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Key Message 1 Tyringham, Massachusetts 
 

 
Food and forage production will decline in regions experiencing increased frequency and 
duration of drought. Shifting precipitation patterns, when associated with high temperatures, 
will intensify wildfires that reduce forage on rangelands, accelerate the depletion of water 
supplies for irrigation, and expand the distribution and incidence of pests and diseases for 
crops and livestock. Modern breeding approaches and the use of novel genes from crop wild 
relatives are being employed to develop higher-yielding, stress-tolerant crops. 

Key Message 2 
 

The degradation of critical soil and water resources will expand as extreme precipitation 
events increase across our agricultural landscape. Sustainable crop production is threatened 
by excessive runoff, leaching, and flooding, which results in soil erosion, degraded water 
quality in lakes and streams, and damage to rural community infrastructure. Management 
practices to restore soil structure and the hydrologic function of landscapes are essential for 
improving resilience to these challenges. 

Key Message 3 
 

Challenges to human and livestock health are growing due to the increased frequency and intensity 
of high temperature extremes. Extreme heat conditions contribute to heat exhaustion, heatstroke, 
and heart attacks in humans. Heat stress in livestock results in large economic losses for producers. 
Expanded health services in rural areas, heat-tolerant livestock, and improved design of confined 
animal housing are all important advances to minimize these challenges. 

Reduced Agricultural Productivity 

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 

10 Agriculture and Rural Communities 

Degradation of Soil and Water Resources 

Health Challenges to Rural Populations and Livestock 
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Key Message 4 

Residents in rural communities often have limited capacity to respond to climate change 
impacts, due to poverty and limitations in community resources. Communication, 
transportation, water, and sanitary infrastructure are vulnerable to disruption from climate 
stressors. Achieving social resilience to these challenges would require increases in local 
capacity to make adaptive improvements in shared community resources. 

 
Executive Summary 

 
In 2015, U.S. agricultural producers contributed 
$136.7 billion to the economy and accounted for 
2.6 million jobs. About half of the revenue comes 
from livestock production. Other agriculture- 
related sectors in the food supply chain contrib- 
uted an additional $855 billion of gross domestic 
product and accounted for 21 million jobs. 

 
In 2013, about 46 million people, or 15% of the 
U.S. population, lived in rural counties covering 
72% of the Nation’s land area. From 2010 to 2015, 
a historic number of rural counties experienced 
population declines, and recent demographic 
trends point to relatively slow employment and 
population growth in rural areas as well as high 
rates of poverty. Rural communities, where 
livelihoods are more tightly interconnected with 
agriculture, are particularly vulnerable to the 
agricultural volatility related to climate. 

 
Climate change has the potential to adversely 
impact agricultural productivity at local, regional, 
and continental scales through alterations in 
rainfall patterns, more frequent occurrences of 
climate extremes (including high temperatures or 
drought), and altered patterns of pest pressure. 
Risks associated with climate change depend 
on the rate and severity of the change and the 
ability of producers to adapt to changes. These 
adaptations include altering what is produced, 
modifying the inputs used for production, 
adopting new technologies, and adjusting man- 
agement strategies. 

U.S. agricultural production relies heavily on the 
Nation’s land, water, and other natural resources, 
and these resources are affected directly by 
agricultural practices and by climate. Climate 
change is expected to increase the frequency of 
extreme precipitation events in many regions in 
the United States. Because increased precipita- 
tion extremes elevate the risk of surface runoff, 
soil erosion, and the loss of soil carbon, additional 
protective measures are needed to safeguard 
the progress that has been made in reducing soil 
erosion and water quality degradation through 
the implementation of grassed waterways, 
cover crops, conservation tillage, and waterway 
protection strips. 

 
Climate change impacts, such as changes in 
extreme weather conditions, have a complex 
influence on human and livestock health. The 
consequences of climate change on the incidence 
of drought also impact the frequency and inten- 
sity of wildfires, and this holds implications for 
agriculture and rural communities. Rural popu- 
lations are the stewards of most of the Nation’s 
forests, watersheds, rangelands, agricultural 
land, and fisheries. Much of the rural economy 
is closely tied to the natural environment. Rural 
residents, and the lands they manage, have the 
potential to make important economic and 
conservation contributions to climate change 
mitigation and adaptation, but their capacity to 
adapt is impacted by a host of demographic and 
economic concerns. 

Vulnerability and Adaptive Capacity of Rural Communities 
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Agricultural Jobs and Revenue 
 

The figure shows (a) the contribution of agriculture and related sectors to the U.S. economy and (b) employment figures in 
agriculture and related sectors (as of 2015). Agriculture and other food-related value-added sectors account for 21 million full- 
and part-time jobs and contribute about $1 trillion annually to the United States economy. From Figure 10.1 (Source: adapted 
from Kassel et al. 20171). 



10 | Agriculture and Rural Communities 

386 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 

Population Changes and Poverty Rates in Rural Counties 
 

The figure shows county-level (a) population changes for 2010–2017 and (b) poverty rates for 2011–2015 in rural U.S. 
communities. Rural populations are migrating to urban regions due to relatively slow employment growth and high rates of 
poverty. Data for the U.S. Caribbean region were not available at the time of publication of this report. From Figure 10.2 
(Sources: [a] adapted from ERS 20182; [b] redrawn from ERS 20173). 
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State of the Agriculture and Rural 
Communities Sectors 
U.S. farmers and ranchers are among the most 
productive in the world. The agricultural sector 
makes an important contribution to the U.S. 
economy, from promoting food and energy 
security to providing jobs in rural communities 
across the country. In 2015, U.S. farms contrib- 
uted $136.7 billion to the economy, accounting 
for 0.76% of gross domestic product (GDP) and 
2.6 million jobs (1.4% of total U.S. employment; 
Figure 10.1).1 About half of the farm revenue 
comes from livestock production. Other agri- 
culture- and food-related value-added sectors 
contributed an additional 4.74% ($855 billion) 
of GDP and accounted for 21 million full- and 
part-time jobs (11.1% of U.S. employment). U.S. 
agriculture enjoys a trade surplus in which 
the value of agricultural exports (both bulk 
and high-value products) accounts for more 
than 20% of total U.S. agricultural production. 
Top high-value exports include feedstocks, 
livestock products, horticulture  products, 
and oilseeds and oilseed products, and these 
exports help support rural communities 
across the Nation. 

 
A major portion of rural communities in the 
United States depend on agriculture and other 
related industries as economic drivers. During 
2010–2012, a total of 444 counties were 
classified as farming dependent, of which 391 
were rural counties.4 In 2013, about 46 million 
people, or 15% of the U.S. population, lived in 
rural counties, covering 72% of the Nation’s 
land area. From 2010 to 2017, a historic number 
of rural counties in the United States experi- 
enced population declines due to persistent 
outmigration of young adults.2 However, 
some counties in the Northern Great Plains 
reversed decades of population loss to grow 
at a modest rate due to the energy boom in 
that region. Recent demographic trends point 
to relatively slow employment and population 

growth in rural areas, as well as higher rates 
of poverty in rural compared to urban regions 
(Figure 10.2).1,5,6,7 

 
U.S. agricultural production relies heavily on 
the Nation’s land, water, and other natural 
resources.8 In 2012, about 40%, or 915 million 
acres, of U.S. land was farmland, of which 
45.4% was permanent pasture, 42.6% was 
cropland, and 8.4% was woodland.9 Only about 
6% of the farmland was irrigated. Agricultural 
land use can change over time,10,11 and these 
changes are sometimes reversible, such as 
when shifting between cropland and pasture- 
land (Ch. 22: N. Great Plains, Table 22.3, Figure 
22.4), and sometimes irreversible, such as when 
agricultural land is converted to urban uses.12 

These natural resource bases are affected 
continually by agricultural production prac- 
tices and climate change.13,14,15,16 

 
Bioenergy cropping is increasing and remains a 
major focus of research to develop appropriate 
dedicated feedstocks for different regions of 
the United States.17,18,19,20,21,22 Crop residue har- 
vest, particularly from corn, has the potential 
to provide additional income streams to pro- 
ducers and rural communities, but the impact 
on soil carbon sequestration and greenhouse 
gas (GHG) emissions indicates that only part of 
the residue can be harvested sustainably.23,24,25,26 

Biochar, a by-product of cellulosic bioenergy 
production, holds potential as a soil amend- 
ment27,28 that in some soils provides a GHG 
mitigation29 and adaptation benefit. However, 
many questions remain on how to develop 
sustainable crop- and grass-based bioenergy 
systems within a region.30,31,32 

 
Technological advancements through con- 
certed public and private efforts and the 
increasing availability of inputs (such as fertil- 
izers, pesticides, and feed additives) have led 
to significant improvements in productivity 
while reducing agriculture’s environmental 
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Agricultural Jobs and Revenue 
 

Figure 10.1: The figure shows (a) the contribution of agriculture and related sectors to the U.S. economy and (b) employment 
figures in agriculture and related sectors (as of 2015). Agriculture and other food-related value-added sectors account for 21 
million full- and part-time jobs and contribute about $1 trillion annually to the United States economy. Source: adapted from 
Kassel et al. 2017.1 

 

footprint.33,34,35 However, there are some major 
challenges to the future of agriculture and food 
security.36 The agricultural sector  accounted 
for about 9% of the Nation’s total GHG emis- 
sions in 2015,37 so reducing emissions in the 
agriculture sector could have a significant 
impact on total U.S. emissions. Nonetheless, 
agriculture is one of the few sectors with the 
potential for significant increases in carbon 
sequestration to offset GHG emissions. Fur- 
thermore, water quality degradation, including 

eutrophication (an overload of nutrients) in 
the Great Lakes and coastal water bodies (for 
example, the northern Gulf of Mexico and the 
Chesapeake Bay) (see Ch. 18: Northeast, Box 
18.6; Ch. 21: Midwest, Box 21.1; Ch. 23: S. Great 
Plains, KM 3), remains an ongoing challenge. 

