
In(unemployment) 0.328"" 0.380""" 0.313™" 0.426™"
(0.004) (0.007) (0.006) (0.044)
Age —0.091""" —0.0926""" —0.0957""" —0.112"
(7.38E—4) (0.001) (0.001) (0.008)
Age? —1.79—-3""" —2.61E—3"" —7.35E—4""" —981E—4""
(1.52E—5) (2.16E—5) (2.12E—5) (1.54E—5)
Vehicle fixed effects X X X X
Year dummies X X X X
Month-of-year dummies X X X X
Driving period dummies X X X X
R-squared 0.05 0.06 0.03 0.03
N 30,621,721 14,773,863 15,555,437 324,310

Notes: Dependent variable is the log average VMT over the driving period scaled to one year. The log gasoline price is instrumented using the log refinery disruptions in all columns. Col-
umn 1 is estimated on the full dataset (identical to column 3 in Table 3), 2 on vehicles with a fuel economy below 20 MPG, 3 on vehicles with a fuel economy 20-30 MPG, and 4 on vehicles
with fuel economy greater than 30 MPG. R-squared values are the within R-squared. Robust standard errors in parentheses, clustered at the vehicle level.

*** Denotes significant at the 1% level.

more for work. Another is the older vehicles are driven so much less in
general that there are fewer “flexible” miles to reduce.

5.5. Price per mile results

Our previous results are based on specification (1), which models
VMT as a function of the gasoline price. However, it is perhaps natural
to think of the price of VMT to be the price per mile of driving, which
is the price of gasoline divided by the fuel economy. In fact, examining
the elasticity of VMT with respect to the price per mile of driving is clos-
er to what we are ideally looking for in examining the rebound effect
from a policy that increases fuel economy. If consumers respond in the
same way to changes in gasoline prices and changes in fuel economy
- and there are no close substitutes to driving that use gasoline - then
one would expect the elasticity of VMT with respect to gasoline prices,

Table 7
Regression results on subsamples of the dataset based on vehicle age.
(1) (2) (3) (4)
Full dataset; IV Age-3; IV Ages 7 IV Age.; IV
In(gasoline price) —0.099"" —0.083"  —0411"" —0.007
(0.008) (0.039) (0.013) (0.013)
In(GDP) 3.18™" 294" 8.07"" 0.357""
(0.056) (0.342) (0.086) (0.082)
In(unemployment)  0.328""" 0.481"" 0.654™" 0.026™"
(0.004) (0.032) (0.007) (0.007)
Age —0.091"" 03917 —0.145""  —0.059""
(7.38E—4) (0.106) (0.002) (0.001)
Age? —1.79E-3"" —0.150"" —0.003"" —822E—4""
(1.52E—5) (0.005) (1.33E—4) (3.22E—5)
Vehicle fixed effects X X X X
Year dummies X X X X
Month-of-year X X X X
dummies
Driving period X X X X
dummies
R-squared 0.05 0.02 0.02 0.04
N 30,621,721 1,741,169 10,186,019 15,409,706

Notes: Dependent variable is the log average VMT over the driving period scaled to one
year. The log gasoline price is instrumented using the log refinery disruptions in all col-
umns. Column 1 is estimated on the full dataset (identical to column 4 in Table 3), 2 on ve-
hicles with a fuel economy below 20 MPG, 3 on vehicles with a fuel economy 20-30 MPG,
and 4 on vehicles with fuel economy greater than 30 MPG. R-squared values are the within
R-squared. Robust standard errors in parentheses, clustered at the vehicle level.
** Denotes significant at the 1% level.
* At the 10% level.

the price per mile of driving, and fuel economy to be the same (Chan
and Gillingham, 2015). For this reason alone, it is instructive to examine
the elasticity of VMT with respect to the price per mile of driving."®

We thus estimate (1) using the price per mile of driving rather
than the gasoline price. Of course, the variation identifying the coef-
ficient on the price per mile of driving is identical to the variation in
our primary specifications, so we should expect to see very similar
results. Table 8 shows that the results are indeed nearly the same
as those in Table 3 and Table 4.

Our results in Table 8 are consistent with Frondel and Vance (2013),
who also finds little difference regardless of the choice of the key inde-
pendent variable used to identify an elasticity. However, it differs from
Linn (2013), which uses different sources of variation to identify the dif-
ferent elasticities and finds a greater responsiveness to fuel economy
than to gasoline prices. We interpret our result as providing further ev-
idence suggestive of a moderate short-run rebound effect in Pennsylva-
nia, consistent with the results for the United States in Hymel and Small
(forthcoming).

6. Conclusions

The price elasticity of VMT demand has long been an object of inter-
est for both economists and policymakers. Besides providing guidance
for understanding the effects of changing gasoline prices and taxes, it
also provides insight into the rebound effect in personal transportation.
With policies to improve fuel economy remaining at the core of energy
and transportation policy in many countries, understanding the poten-
tial magnitude of the rebound effect is essential for analyses of these
policies, and the gasoline price elasticity is commonly used to provide
guidance on the rebound effect.