 
The current state of agricultural systems 
in different regions of the United States is 
the result of continuous efforts made by 
farmers, ranchers, researchers, and extension 
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Population Changes and Poverty Rates in Rural Counties 
 

Figure 10.2: The figure shows county-level (a) population changes for 2010–2017 and (b) poverty rates for 2011–2015 in rural 
U.S. communities. Rural populations are migrating to urban regions due to relatively slow employment growth and high rates of 
poverty. Data for the U.S. Caribbean region were not available at the time of publication. Sources: (a) adapted from ERS 20182; 
(b) redrawn from ERS 2017.3 

 

specialists to identify opportunities, practices, 
and strategies that are viable in different 
climates. However, any change in the climate 
poses a major challenge to agriculture through 
increased rates of crop failure, reduced 
livestock productivity, and altered rates of 
pressure from pests, weeds, and diseases.38,39 

Rural communities, where economies are more 
tightly interconnected with agriculture than 
with other sectors, are particularly vulnerable 
to the agricultural volatility related to climate.40 

 
Climate changes projected by global climate 
models are consistent with observed climate 
changes of concern to agriculture (Ch. 2: 
Climate).41,42,43 Climate change has the potential 
to adversely impact agricultural productivity at 
local, regional, and continental scales.44 Crop 
and livestock production in certain regions  
will be adversely impacted both by direct 
effects of climate change (such as increasing 
trends in daytime and nighttime temperatures; 
changes in rainfall patterns; and more frequent 

climate extremes, flooding, and drought) 
and consequent secondary effects (such as 
increased weed, pest, and disease pressures; 
reduced crop and forage production and 
quality; and damage to infrastructure). While 
climate change impacts on future agricultural 
production in specific regions of the United 
States remain uncertain, the ability of pro- 
ducers to adapt to climate change through 
planting decisions, farming practices, and use 
of technology can reduce its negative impact 
on production (Ch. 21: Midwest, Case Study 
“Adaptation in Forestry”).45 

 
Risks associated with climate changes depend 
on the rate and severity of the changes and 
the ability of producers to adapt to changes. 
The severity of financial risks also depends 
on changes in food prices as well as local-to- 
global trade levels, as production and con- 
sumption patterns will likely be altered due to 
climate change.10,46 Many countries are already 
experiencing rapid price increases for basic 
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food commodities, mainly due to production 
losses associated with more frequent weather 
extremes and unpredictable weather events. 
The United States is a major exporter of agri- 
cultural commodities,47 and a disruption in its 
agricultural production will affect the agricul- 
tural sector on a global scale. Food security, 
which is already a challenge across the globe, 
is likely to become an even greater challenge  
as climate change impacts agriculture.48,49 Food 
security will be further challenged by projected 
population growth and potential changes in 
diets as the world seeks to feed a projected 9.8 
billion people by 2050.50,51,52 

 
In the late 1900s, U.S. agriculture started to 
develop significant capacities for adaptation to 
climate change, driven largely by public- 
sector investment in agricultural research and 
extension.53 Currently, there are numerous 
adaptation strategies available to cope with 
adverse impacts of climate change.38,54,55 These 
include altering what is produced in a region, 
modifying the inputs used for production, 
adopting new technologies, and adjusting 
management strategies. Crop management 
strategies include the selection of crop vari- 
eties/species that meet changes in growing 
degree days and changes in requirements for 
fertilizer rates, timing, and placement to match 
plant requirements.56 Adaptation strategies 
also include changes in crop rotation, cover 
crops, and irrigation management.57,58,59,60,61,62 

With changes to rainfall patterns that greatly 
impact the environment, wider use of proven 
technologies will be required to prevent soil 
erosion, waterlogging, and nutrient losses.44,63 

Adaptation strategies for sustaining and 
improving livestock production systems 
include managing heat stress by altering 
diets,64,65,66,67,68,69,70 providing adequate shade and 
clean drinking water supplies,71,72 monitoring 
stock rates continuously to match forage 
availability,73,74,75 altering the timing of feeding/ 
grazing and reproduction,76 and selecting the 

species/breeds that match climatic condi- 
tions.54,77 Other strategies to reduce climate 
change impacts include integrated pest and 
disease management,78,79 the use of climate 
forecasting tools,80 and crop insurance cover- 
age to reduce financial risk.44,81,82 These strat- 
egies have proven effective as evidenced by 
continued productivity growth and efficiency. 
The proper implementation of combinations of 
these strategies has the potential to effectively 
manage negative impacts of moderate climate 
change. However, these approaches have limits 
under severe climate change impacts.66,83,84,85 

Key Message 1 
 

 
Food and forage production will decline 
in regions experiencing increased fre- 
quency and duration of drought. Shifting 
precipitation patterns, when associated 
with high temperatures, will intensify 
wildfires that reduce forage on range- 
lands, accelerate the depletion of water 
supplies for irrigation, and expand the 
distribution and incidence of pests and 
diseases for crops and livestock. Modern 
breeding approaches and the use of 
novel genes from crop wild relatives are 
being employed to develop higher-yielding, 
stress-tolerant crops. 

Climate projections to the year 2100 suggest 
that increases are expected in the incidence 
of drought and elevated growing-season 
temperatures.86 Elevated temperatures play a 
critical role in increasing the rate of drought 
onset, overall drought intensity, and drought 
impact through altered water availability and 
demand.87,88 Increased evaporation rates caused 
by high temperatures, in association with 
drought, will exacerbate plant stress,89 yield 
reduction,90,91,92 fire risks,93,94,95,96 and depletion 
of surface and groundwater resources.97,98,99,100 

Reduced Agricultural Productivity 
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Soil carbon, important for enhancing plant 
productivity through a variety of mecha- 
nisms,101 is depleted during drought due to low 
biomass productivity, which in turn decreases 
the resilience of agroecosystems.23 In 2012, the 
United States experienced a severe and exten- 
sive drought, with more than two-thirds of 
its counties declared as disaster areas.102 This 
drought greatly affected livestock, wheat, corn, 
and soybean production in the Great Plains 
and Midwest regions 44,103,104,105 and accounted 
for $14.5 billion in loss payments by the federal 
crop insurance program.106 From 2013–2016, all 
of California faced serious drought conditions 
that depleted both reservoir and groundwater 
supplies. This lengthy drought, attributed in 
part to the influence of climate change,88,107 

resulted in the overdrawing of groundwater, 
primarily for irrigation, leading to large 
declines in aquifer levels (Ch. 3: Water, KM 
1).98,108 In 2014, the California state legislature 
passed the Sustainable Groundwater Manage- 
ment Act to develop groundwater management 
plans for sustainable groundwater use over the 
next 10–20 years.109,110,111 

 
Average yields of many commodity crops (for 
example, corn, soybean, wheat, rice, sorghum, 
cotton, oats, and silage) decline beyond certain 
maximum temperature thresholds (in conjunc- 
tion with rising atmospheric carbon dioxide 
[CO2] levels), and thus long-term temperature 
increases may reduce future yields under both 
irrigated and dryland production.37,91,92,97,103,112,113 

In contrast, even with warmer temperatures, 
future yields for certain crops such as wheat, 
hay, and barley are projected to  increase  in 
some regions due to anticipated increases in 
precipitation and carbon fertilization.97,114 How- 
ever, yields from major U.S. commodity crops 
are expected to decline as a consequence of 
higher temperatures,45 especially when these 
higher temperatures occur during  critical 
periods of reproductive development.115,116,117 

Increasing temperatures are also projected 

to have an impact on specialty crops (fruits, 
nuts, vegetables, and nursery crops) (Ch. 25: 
Southwest, KM 6), although the effects will be 
variable depending on the crops and where 
they are grown.118 Additional challenges involve 
the loss of synchrony of seasonal phenomena 
(for example, between crops and pollinators) 
(Ch. 7: Ecosystems; Ch. 25: Southwest, KM 6). 
Further, the interactive effects of rising atmo- 
spheric CO2 concentrations, elevated tempera- 
tures, and changes in other climate factors are 
expected to enhance weed competitiveness 
relative to crops,119 with temperature being a 
predominant factor.120,121 

 
Irrigated agriculture is one of the major 
consumers of water supplies in the United 
States (Ch. 3: Water; Ch. 25: Southwest, KM 
6). Irrigation is used for crop production in 
most of the western United States and since 
2002 has expanded into the northern Midwest 
(Ch. 21: Midwest, KM 1) and Southeast (Ch. 19: 
Southeast, KM 4). Expanded irrigation is often 
proposed as a strategy to deal with increasing 
crop water demand due to higher trending 
temperatures coupled with decreasing 
growing-season precipitation. However, under 
long-term climate change, irrigated acreage is 
expected to decrease, due to a combination of 
declining water resources and a diminishing 
relative profitability of irrigated production.97 

Continuing or expanding existing levels of 
irrigation will be limited by the availability 
of water in many areas.11,98,108 Surface water 
supplies are particularly vulnerable to shifts in 
precipitation and demand from nonagricultural 
sectors. Groundwater supplies are also in 
decline across major irrigated regions of the 
United States (see Case Study “Groundwater 
Depletion in the Ogallala Aquifer Region”) (see 
also Ch. 3: Water, Figure 3.2; Ch. 25: Southwest, 
KM 1; Ch. 23: S. Great Plains, KM 1). 

 
Crop productivity and quality may also be sig- 
nificantly reduced due to increased crop water 
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demand coupled with limited water avail- 
ability122,123,124 as well as increased diseases and 
pest infestations (Ch. 25: Southwest, KM 6).125 

The expected demand for higher crop produc- 
tivity and anticipated climate change stresses 
have driven advancements in crop genetics.126,127 

Seed companies have released numerous crop 
varieties that are tolerant to heat, drought, or 
pests and diseases. This trend is expected to 
continue as new crop varieties are developed 
to adapt to a changing climate.128 Recent 
advances in genetics have allowed researchers 
to access large and complex genomes of 
crops and their wild relatives.129 This has the 
potential to reduce the time and cost required 
to identify and incorporate useful traits in 
plant breeding and to develop crops that are 
more resilient to climate change. Currently, 
the United States has the largest gene bank 
in the world that manages publicly held crop 
germplasm (genetic material necessary for 
plant breeding). However, progress in this area 
has been modest despite advances in breeding 
techniques.130,131,132,133 Further, institutional 
factors such as intellectual property rights, 
and a lack of international access to crop 
genetic resources, are affecting the availability 
and utilization of genetic resources useful for 
adaptation to climate change.134 Investments 
by commercial firms alone are unlikely to be 
sufficient to maintain these resources, mean- 
ing higher levels of public investment would 
be needed for genetic resource conservation, 
characterization, and use. Societal concerns 
over certain crop breeding technologies 
likely will continue, but current assessments 
of genetically engineered crops have shown 
economic benefits for producers, with no 
substantial evidence of animal or human health 
or environmental impacts.135 

 
Climate-smart agriculture136 can reduce the 
impacts of climate change and consequent 
environmental conditions on crop yield.137,138 

Not only do producers take climate forecasts 

into consideration when deciding what to 
produce and how to produce it, they also 
adapt management strategies to cope with 
expected weather conditions. For example, 
drought resilience can be improved by 
adopting high-efficiency precision irrigation 
technologies.139,140,141 In order for these systems 
to work effectively, a network of weather 
stations is required in agricultural regions. 
Currently, 23 states have one or more publicly 
funded agricultural weather networks, such 
as the Oklahoma Mesonet142 and the Nebraska 
Agricultural Water Management Network.143 

 
The same aspects of climate  change  that 
affect the incidence of drought also affect the 
frequency and intensity of wildfires, which 
pose major risks to agriculture and rural 
communities. Grassland, rangeland, and forest 
ecosystems, which support ruminant livestock 
production, represent more than half of the 
land area of the United States.144 Wildfires are 
a normal occurrence in these ecosystems, 
and they play an important role in long-term 
ecosystem health. However, climate change 
threatens to increase the frequency and length 
of the wildfire season, as well as the size and 
extent of large fires.95 Increasing temperatures 
also promote an increased spread of invasive or 
encroaching species,145 which exacerbate wild- 
fire risks. Beyond economic losses, wildfires 
also contribute to climate change by releasing 
CO2 into the atmosphere (Ch. 6: Forests, KM 1; 
Ch. 13: Air Quality, KM 2). The increased extent 
of high-severity fire expanding into commu- 
nities further reduces the capacity to provide 
other services and puts communities, per- 
sonnel, and infrastructures at higher risk.146,147 

Tribal communities are particularly vulnerable 
to wildfires, due to a lack of fire-fighting 
resources, insufficient experienced internal 
staff, and remote locations (Ch. 15: Tribes).148,149 

In addition, firefighting in many tribal com- 
munities requires coordination across fire- 
prone landscapes with various jurisdictional 
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controls.150 On average, the United States 
spends about $1 billion annually to fight wild- 
fires, but it spent more than $2.9 billion in 2017 
due to extreme drought conditions in some 
regions.151 States, local governments, and the 

private sector also absorbed additional costs of 
firefighting and recovery. (For more on wild- 
fires, see Ch. 5: Land Changes; Ch. 6: Forests; 
Ch. 15: Tribes.) 

 
Case Study: Groundwater Depletion in the Ogallala Aquifer Region 

 

The Ogallala Aquifer region (OAR) is one of the most productive farm belts in the world. Irrigated agriculture 
uses more than 95% of the groundwater extracted from the Ogallala Aquifer, and the economy of the region 
depends almost entirely on irrigated agriculture. Overlying states produce one-fifth of the Nation’s wheat, corn, 
and cotton, and the southern half of the region accounts for more than one-third of the beef cattle produc- 
tion.152 In 2007, the market value of agricultural products from this region was about $35 billon, which ac- 
counted for 11.6% of the total market value of agricultural products in the United States.153

 

 
The management of agriculture, water, and soil in the OAR has come full circle over the past century. The 
conversion of native grasslands for crop production in the early part of the 20th century followed by prolonged 
drought led to severe dust storms that became known as the Dust Bowl of the 1930s. The adoption of soil 
conservation methods and irrigation with Ogallala water improved soil health and reduced soil erosion while 
expanding the region’s economy. However, major portions of the Ogallala Aquifer should now be considered 
a nonrenewable resource. Reduced well outputs due to excessive pumping, especially in central and southern 
parts of the OAR (Figure 10.3), coupled with frequent and prolonged droughts have led to recent dust storms 
that were similar to those of the 1930s and 1950s. Climate change is projected to further increase the duration 
and intensity of drought over much of the OAR in the next 50 years.39,86 Recent advances in precision irrigation 
technologies,154,155 improved understanding of the impacts of different dryland and irrigation management strat- 
egies on crop productivity,60,156,157,158,159 and the adoption of weather-based irrigation scheduling tools160 as well as 
drought-tolerant crop varieties161 have increased the ability to cope with projected heat stress and drought 
conditions under climate change.162 However, current extraction for irrigation far exceeds recharge in this aqui- 
fer, and climate change places additional pressure on this critical water resource. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dust storm approaching Stratford, Texas (in the state’s 
panhandle), during the Dust Bowl of the 1930s. Photo credit: 
NOAA George E. Marsh Album. 

Satellite image showing center pivot irrigation in Finney 
County, Kansas. This area utilizes irrigation water from the 
Ogallala aquifer. Image courtesy of NASA. 
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Case Study: Groundwater Depletion in the Ogallala Aquifer Region, continued 

Changes in the Ogallala Aquifer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.3: The figure shows changes in groundwater levels in the Ogallala Aquifer from predevelopment to 2015. Source: 
adapted from McGuire 2017.163 
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Key Message 2 
 

 
The degradation of critical soil and 
water resources will expand as extreme 
precipitation events increase across 
our agricultural landscape. Sustainable 
crop production is threatened by ex- 
cessive runoff, leaching, and flooding, 
which results in soil erosion, degraded 
water quality in lakes and streams, 
and damage to rural community infra- 
structure. Management practices to 
restore soil structure and the hydrologic 
function of landscapes are essential for 
improving resilience to these challenges. 

 
Soil erosion by water is one of the major 
environmental threats to sustainable crop 
production.164,165 It can also adversely affect 
drainage networks, water quality,166 and recre- 
ation167. Climate change is expected to increase 
the frequency of extreme precipitation events 
in many regions of the United States (Ch. 
2: Climate). This, in turn, increases rainfall 
erosivity (the potential for soil to be eroded) 
and the sediment transport capacity of surface 
runoff from agricultural lands, both of which 
increase total soil erosion and sedimentation 
into receiving water bodies.168 Therefore, 
increasing soil erosion rates have the potential 
to not only reduce agricultural productivity but 
also accelerate climate change effects through 
the loss of large stocks of carbon and nutrients 
stored in soil.23,169,170 

 
An analysis of historical data on extreme 
single-day precipitation events in the United 
States occurring from 1910–2017 shows that the 
share of land area that experienced extreme 
precipitation regimes remained fairly steady 
until the 1980s but has risen significantly since 

then (Figure 10.4) (see also Ch. 19: Southeast, 
Figure 19.3).171 This increase is expected to 
continue in this century. Because increased 
precipitation extremes elevate the risk of 
surface runoff, soil erosion, and loss of soil 
carbon, additional protective measures are 
needed to safeguard the progress that has been 
made in reducing soil erosion and water quality 
degradation from U.S. croplands through the 
implementation of grassed waterways, cover 
crops, conservation tillage, and waterway 
protection strips (Ch. 21: Midwest, KM 1).23,172 

Conservation strategies that are being imple- 
mented to reduce soil erosion and increase 
carbon sequestration use the estimates of 
expected average climate conditions derived 
from historical data. It is possible that these 
strategies could be improved by considering 
current and projected future climate extremes 
and local conditions.23,173 

 
The degradation of freshwater and marine 
ecosystems due to sediment and nutrient 
loadings from agricultural landscapes is a 
major environmental challenge in the United 
States.174,175,176,177 A strong correlation exists 
between extreme precipitation, high stream- 
flow events, and large sediment and nutrient 
loadings entering river systems. Extreme 
precipitation events have been increasing 
across most of the United States over the past 
few decades; in particular, the frequency of 
heavy precipitation and streamflow events has 
increased in the central and eastern United 
States.178,179,180,181 Large nutrient-rich sediment 
loadings, coupled with global warming, have 
caused increases in the duration, intensity, and 
extent of hypoxia (low-oxygen conditions) in 
coastal and freshwater systems over the past 
century (Ch. 21: Midwest, Case Study “Great 
Lakes Climate Adaptation Network”).182,183,184,185,186 

 
Hypoxia occurs when dissolved oxygen con- 
centration is depleted to a certain low level 
below which aquatic organisms, especially 

Degradation of Soil and Water 
Resources 
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Land Area and Extreme Precipitation 
 

Figure 10.4: The figure shows the percent of land area in the contiguous 48 states experiencing extreme one-day precipitation events 
between 1910 and 2017. These extreme events pose erosion and water quality risks that have increased in recent decades. The bars 
represent individual years, and the orange line is a nine-year weighted average. Source: adapted from EPA 2016.171 

 
immobile species such as oysters and mussels, 
endure severe stress or die.187,188,189 The Ches- 
apeake Bay,185 the northern Gulf of Mexico,190 

and Mobile Bay191 are common U.S. coastal 
locations for recurring hypoxic conditions. 
From 1960–2008, the incidences of hypoxia 
in the United States increased by a factor of 
30,192 threatening the U.S. coastal economy 
that in 2014, for example, generated more 
than $214 billion in sales and supported 1.83 
million jobs.193 

 
A recent study182 found that a majority of 
the documented hypoxic zones around the 
world are in regions projected to experi- 
ence an increase in temperature of 3.6°F 
(2°C) by the end of century. Projections for 
hypoxia indicate a worsening trend, with 
increased frequency, intensity, and duration 
of hypoxic episodes.194 The consequences 
of this projected trend for the environment, 
society, and local economies will depend on 
1) a combination of climate change impacts, 
stemming primarily from global warming195 and 

altered wind, precipitation, and ocean current 
patterns,185,196,197 and 2) impacts resulting from 
land-use change (for example, streamflow and 
sediment and nutrient loadings).182,189,194 Long- 
term, broad-scale efforts to reduce nutrient 
loads from landscapes impacted by human 
activity, especially agriculture, are required if 
water resources are to be adequately protect- 
ed.194 These efforts would require programs 
to monitor, study, and manage water quality 
problems on both regional and local scales. 
Numerous programs of this kind have already 
been established for a few major coastal water 
bodies, such as Lake Erie, the northern Gulf  
of Mexico, the Chesapeake Bay, and Long 
Island Sound.198,199 

 
Flooding in agricultural and rural communities 
leads to the degradation of soil and water 
resources, negative impacts on human health, 
decreased economic activity, infrastructure 
damage, and environmental contamination.200 

Since the early 1900s, global sea level has risen 
by about 8 inches, and this has increased the 
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frequency, magnitude, and duration of flooding 
affecting agriculture and rural communities 
along coastal regions (Ch. 8: Coastal; Ch. 18: 
Northeast, KM 1 and 2). Projected climate 
change, including  increased  storm  intensity 
and elevated global  temperatures,  is  expected 
to worsen the problem. The outer  range  of 
global average sea level rise is projected to be 
between 1 foot and 8 feet by 2100, with a very 
likely range of between 1 foot and 4.3 feet (Ch.   
2: Climate, KM 4 and 9),201,202 putting U.S. coast-  
al communities at risk, including many rural 
communities located along low-lying rivers 
in the coastal plains. Coastal erosion in the 
United States accounts for about $500 million 
in damages every year, for which the Federal 
Government spends an average of $150 million 
per year for erosion control measures.203 

Damage to coastal communities includes 
coastal erosion and the loss of wetlands due  
to flooding, coupled with high tides and sea 
level rise; the contamination of irrigation and 
drinking water due to saltwater intrusion; 
the loss of traditional food sources due to the 
loss of marine habitats and coral reefs; and 
the loss of agricultural lands due to rising sea 
levels.204 Low-relief islands and Pacific atolls 
are particularly at risk to both sea level rise 
and increasing storm surge intensity (Ch. 8: 
Coastal; Ch. 15: Tribes).205 

Key Message 3 
 

 
Challenges to human and livestock 
health are growing due to the increased 
frequency and intensity of high tempera- 
ture extremes. Extreme heat conditions 
contribute to heat exhaustion, heat- 
stroke, and heart attacks in humans. 
Heat stress in livestock results in large 
economic losses for producers. Ex- 
panded health services in rural areas, 
heat-tolerant livestock, and improved 
design of confined animal housing are 
all important advances to minimize 
these challenges. 