This paper sheds new light on the gasoline price elasticity of VMT de-
mand by examining the heterogeneity in responsiveness, and some of
the most interesting factors underlying this heterogeneity. We use
rich annual vehicle inspection data of over 30 million observations
from the state of Pennsylvania, covering the period of 2000 to 2010.
Using the revealed odometer readings from the tests, we find that the
vehicle-level response to gasoline price changes is highly inelastic. In
fact, our primary results suggest a one-year gasoline price elasticity of
VMT demand of —0.10. This result is in line with much of the recent

13 We cannot examine the elasticity with respect to fuel economy while including vehi-
cle fixed effects, which we deem essential to control for selection into vehicles based on
fuel economy and location-specific unobservables.
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Table 8
Regression results examining the average price per mile (2010$/mi).

1) (2) (3)

Full dataset; IV OBD 2000; IV OBD 2004; IV

In(price per mile driven) ~ —0.097""* —0.076™" —0.150""
(0.009) (0.015) (0.02)

In(GDP) 328" 333" 4317
(0.060) (0.082) (0.240)

In(unemployment) 0.345"" 0.398"* 0.429"*
(0.005) (0.006) (0.014)

Age —0.0920"" —0.0973"* —0.0891""*
(7.72E—4) (9.25E—4) (0.002)

Age? —1.79—3""" —1.767E—3""  —242E-3""
(1.52E—5) (1.84E—5) (3.98E—5)

Vehicle fixed effects X X X

Year dummies X X X

Month-of-year dummies X X X

Driving period dummies X X X

R-squared 0.04 0.05 0.05

N 30,653,610 19,938,566 3,163,074

Notes: Dependent variable is the log average VMT over the driving period scaled to one
year. The log price per mile is instrumented using the log refinery disruptions. Column 1
is estimated on the full dataset (identical to column 3 in Table 3), 2 on the subsample
that first required OBD inspections in 2000 (i.e., Philadelphia and Pittsburgh metro
areas), and 3 on the subsample that first required OBD inspections in 2004. R-squared
values are the within R-squared. Robust standard errors in parentheses, clustered at the
vehicle level.
*** Denotes significant at the 1% level.

previous literature that shows a highly inelastic response to gasoline
prices in the United States. We also find interesting heterogeneity in
this mean elasticity, with quantile regression results indicating that a
relatively small percentage of vehicles drive the elasticity.

To understand this heterogeneity more deeply, we explore how the
responsiveness varies by fuel economy and age of vehicles. First, our re-
sults indicate substantial heterogeneity across fuel economy in the fleet.
The highest fuel economy vehicles display an entirely inelastic response
and nearly all of the response is from lower fuel economy vehicles.
There are several possibilities that could explain this finding. One is
that when gasoline prices rise, consumers switch from lower fuel econ-
omy vehicles to higher fuel economy vehicles. Another is that con-
sumers with lower fuel economy vehicles may be expected to respond
more due to the greater salience of gasoline costs or have a greater in-
come effect.

Our results indicate an intriguing pattern of responsiveness across
vehicle age. We find that the newest and oldest vehicles are the least re-
sponsive to gasoline price changes. It appears that consumers driving
vehicles 3 to 7 years old are the most sensitive to gasoline prices.
While we cannot definitely determine the mechanism underlying this
result, it may be that drivers of new vehicles (many of which are leased)
are highly inelastic, while drivers of the oldest vehicles have less flexibil-
ity in travel. The findings of heterogeneity based on both fuel economy
and age have important implications for forecasting the usage of the
vehicle fleet as gasoline prices change, and are also useful for forecasting
local air pollution due to the greater local air pollutant emissions per
mile from lower fuel economy vehicles and older vehicles.

The result of an inelastic response, but considerable heterogeneity in
this response, also provides some guidance for the short-run direct re-
bound effect from fuel economy standards and other policies to improve
fuel economy, such as feebates. Following the common assumption that
the consumer response to fuel prices is the same as the response to
changes in fuel economy, our results suggest that the short-run direct
rebound effect may be relatively small in Pennsylvania. Furthermore,
our results also suggest that it may be larger for some vehicles than
others. Such heterogeneity in the rebound effect may be very important
for policies that asymmetrically improve fuel economy across the fleet.
For example, if the direct rebound effect is close to zero for higher fuel
economy vehicles and fuel economy standards disproportionately im-
prove the fuel economy of higher fuel vehicles, then the average

rebound effect across the fleet can be expected to be smaller. Exploring
further details of the consumer responsiveness to improvements in the
fuel efficiency of the light duty fleet promises to be a valuable area for
future research.
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