 
Climate change impacts, such as extreme 
weather conditions, have a complex influence 
on human health. Specific issues are discussed 
in more detail in Chapter 14: Human Health. 
Extreme heat can cause or contribute to 
potentially deadly conditions such as heat 
exhaustion, heatstroke, and heart attacks (Ch. 
18: Northeast, Figure 18.11) and reduced human 
productivity (Ch. 19: Southeast, Figure 19.21). 
In the United States, some communities of 
color, low-income groups, certain immigrant 
groups, and tribal communities are vulner- 
able to impacts of climate change; pregnant 
women, children, and older people associated 
with these populations are the most at risk, 
considering their higher likelihood of living in 
risk-prone areas (such as isolated rural areas 
and areas with poor infrastructure).149 

 
Higher temperatures and consequent longer 
growing seasons can also affect human health 
by prolonging the duration of the pollen and 
allergy seasons.206 Further, higher atmospheric 
CO2 levels enable ragweed and other plants to 
produce allergenic pollen in larger quantities.207 

Health Challenges to Rural 
Populations and Livestock 
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Since the beginning of the 20th century, the 
length of the average growing season has 
increased by nearly two weeks in the contig- 
uous 48 states, with larger increases in the 
West (2.2 days per decade) than in the East (1 
day per decade). Arizona and California have 
recorded the most dramatic increase, while the 
growing season has become shorter in a few 
southeastern states. 

 
Health impacts to livestock are also an 
important concern. Livestock and poultry 
account for over half of U.S. agricultural cash 
receipts, exceeding $182 billion in 2012.9 One 
study estimated average annual losses related 
to heat stress for the year 2000, even with 
adaptation-appropriate techniques, at about 
$897 million, $369 million, $299 million, and 
$128 million for dairy, beef, swine, and poultry 
industries, respectively.208 Projected increases 
in daily maximum temperatures and heat 
waves will lead to further heat stress for live- 
stock, although the severity of consequences 
will vary by region. Temperatures beyond the 
optimal range alter the physiological functions 
of animals, resulting in changes in respiration 
rate, heart rate, blood chemistry, hormones, 
and metabolism; such temperatures generally 
result in behavioral changes as well, such as 
increased intake of water and reduced feed 
intake.83 Heat stress also affects reproductive 
efficiency.209,210 High temperatures associated 
with drought conditions adversely affect pas- 
ture and range conditions and reduce forage 
crop and grain production, thereby reducing 
feed availability for livestock.54,211,212 More vari- 
able winter temperatures also cause stress to 
livestock and, if associated with high-moisture 
blizzard conditions or freezing rain and icy 
conditions, can result in significant livestock 
deaths.213,214 

 
Dairy cows are particularly sensitive to heat 
stress, as it negatively affects their appetite, 
rumen fermentation (a process that converts 

ingested feed into energy sources for the 
animal), and lactation yield.215,216 Frequent 
higher temperatures also lower milk quality 
(reduced fat, lactose, and protein percentag- 
es).217,218 In 2010, heat stress was estimated to 
have lowered annual U.S. dairy production 
by $1.2 billion. A recent study indicates that 
the dairy industry expects to see production 
declines related to heat stress of 0.60%–1.35% 
for the average dairy over the next 12 years, 
with larger declines occurring in the South- 
ern Great Plains and the Southeast due to 
increasing relative stress (assuming producing 
regional herd inventories remain stable; Figure 
10.5).83,218 Similar heat stress losses impact 
beef cow-calf, stocker, and feedlot production 
systems; higher temperatures result in reduced 
appetites and grazing/feeding activity, which 
subsequently reduce production efficiencies. 
Extreme temperature events also increase 
feedlot mortality. 

 
In contrast to beef and dairy production, a 
much larger segment of both pork and poultry 
production is housed in environmentally 
controlled facilities that lessen the impact of 
temperature extremes on production efficien- 
cies. However, these systems rely on mecha- 
nized cooling systems that are more expensive 
to operate as temperatures increase and are 
subject to extreme losses associated with 
the failures of cooling equipment. Traditional 
outdoor pork and poultry production systems 
will be subject to the same temperature- 
related issues as the beef and dairy industries. 
Consequently, livestock systems (such as beef 
and dairy cattle) that are raised outside in 
range environments or pen-based concen- 
trated animal feeding operations are expected 
to be impacted more negatively by heat stress 
and climate extremes than livestock that are 
produced in climate-controlled facilities (such 
as the majority of pork and poultry).219 As a 
result, feedlots and dairy production centers 
are expected to continue to migrate to more 
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Projected Reduction in Milk Production 

Figure 10.5: The figure shows the predicted reduction in annual milk production in 2030 compared to 2010 in climate change- 
induced heat stress. The regions are grouped according to USDA regional Climate Hubs (https://www.climatehubs.oce.usda. 
gov), and the colored bars show the four global climate models used. Source: redrawn from Key et al. 2014.83 

temperate regions, due to heat stress, dimin- 
ished water availability, and reduced crop/ 
forage availability and quality.54 

 
In the absence of migration of livestock 
production to more temperate climates, 
adaptation strategies are possible to a degree.54 

For example, as local temperatures increase, 
livestock can be genetically adapted to local 
conditions.220 However, the physical mitigation 
of heat stress in livestock often requires long- 
term investments such as climate-controlled 

buildings, portable or permanent shading 
structures, and planted trees, as well as short- 
term production strategies such as altering 
feeds.76,218 Studies have shown that shading 
in combination with fans and sprinkler or 
evaporative cooling technologies can mitigate 
the short-term effects of heat stress on animal 
production and reproductive efficiency.221 

Other strategies include aligning feeding and 
management practices with the cooler times  
of the day and reducing the effort required by 
animals to access food and water.222 

http://www.climatehubs.oce.usda/
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Key Message 4 
 

 
Residents in rural communities often 
have limited capacity to respond to 
climate change impacts, due to poverty 
and limitations in community resources. 
Communication, transportation, water, 
and sanitary infrastructure are vul- 
nerable to disruption from climate 
stressors. Achieving social resilience 
to these challenges would require 
increases in local capacity to make 
adaptive improvements in shared com- 
munity resources. 

 
Climate change is an issue of great importance 
for rural communities. Rural populations are 
the stewards of most of the Nation’s forests, 
watersheds, rangelands, agricultural land, and 
fisheries, and much of the rural economy is 
closely tied to its natural environment. Thus, 
rural residents and the lands that they manage 
have the potential to make important economic 
and conservation contributions to climate 
change mitigation and adaptation. However, 
rural residents are also highly vulnerable to 
climate change effects due to their economic 
dependence on their natural resource base, 
which is subject to multiple climate stressors 
(Ch. 19: Southeast, Figures 19.15 and 19.16; Ch. 2: 
Climate). Migrant workers, who provide much 
of the agricultural labor in some regions and 
some enterprises, are particularly vulnerable. 
Climate change has already had direct impacts 
on rural populations and economies (Ch. 26: 
Alaska, Figures 26.3 and 26.4) and will inevita- 
bly have repercussions for rural livelihoods and 
prosperity in the future.223 

 
The ability of a rural community to adjust 
to climate disturbances, take advantage of 

economic opportunities, and cope with the 
consequences of change depends on a host of 
demographic and economic factors. Specifi- 
cally, rural areas have higher percentages of 
people living in poverty than do urban areas, 
and poverty rates among historically vulnerable 
populations such as children, the elderly, and 
racial and ethnic minorities tend to be higher 
(Ch. 15: Tribes, Figure 15.2; Ch. 19: Southeast, 
Figure 19.22; Ch. 21: Midwest, KM 6, Case Study 
“Great Lakes Climate Adaptation Network;” KM 
6; Ch. 23: S. Great Plains, KM 5).1 The social, 
economic, and institutional contexts in which 
these vulnerable populations are embedded 
can further influence their individual vulnera- 
bilities and collective capacity to communicate, 
cooperate, and cope with a climate disturbance 
event.224 Rural communities are less likely to 
have local land-use regulations and building 
codes than urban communities, and those 
that do exist are more likely to be loosely 
enforced.225 Lack of economic diversity, limited 
access to the internet, and relatively limited 
infrastructure, resources, and political clout 
further detract from the adaptive capacity of 
rural communities.226,227,228 As a result, rural 
communities are subject to a “climate gap” 
defined by disproportionate and unequal 
impacts of climate change and extreme  
climate events.229 

 
Vulnerability to climate change is a function 
of exposure, sensitivity, and adaptive capacity 
(Ch. 28: Adaptation). Developing the capacity 
to implement strategies that avoid stress 
or reduce system sensitivity can minimize 
vulnerability. Knowledge of climate change is 
underutilized in adaptation because proce- 
dures for incorporating climate information 
into decision-making have not been adequately 
developed.230,231 Flexibility is a central feature 
of successful adaptation to climate change.232 

Adaptive capacity is highly diverse in terms of 
a community’s ability to plan, recognize, and 
manage risk and then to adopt and implement 

Vulnerability and Adaptive Capacity 
of Rural Communities 
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adaptation strategies.230,233 This necessitates a 
range of flexible and cost-effective adaptation 
strategies that can address varied sensitivities 
and adaptive capacities (Ch. 15: Tribes, Box 
15.1; Ch. 24: Northwest, Figure 24.14, Box 24.5). 
Innovative efforts to build capacity in rural 
and Indigenous communities are described in 
Chapter 20: U.S. Caribbean, Key Message 6 and 
Chapter 21: Midwest, Key Message 6. 

 
Emerging Issues and Research Gaps 
Agriculture is a highly complex system that 
is tightly integrated with local-to-global food 
systems and interlinked with rural communi- 
ties that both rely on agricultural production 
for economic viability and support agricultural 
labor, input, and market requirements. Since 
the Third National Climate Assessment,234 there 
have been significant technological advances 
and a renewed emphasis on conservation 
management and precision agriculture, espe- 
cially as it relates to climate. Climate-smart 
agricultural initiatives (such as cover crops, 
specialized irrigation, and nutrient manage- 
ment) are being implemented to respond to 
or prepare for climate variability and change. 
In addition, genomics and plant breeding have 
targeted specific climate-related issues such as 
drought or increased ranges of pests. However, 
our understanding of the challenges posed by 
climate change is evolving, and new technolo- 
gies and improved scientific understanding is 
warranted. Examples of these emerging issues 
and research gaps include the following: 

 
• Considerable private- and public-sector 

research is focused on the genetic improve- 
ment of crops to enhance resilience under 
climate stress. However, most of the research 
has focused on a few major species, with 
minimal public resources invested in genetic 
improvement of specialty crops. Addition- 
ally, these efforts have focused largely on 
yield and much less on quality improvements 

that have significant nutritional and eco- 
nomic implications. 

 
• Additional research would improve our 

understanding of the interactive effects of 
CO2 concentration levels in the atmosphere, 
temperature, and water availability on plant 
physiological responses, particularly in 
highly dynamic field environments. 

 
• Field-scale research has been  conducted  

on the potential of cellulosic bioenergy 
crops, including grasses, fast-growing 
woody species, and corn residue harvest. 
However, the cascading effects of land-use 
change (from food to bioenergy crops) on 
rural economies, labor, and the environment 
remain uncertain. 

 
• Scientific understanding of climate change 

impacts on beneficial and pest insects, 
pathogens and beneficial microorganisms, 
and weeds is limited, as is knowledge about 
the interactions of these organisms within 
complex agricultural landscapes. 

 
• The Agricultural Model Intercomparison 

and Improvement Project (AgMIP) applies 
state-of-the art  climate,  crop/livestock,  
and agricultural economic models, along 
with stakeholder input, to coordinate multi- 
model regional and global assessments of 
climate impacts and adaptation. AgMIP is 
developing a rigorous process to evaluate 
agricultural models and thus is promoting 
continuous model improvement as well as 
supporting data sharing and the identifica- 
tion of adaptation technologies and policies. 
Currently, there is no comparable modeling 
framework to address animal agriculture or 
to evaluate the cascading effects of produc- 
tion on the broader food systems and food 
security issues. 
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• Agriculture has the ability to mitigate 
greenhouse gas emissions through carbon 
sequestration in the soil and perennial vege- 
tation, through improved nutrient-use effi- 
ciency of fertilizers, and through reduced 
methane emissions from ruminant livestock 
and manure. However, the magnitude of 
potential mitigation, particularly of nitrous 
oxides from soil and soil methanogens are 
poorly understood. Better understanding of 
the soil, rhizosphere, and rumen microbi- 
omes would improve our ability to develop 
mitigation strategies. 

 
• A systems approach for research would 

facilitate understanding of the vulnerabili- 
ties of food systems to climate change and 
quantifying the costs of business as usual 
relative to the adoption of adaptation and 
mitigation strategies. 

 
• Social science research would improve 

understanding of the vulnerability of rural 
communities, strategies to enhance adap- 
tive capacity and resilience, and barriers to 
adoption of new strategies. 
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Traceable Accounts 
Process Description 
Each regional author team organized a stakeholder engagement process to identify the highest- 
priority concerns, including priorities for agriculture and rural communities. Due to the het- 
erogeneous nature of agriculture and rural communities, the national chapter leads (NCLs) 
and coauthor team put in place a structured process to gather and synthesize input from the 
regional stakeholder meetings. Where possible, one or more of the authors or the chapter lead 
author listened to stakeholder input during regional stakeholder listening sessions. Information 
about agriculture and rural communities was synthesized from the written reports from each 
regional engagement workshop. During the all-authors meeting on April 2–3, 2017, the NCL met 
with authors from each region and other national author teams to identify issues relevant to  
this chapter. To finalize our regional roll-up, a teleconference was scheduled with each regional 
author team to discuss agriculture and rural community issues. Most of the regional author 
teams identified issues related to agricultural productivity, with underlying topics dominated by 
drought, temperature, and changing seasonality. Grassland wildfire was identified as a concern 
in the Northern and Southern Great Plains. All regional author teams identified soil and water 
vulnerabilities as concerns, particularly as they relate to soil and water quality impacts and a 
depleting water supply, as well as reduced field operation days due to wet soils and an increased 
risk of soil erosion due to precipitation on frozen soil. Heat stress in rural communities and among 
agricultural workers was of concern in the Southeast, Southern Great Plains, Northwest, Hawai‘i 
and Pacific Islands, U.S. Caribbean, and Northeast. Livestock health was identified as a concern 
in the Northeast, Midwest, U.S. Caribbean, and Southern Great Plains. Additional health-related 
concerns were smoke from wildfire, pesticide impacts, allergens, changing disease vectors, and 
mental health issues related to disasters and climate change. Issues related to the vulnerability  
and adaptive capacity of rural communities were identified by all regions. Discussions with the 
regional teams were followed by expert deliberation on the draft Key Messages by the authors and 
targeted consultation with additional experts. Information was then synthesized into Key Mess- 
ages, which were refined based on published literature and professional judgment. 

Key Message 1 

Food and forage production will decline in regions experiencing increased frequency and duration of 
drought (high confidence). Shifting precipitation patterns, when associated with high temperatures, 
will intensify wildfires that reduce forage on rangelands, accelerate the depletion of water supplies 
for irrigation, and expand the distribution and incidence of pests and diseases for crops and 
livestock (very likely, high confidence). Modern breeding approaches and the use of novel genes from 
crop wild relatives are being employed to develop higher-yielding, stress-tolerant crops. 

 
Description of evidence base 
The Key Message and supporting text summarize extensive evidence documented in the U.S. 
Global Change Research Program’s (USGCRP) Climate Science Special Report84 indicating increas- 
ing drought frequency or severity in many parts of the United States, increased temperature, 

Reduced Agricultural Productivity 
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and increased frost-free days. An increased probability of hot days concurrent with drought 
has been reported by Mueller and Seneviratne (2012),235 Mazdiyasni and AghaKouchak (2015),236 

and Diffenbaugh et al. (2015).107 The warming of minimum temperatures (lack of hard freezes) 
is contributing to expanding ranges for many insect, disease, and weed species.237 Bebber et al. 
(2013)238 report an average poleward shift of 2.7 km/year (1.68 miles/year) since 1960 of numerous 
pests and pathogens. 

Agricultural production: Walthall et al. (2012)38 synthesize a wide body of literature that docu- 
ments the impacts of climate, including drought, on crop and livestock productivity and on the 
natural resources that support agricultural production. Marshall et al. 201597 also quantified 
climate change impacts on the yield of major U.S. crops as well as the reduced ability in the future 
to mitigate drought by irrigation. Havstad et al. (2016)239 describe the resilience of livestock pro- 
duction on rangelands in the Southwest and identify adaptation management strategies needed in 
an increasingly arid and variable climatic environment. Liang et al. (2017)240 found that total factor 
productivity (TFP) for the U.S. agriculture sector is related to regional and seasonal temperature 
and precipitation factors. Rosenzweig et al. (2014)241 indicated strong negative effects of climate 
change on crop yields, particularly at higher levels of warming and lower latitudes. While techno- 
logical improvements have outweighed the aggregate negative impacts of climate to date, pro- 
jected climate change indicates that U.S. agriculture TFP could drop to pre-1980s levels by 2050. 
Ray et al. (2015)242 estimate that climate accounts for about one-third of global yield variability. 

Crop heat stress: Novick et al. (2016)243 indicate that atmospheric vapor pressure deficits play a 
critical role in plant function and productivity and that it will become more important at higher 
temperatures as an independent factor, relative to available soil moisture. For instance, high 
temperature has been documented to decrease yields of major crops, including wheat, corn, rice, 
and soybean.92,113,120,244 Multimodel simulations indicated that grain yield reductions of wheat at high 
temperature were associated with reduced grain number per head120 and that yield reductions 
were increased with higher temperature increases across a wide range of latitudes.241 Hatfield et  
al. (2017)245 report that yield gaps for Midwest corn were negatively related to July maximum and 
August minimum temperatures but positively related to July–August rainfall, and that soybeans 
were less sensitive to projected temperature changes than corn. For corn, projected yield gaps 
showed a strong North–South gradient, with large gaps in southern portions of the region. Kukal 
and Irmak (2018)246 reported that changes in the variability of maize, sorghum, and soybean yield 
patterns in the Great Plains from 1968–2013 were linked to temperature and precipitation, with 
irrigated crops showing low variability compared to rainfed crops. Temperature increases were 
detrimental to sorghum and soybean yield but not to corn during this period. Tebaldi and Lobbell 
(2015)247 projected that corn would benefit from greenhouse gas mitigation to limit temperature 
increases throughout this century. For wheat, but less so for corn, impacts of exposure to 
extremely high temperatures would be partially offset by carbon dioxide fertilization effects. Tack 
et al. (2015)248 report that the largest drivers of Kansas wheat yield loss over 1985–2013 were freez- 
ing temperatures in the fall and extreme heat events in the spring.249,250 The overall effect of warm- 
ing on yields was negative, even after accounting for the benefits of reduced exposure to freezing 
temperatures. Warming effects were partially offset by increased spring precipitation. Of concern 
was evidence that recently released wheat varieties are less able to resist high temperature stress 
than older varieties. Gammans et al. (2017)251 found that wheat and barley yields in France were 
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negatively related to spring and summer temperatures. Liu et al. (2016)252 report that with a 1.8°F 
(1°C) global temperature increase, global wheat yield is projected to decline between 4.1% and 
6.4%, with the greatest losses in warmer wheat-producing regions. Wienhold et al. (2017)253 iden- 
tify an increase in the number of extreme temperature events (higher daytime highs or nighttime 
lows) as a vulnerability of Northern Great Plains crops due to increased plant stress during critical 
pollination and grain fill periods. Burke and Emerick (2016)254 found that adaptation appeared to 
have mitigated less than half of the negative impacts of extreme heat on productivity. 

Wildfire and rangelands: Margolis et al. (2017)255 report that fire scars in tree rings for the years 
1599–1899 indicate that large grassland fires in New Mexico are strongly influenced by the current 
year cool-season moisture, but that fires burning mid-summer to fall are also influenced by mon- 
soon moisture. Wet conditions several years prior to the fire year, resulting in increased fuel load, 
are also important for spring through late-summer fires. Persistent cool-season drought lasting 
longer than three years may inhibit fires due to the lack of moisture to replenish surface fuels. 
Donovan et al. (2017)95 reported that wildfires greater than 400 hectares increased from 33.4 ± 5.6 
per year during the period 1985–1994 to 116.8 ± 28.8 wildfires per year for the period 2005–2014 
and that the total area burned in the Great Plains by large wildfires increased 400%. 

Water supply: Dai and Zhao (2017)256 quantify historical trends in drought based on indices derived 
from the self-calibrated Palmer Drought Severity Index and the Penman–Monteith potential 
evapotranspiration index. For greater reliability, they compare these results with observed precip- 
itation change patterns, streamflow, and runoff in three different periods: 1950–2012, 1955–2000, 
and 1980–2012. They indicate that spatially consistent patterns of drying have occurred in many 
parts of the Americas, that evaporation trends were slightly negative or slightly positive (exclusive 
of 1950–1980), and that drought has been increasingly linked to increased vapor pressure deficits 
since the 1980s. 

Pest pressures: Integrated pest management is rapidly evolving in the face of intensifying pest 
challenges to crop production.257 There is considerable capacity for genetic improvement in agri- 
cultural crops and livestock breeds, but the ultimate ability to breed increased heat and drought 
tolerance into germplasm while retaining desired agronomic or horticultural attributes remains 
uncertain.258 The ability to breed pest-resistant varieties into a wide range of species to address 
rapidly evolving disease, insect, and weed species237 is also uncertain. 

Major uncertainties 

Drought impacts on crop yields and forage are critical at the farm economic scale and are well 
documented.38,97 However, the extent to which drought impacts larger-scale issues of food 
security depends on a wide range of economic and social factors that are less certain. Chavez et 
al. (2015)259 lay out a framework for food security assessment that incorporates risk mitigation, 
risk forecast, and risk transfer instruments. There is considerable uncertainty in what is expected 
for the frequency and severity of future droughts.260 However, retrospective analyses and global 
climate modeling of 1900–2014 drought indicators show consistent results. The applied global cli- 
mate models project 50%–200% increases in agricultural drought frequency in this century, even 
under low forcing scenarios. There is uncertainty about the interactive effects of carbon dioxide 
concentration, temperature, and water availability on plant physiological responses, particularly 
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in highly dynamic field environments. There is uncertainty about future technological advances in 
agriculture and about changes in diet choices and food systems. 

Description of confidence and likelihood 

The USGCRP84 determined that recent droughts and associated heat waves have reached record 
intensities in some regions of the United States; however, by geographic scale and duration, the 
1930s Dust Bowl remains the benchmark drought and extreme heat event in the historical record 
since 1895 (very high confidence). The confidence is high that drought negatively impacts crop 
yield and quality, increases the risk of range wildfires, and accelerates the depletion of water 
supplies (very likely and high confidence). 

Key Message 2 

The degradation of critical soil and water resources will expand as extreme precipitation events 
increase across our agricultural landscape (high confidence). Sustainable crop production is 
threatened by excessive runoff, leaching, and flooding, which results in soil erosion, degraded 
water quality in lakes and streams, and damage to rural community infrastructure (very likely, very 
high confidence). Management practices to restore soil structure and the hydrologic function of 
landscapes are essential for improving resilience to these challenges. 

 
Description of evidence base 
Evidence of long-term changes in precipitation is based on analyses of daily precipitation observa- 
tions from the National Weather Service’s Cooperative Observer Network.261 

Groisman et al. (2012)262 reported that for the central United States, the frequency of very heavy 
precipitation increased by 20% from 1979–2009 compared to 1948–1978. Slater and Villarini 
(2016)263 report a significant increase in flooding frequency in the Southern Plains, California, and 
northern Minnesota; a smaller increase in the Southeast; and a decrease in the Northern Plains 
and Northwest. Mallakpour and Villarini (2015)264 report an increasing frequency of flooding in the 
Midwest, primarily in summer, but find limited evidence of a change in magnitude of flood peaks. 

Infrastructure: Severe local storms constituted the largest class of billion-dollar natural disasters 
from 1980 to 2011, followed by tropical cyclones and nontropical floods.265 Špitalar et al. (2014)266 

evaluate flash floods from 2006 to 2012 and find that the floods with the highest human impacts, 
based on injuries and fatalities, are associated with small catchment areas in rural areas. Rural 
areas face particular challenges with road networks and connectivity.267 

Soil and water: Soil carbon on agricultural lands is decreased due to land-use change and till- 
age,268,269 resulting in decreased hydrologic function.101 Practices that increase soil carbon have  
an adaptation benefit through improved soil structure and infiltration, improved water-holding 
capacity, and improved nutrient cycling. There are many practices that can enhance agricultural 
resilience through increased soil carbon sequestration.75,268,270,271,272,273 Houghton et al. (2017)274 

identify the health effects associated with poor water quality that can be associated with nutrient 
transport to water bodies and subsequent eutrophication. 

Degradation of Soil and Water Resources 
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Major uncertainties 

Floods are highly variable in space and time,86 and their characteristics are influenced by a number 
of non-climate factors.275 Groissman et al. (2012)262 note that the lack of sub-daily data to analyze 
precipitation intensity means that daily data are normally used, which limits the ability to detect 
the most intense precipitation rates. While many practices are available to protect soil and reduce 
nutrient runoff from agricultural lands,268,272 adoption rates by producers are uncertain. Addition- 
ally, there is uncertainty about the extent to which agribusiness will invest in soil improvement to 
mitigate risks associated with a changing climate and its effects on water, energy, and plant and 
animal supply chains.276 

Description of confidence and likelihood 

The evidence on increasing precipitation intensity, with the largest increases occurring in the 
Northeast, is high (very likely, high confidence). The increase in flooding is less certain (likely,  
medium confidence). The evidence of the impact of precipitation extremes on infrastructure losses, 
soil erosion, and contaminant transport to water bodies is well established (very likely, high con- 
fidence). Based on medium confidence on flooding but high confidence in increasing precipitation 
intensity and the impacts of precipitation extremes, there is high confidence in this Key Message. 

Key Message 3 

Challenges to human and livestock health are growing due to the increased frequency and intensity 
of high temperature extremes (very likely, high confidence). Extreme heat conditions contribute to 
heat exhaustion, heatstroke, and heart attacks in humans (very likely, high confidence). Heat stress 
in livestock results in large economic losses for producers (very likely, high confidence). Expanded 
health services in rural areas, heat-tolerant livestock, and improved design of confined animal 
housing are all important advances to minimize these challenges. 

 
Description of evidence base 
The Key Message and supporting text summarize extensive evidence documented in the 
USGCRP’s Climate Science Special Report.84 

Humans: Houghton et al. (2017)274 synthesize the literature that presents strong evidence of cli- 
mate change impacts on human health in rural areas. Anderson et al. (2018)278 find that heat waves 
pose risks to human mortality but that the risk associated with any single heat wave depends on 
many factors, including heat wave length, timing, and intensity. On average, heat waves increase 
daily mortality risk by approximately 4% in the United States,279 but extreme heat waves present 
significantly higher risks. While research on heat-related morbidity has focused on urban areas, 
Jagai et al. (2017)280 analyzed heat waves in Illinois over 1987–2014 and found that there were 
1.16 hospitalizations per 100,000 people in the most rural, thinly populated areas, compared to 
0.45 hospitalizations per 100,000 in metropolitan areas. Consequently, a 1.8°F (1°C) increase in 
maximum monthly temperature was associated with a 0.34 increase in hospitalization rates in 
rural areas compared to an increase of 0.02 per 100,000 in urbanized counties. The mean cost 
per hospital stay was $20,050. Fechter-Leggett et al. (2016),281 Hess et al. (2014),282 and Sugg et al. 

Health Challenges to Rural Populations and Livestock 
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(2016)283 also report an elevated risk in rural areas for emergency room visits for heat stress. Addi- 
tionally, rural areas have a high proportion of outdoor workers who are at additional risk for heat 
stress.280,284,285 Merte (2017)286 analyzed data from 1960 to 2015 for 27 European countries and found 
that 0.61% of all deaths were caused by extreme heat. 

Major uncertainties 

Humans: Much of the literature focuses on heat-related mortality in urban areas (e.g., Oleson et 
al. 2015, Marsha et al. 2017.287,288) Vulnerability and exposure in rural areas are not well understood, 
but Oleson et al. (2015),287 in quantifying projected future temperature impacts, indicate that urban 
areas will experience more summer heat days and reduced winter cold temperature days than 
rural areas. Huber et al. (2017)289 identify uncertainties in estimated impacts of death from cardio- 
vascular diseases from a 1.8°F (1°C) increase in global temperature. Anderson et al. (2018)278 discuss 
uncertainties associated with changes in the size and age of the population and the breadth of 
plausible socioeconomic scenarios. Jones et al. (2015)290 identify uncertainties in the migration 
of population due to a changing climate and how that would impact exposure. Hallstrom et al. 
(2017)291 evaluated the possible effects of future diet choices on various health indicators, many of 
which would have impacts on an individual’s sensitivity to high temperature. 

Livestock: Walthall et al. (2012)38 synthesize a wide body of literature that documents the impacts 
of extreme temperature effects on livestock health and productivity. Ruminant livestock support 
rural livelihoods and produce high-quality food products from land that is otherwise unsuited to 
crop agriculture.292,293 

Description of confidence and likelihood 

Extreme temperatures are projected to increase even more than average temperatures. The 
temperatures of extremely cold days and extremely warm days are both projected to increase. 
Cold waves are projected to become less intense, while heat waves will become more intense (very 
likely, very high confidence).277 

Lehner et al. (2017)294 indicate a high likelihood and high confidence that there will be increased 
record-breaking summer temperatures by the end of the century. Evidence of challenges to 
human and livestock health due to temperature extremes is well established (very likely, very 
high confidence). 
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Key Message 4 

Residents in rural communities often have limited capacity to respond to climate change impacts, 
due to poverty and limitations in community resources (very likely, high confidence). Communication, 
transportation, water, and sanitary infrastructure are vulnerable to disruption from climate stressors 
(very likely, high confidence). Achieving social resilience to these challenges would require increases 
in local capacity to make adaptive improvements in shared community resources. 

 
Description of evidence base 
A wealth of data shows that residents of rural areas generally have lower levels of education and 
lower wages for a given level of education compared to residents of urban areas.295 Higher levels 
of poverty, particularly childhood poverty,7 and food insecurity in rural compared to urban areas 
are also well documented.49 There is also research that documents the disproportionate impacts  
of climate change on areas with multiple socioeconomic disadvantages, such as an increased risk 
of exposure to extreme heat and poor air quality, lack of access to basic necessities, and fewer job 
opportunities.229 

Major uncertainties 

There is uncertainty about future economic activity and employment in rural U.S. communities. 
However, the patterns of lower education levels, higher poverty levels, and high unemployment 
have been persistent and are likely to require long-term, focused efforts to reverse.6,49,295 There are 
numerous federal programs (such as the USDA’s regional Climate Hubs, the National Oceanic and 
Atmospheric Administration’s Regional Integrated Sciences and Assessments program, and the 
U.S. Department of the Interior’s Climate Adaptation Science Centers) that focus on outreach and 
capacity building to rural and underserved communities. Additionally, the Cooperative Extension 
Service and state agencies, as well as various nongovernmental organizations, provide support and 
services to build the adaptive capacity of individuals and communities. 

Description of confidence and likelihood 

Lower levels of education, poverty, limited infrastructure, and lack of access to resources will 
limit the adaptive capacity of individuals and communities (very likely, high confidence). Adaptive 
capacity in rural communities is being increased through federal, state, and local capacity building 
efforts (likely, low to medium confidence). However, the outreach to rural communities varies   
greatly in different parts of the United States. 

Vulnerability and Adaptive Capacity of Rural Communities 
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Key Message 1 Cleveland, Ohio 
 

 
The opportunities and resources in urban areas are critically important to the health 
and well-being of people who work, live, and visit there. Climate change can exacerbate 
existing challenges to urban quality of life, including social inequality, aging and 
deteriorating infrastructure, and stressed ecosystems. Many cities are engaging in 
creative problem solving to improve quality of life while simultaneously addressing 
climate change impacts. 

Key Message 2 
 

Damages from extreme weather events demonstrate current urban infrastructure 
vulnerabilities. With its long service life, urban infrastructure must be able to endure 
a future climate that is different from the past. Forward-looking design informs 
investment in reliable infrastructure that can withstand ongoing and future climate risks. 

 
Key Message 3 

 

Interdependent networks of infrastructure, ecosystems, and social systems provide 
essential urban goods and services. Damage to such networks from current weather 
extremes and future climate will adversely affect urban life. Coordinated local, state, and 
federal efforts can address these interconnected vulnerabilities. 

Impacts on Urban Quality of Life 

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 
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Forward-Looking Design for Urban Infrastructure 

Impacts on Urban Goods and Services 



11 | Built Environment, Urban Systems, and Cities 

431 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 

Key Message 4 
 

Cities across the United States are leading efforts to respond to climate change. Urban 
adaptation and mitigation actions can affect current and projected impacts of climate 
change and provide near-term benefits. Challenges to implementing these plans remain. 
Cities can build on local knowledge and risk management approaches, integrate social 
equity concerns, and join multicity networks to begin to address these challenges. 

 
Executive Summary 

 
Urban areas, where the vast majority of Amer- 
icans live, are engines of economic growth 
and contain land valued at trillions of dollars. 
Cities around the United States face a number 
of challenges to prosperity, such as social 
inequality, aging and deteriorating infrastruc- 
ture, and stressed ecosystems. These social, 
infrastructure, and environmental challenges 
affect urban exposure and susceptibility to 
climate change effects. 

 
Urban areas are already experiencing the 
effects of climate change. Cities differ across 
regions in the acute and chronic climate 
stressors they are exposed to and how these 
stressors interact with local geographic 
characteristics. Cities are already subject to 
higher surface temperatures because of the 
urban heat island effect, which is projected 
to get stronger. Recent extreme weather 
events reveal the vulnerability of the built 
environment (infrastructure such as residential 
and commercial buildings, transportation, 
communications, energy, water systems, parks, 
streets, and landscaping) and its importance 
to how people live, study, recreate, and work. 

Heat waves and heavy rainfalls are expected 
to increase in frequency and intensity. The 
way city residents respond to such incidents 
depends on their understanding of risk, their 
way of life, access to resources, and the com- 
munities to which they belong. Infrastructure 
designed for historical climate trends is vulner- 
able to future weather extremes and climate 
change. Investing in forward-looking design 
can help ensure that infrastructure performs 
acceptably under changing climate conditions. 

 
Urban areas are linked to local, regional, and 
global systems. Situations where multiple 
climate stressors simultaneously affect mul- 
tiple city sectors, either directly or through 
system connections, are expected to become 
more common. When climate stressors affect 
one sector, cascading effects on other sectors 
increase risks to residents’ health and well- 
being. Cities across the Nation are taking  
action in response to climate change. U.S. cities 
are at the forefront of reducing greenhouse 
gas emissions and many have begun adaptation 
planning. These actions build urban resilience 
to climate change. 

Urban Response to Climate Change 



11 | Built Environment, Urban Systems, and Cities 

432 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 

Projected Change in the Number of Very Hot Days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Projected increases in the number of very hot days (compared  
to the 1976–2005 average) are shown for each of five U.S. cities 
under lower (RCP4.5) and higher (RCP8.5) scenarios. Here, very 
hot days are defined as those on which the daily high temperature 
exceeds a threshold value specific to each of the five U.S. cities shown. Dots represent the modeled median (50th percentile) 
values, and the vertical bars show the range of values (5th to 95th percentile) from the models used in the analysis. Modeled 
historical values are shown for the same temperature thresholds, for the period 1976–2005, in the lower left corner of the figure. 
These and other U.S. cities are projected to see an increase in the number of very hot days over the rest of this century under 
both scenarios, affecting people, infrastructure, green spaces, and the economy. Increased air conditioning and energy demands 
raise utility bills and can lead to power outages and blackouts. Hot days can degrade air and water quality, which in turn can harm 
human health and decrease quality of life. From Figure 11.2 (Sources: NOAA NCEI, CICS-NC, and LMI). 
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Introduction 

Recent extreme weather events reveal the vulner- 
ability of the built environment (infrastructure, 
such as residential and commercial buildings, 
transportation, communications, energy, water 
systems, parks, streets, and landscaping) and its 
importance to how people live, study, recreate, 
and work in cities. This chapter builds on pre- 
vious assessments of urban social vulnerability 
and climate change impacts on urban systems.1,2,3 

It discusses recent science on urban social and 
ecological systems underlying vulnerability, 
impacts on urban quality of life and well-being, 
and urban adaptation. It also reviews the 
increase in urban adaptation activities, including 
investment, design, and institutional  practices 
to manage risk. Examples of climate impacts and 
responses from five cities (Charleston, South 
Carolina; Dubuque, Iowa; Fort Collins, Colorado; 
Phoenix, Arizona; and Pittsburgh, Pennsylvania) 
illustrate the diversity of American cities and the 
climate risks they face. 

State of the Sector 

Urban areas in the United States, where the 
vast majority of Americans live, are engines of 
economic growth and contain land valued at 
trillions of dollars. In 2015, nearly 275 million 
people (about 85% of the total U.S. population) 
lived in metropolitan areas, and 27 million 
(about 8%) lived in smaller micropolitan 
areas.4 Metropolitan areas accounted for 
approximately 91% of U.S. gross domestic 
product (GDP) in 2015, with over 23% coming 
from the five largest cities alone.5 Urban land 
values are estimated at more than two times 
the 2006 national GDP.6 Urbanization trends 
are expected to continue (Figure 11.1), and 
projections suggest that between 425 and 696 
million people will live in metropolitan and 
micropolitan areas combined by 2100.7 All of 
these factors affect how urban areas respond 
to climate change. 

Cities around the United States face a number 
of challenges to prosperity, such as social 
inequality, aging and deteriorating infrastruc- 
ture, and stressed ecosystems. Urban social 
inequality is evident in disparities in per capita 
income, exposure to violence and environ- 
mental hazards, and access to food, services, 
transportation, outdoor space, and walkable 
neighborhoods.9,10,11,12 Cities are connected by 
networks of infrastructure, much of which is 
in need of repair or replacement. Failing to 
address aging and deteriorating infrastructure 
is expected to cost the U.S. GDP as much as 
$3.9 trillion (in 2015 dollars) by 2025.13 Current 
infrastructure and building design standards do 
not take future climate trends into account.14 

Urbanization affects air, water, and soil quality 
and increases impervious surface cover (such 
as cement and asphalt).15,16,17 Urban forests, 
open space, and waterways provide multiple 
benefits, but many are under stress because of 
land-use change, invasive species, and pollu- 
tion.18 These social, infrastructure, and envi- 
ronmental challenges affect urban exposure 
and susceptibility to climate change effects. 

 
Urban areas, where the majority of the U.S. 
population lives and most consumption 
occurs, are the source of approximately 80%  
of North American human-caused greenhouse 
gas (GHG) emissions, despite only occupying 
1%–5% of the land. Therefore, changes to 
urban activities can have a significant impact 
on national GHG emissions.19 Land use and 
land-cover change contribute to radiative 
forcing, and infrastructure design can lock in 
fossil fuel dependency, so urban development 
patterns will continue to affect carbon sources 
and sinks in the future (Ch. 5: Land Chang- 
es).19,20,21 Many cities in the United States are 
working to reduce their GHG emissions and 
can be key leverage points in mitigation efforts. 
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Current and Projected U.S. Population 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.1: These maps show current population along with population projections by county for the year 2100. Projected 
populations are based on Shared Socioeconomic Pathways (SSPs)—a collection of plausible future pathways of socioeconomic 
development.8 The middle map is based on demography consistent with the SSP2, which follows a middle-of-the-road path 
where trends do not shift markedly from historical patterns. The bottom map uses demography consistent with SSP5, which 
follows a more rapid technical progress and resource-intensive development path. Increasing urban populations pose challenges 
to planners and city managers as they seek to maintain and improve urban environments. Data are unavailable for the U.S. 
Caribbean, Alaska, and Hawai‘i & U.S.-Affiliated Pacific Islands regions. Source: EPA 
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Regional Summary 

Urban areas in the United States are already 
experiencing the effects of climate change. 
Across regions, U.S. cities differ in the acute 
and chronic climate stressors they are exposed 
to and how these stressors interact with local 
geographic characteristics.1 In coastal  areas, 
the built environment is subject to storm surge, 
high tide flooding, and saltwater intrusion (Ch. 
8: Coastal, KM 1). Wildfires are on the rise in 
the West, lowering air quality and damaging 
property in cities near the wildland–urban 
interface (Ch. 6: Forests, KM 1; Ch. 13: Air Qual- 
ity, KM 2; Ch. 14: Human Health, KM 1; Ch. 24: 
Northwest, KM 3; Ch. 25: Southwest, KM 2). In 
2017, Los Angeles witnessed the largest wildfire 
in its history, with  over  700  residents  ordered 
to evacuate. The fire began during a heat wave 
and burned over 7,100 acres.22 Key  climate 
threats in the Northeast, on the other hand, are 
from precipitation and flooding: between 2007 
and 2013, Pittsburgh experienced 11 significant 
flash flooding events23,24 (Ch. 18: Northeast, KM 
3). Heat waves (Figure 11.2) and heavy rainfalls 
(Figure 11.3) are expected to increase in fre- 
quency and intensity (Ch. 2: Climate KM 2 and 
5).25,26,27 The way city residents respond to such 
incidents depends on their understanding  of 
risk, their way of life, access to resources, and   
the communities to which they belong.28 

 
In other parts of the country, drought con- 
ditions coupled with extreme heat increase 
wildfire risk, and rainfall after wildfires raises 

flood risks.21 In 2012 and 2013, fires destroyed 
hundreds of homes in the Fort Collins area 
of the Northern Great Plains region. In those 
same years, floods washed out transportation 
infrastructure and caused $2 billion (in 2013 
dollars) in total damages.34,35 

 
Despite these differences, U.S. cities experi- 
ence some climate impacts in similar ways. For 
example, prolonged periods of high heat affect 
urban areas around the country.21 Cities are 
already subject to higher surface temperatures 
because of the urban heat island (UHI) effect, 
which can also affect regional climate.29 The 
UHI is projected to get stronger with climate 
change.29 Another commonality is that most 
cities are subject to more than one climate 
stressor. Exposure to multiple climate impacts 
at once affects multiple urban sectors, and the 
results can be devastating.30 Over a four-day 
period in 2015, the coastal city of Charleston  
in the Southeast region experienced extreme 
rainfall, higher sea levels, and high tide flood- 
ing. These impacts combined to cause dam fail- 
ures, bridge and road closures, power outages, 
damages to homes and businesses, and a near 
shutdown of the local economy (Ch. 19: South- 
east, KM 2).31,32,33 These kinds of incidents are 
expected to continue as climate change brings  
a higher number of intense hurricanes, high 
tide flooding, and accelerated sea level rise (Ch. 
8: Coastal, KM 1).21 
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Projected Change in the Number of Very Hot Days 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.2: Projected increases in the number of very hot days 
(compared to the 1976–2005 average) are shown for each of five 
U.S. cities under lower (RCP4.5) and higher (RCP8.5) scenarios. 
Here, very hot days are defined as those on which the daily  high 
temperature exceeds a threshold value specific to each of the five U.S. cities shown. Dots represent the modeled median (50th 
percentile) values, and the vertical bars show the range of values (5th to 95th percentile) from the models used in the analysis. 
Modeled historical values are shown for the same temperature thresholds, for the period 1976–2005, in the lower left corner  
of the figure. These and other U.S. cities are projected to see an increase in the number of very hot days over the rest of this 
century under both scenarios, affecting people, infrastructure, green spaces, and the economy. Increased air conditioning and 
energy demands raise utility bills and can lead to power outages and blackouts. Hot days can degrade air and water quality, 
which in turn can harm human health and decrease quality of life. Sources: NOAA NCEI, CICS-NC, and LMI. 
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Projected Change in the Number of Days with Heavy Precipitation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.3: Many U.S. cities are projected to see more days 
with heavy precipitation, increasing the risk of urban flooding, 
especially in areas with a lot of paved surfaces. Projections of 
percent changes in the number of days with heavy precipitation 
(compared to the 1976–2005 average) are shown for each of five U.S. cities under lower (RCP4.5) and higher (RCP8.5) scenarios. 
Here, days with heavy precipitation are defined as those on which the amount of total precipitation exceeds a threshold value 
specific to each city. Dots represent the modeled median (50th percentile) values, and the vertical bars show the range of values 
(5th to 95th percentile) from the models used in the analysis. Modeled historical values are shown for the same thresholds, for 
the period 1976–2005, in the lower left corner of the figure. Historical values are given in terms of frequency (days per year) and 
return period (average number of years between events). Sources: NOAA NCEI, CICS-NC, and LMI. 
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Another similarity cities share is that when 
climate stressors affect  one  city  sector, 
cascading  effects  on  other  sectors  increase 
risks to residents’ health and well-being (Ch. 17: 
Complex Systems). Higher temperatures can 
increase energy loads, which  in  turn  can  lead 
to structural failures in energy infrastructure, 
raise energy bills, and  increase  the  occurrence 
of power outages (Ch. 4: Energy, KM 1). These 
changes strain household budgets, increase 
people’s exposure to heat, and limit the deliv-  
ery of medical and social services. For all cities, 
the duration of exposure to a climate stressor 
determines the degree of impacts.  In  recent 
years in the Southwest region, California expe- 
rienced exceptional drought conditions. Urban 
and rural areas saw forced water reallocations 
and mandatory water-use reductions. Utilities 
had to cut back on electricity production from 
hydropower because of insufficient  surface 
water flows and water  in  surface  reservoirs 
(Ch. 25: Southwest, KM 1 and 5).36,37,38 

 
Urban areas are linked to local, regional, and 
global systems.39,40,41 For example, changes 
in regional food production and global trade 
affect local food availability.42 Likewise, urban 
electricity supply often relies on far-off reser- 
voirs, generators, and grids. Situations where 
multiple climate stressors simultaneously 
affect multiple city sectors, either directly or 
through system connections, are expected to 
become more common.12,43,44 

 
Cities in all regions of the country are under- 
taking adaptation and mitigation actions. 
Several cities have climate action plans in place 
(see Bierbaum et al. 2013 for a review of U.S. 
urban adaptation plans45). Pittsburgh made 
commitments to reduce GHG emissions. Fort 
Collins initiated the Fort Collins ClimateWise 
Program. Phoenix is taking measures to reduce 
the UHI effect. These actions build urban 
resilience to climate change. 

Key Message 1 
 

The opportunities and resources in 
urban areas are critically important 
to the health and well-being of people 
who work, live, and visit there. Climate 
change can exacerbate existing chal- 
lenges to urban quality of life, including 
social inequality, aging and deteriorating 
infrastructure, and stressed ecosystems. 
Many cities are engaging in creative 
problem solving to improve quality of life 
while simultaneously addressing climate 
change impacts. 

Cities are places where people learn, socialize, 
recreate, work, and live together. Quality of life 
for urban residents is associated with social and 
economic diversity, livelihood opportunities, and 
access to education, nature, recreation, health- 
care, arts, and culture. Urban areas can foster 
economic prosperity and a sense of place. Yet, 
many cities in the United States face challenges 
to prosperity, including social inequality, aging 
and deteriorating infrastructure, and stressed 
ecosystems (Ch. 18: Northeast, KM 3).13,18,46 These 
problems are intertwined. Climate change 
impacts exacerbate existing challenges to urban 
quality of life and adversely affect urban health 
and well-being. 

 
Urban populations experiencing socioeconomic 
inequality or health problems have greater 
exposure and susceptibility to climate change.12,47 

Climate susceptibility varies by neighborhood, 
housing situation, age, occupation, and daily 
activities. People without access to housing with 
sufficient insulation and air conditioning (for 
example, renters and the homeless) have greater 
exposure to heat stress. Children playing outside, 
seniors living alone, construction workers, and 
athletes are also vulnerable to extreme heat 
(Figure 11.4).12,48 

Impacts on Urban Quality of Life 
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Threats from Extreme Heat 
 

Figure 11.4: These images show surface temperatures of playground equipment in metropolitan Phoenix, Arizona. Children are 
particularly susceptible to high heat12 and can be exposed through daily activities. (A) A slide and dark rubber surface in the sun 
(orange/red colors) are shown reaching temperatures of 71°C (160°F) and 82°C (180°F), respectively. The blue/green colors 
are under a shade sail. (B) Playground steps made of black powder-coated metal are shown reaching a temperature of 58°C 
(136°F) in the direct sunlight. Images use infrared thermography and were taken mid-day on September 15, 2014. Credit: Vanos 
et al. 2016.49 

 

In addition to temperature extremes, climate 
change adversely affects urban population  
health through air and water quality and vec- 
tor-borne diseases (Ch. 14: Human Health, KM 
1). Urban residents feel economic impacts from 
food price volatility and the costs of insurance, 
energy, and water.12,50 Climate change also 
threatens the integrity of personal property, 
ecosystems, historic landmarks, playgrounds, 
and cultural sites such as libraries and muse- 
ums, all of which support an urban sense of 
place and quality of life (Ch. 24: Northwest, 
KM 2).51,52,53 For example, historic landmarks 
in Charleston are at risk from sea level rise.54 

Urban ecosystems are further stressed by 
often unpredictable climate-related changes 
to tree species ranges, water cycles, and  
pest regimes.55 

Coastal city flooding can result in forced 
evacuation, adversely affecting family and 
community stability, as well as mental and 
physical health (Ch. 14: Human Health, KM 1).12 

It also poses significant challenges to inland 
urban areas receiving these populations.56,57 

Many cities are undertaking creative problem 
solving to address climate change impacts and 
quality of life. They use approaches from urban 
design, sustainability, and climate justice.58,59,60 

For example, New York City’s Trees for Public 
Health program targets street tree planting in 
neighborhoods of greatest need to improve  
the UHI effect, asthma rates, crime rates, and 
property values.61 
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Key Message 2 
 

 
Damages from extreme weather events 
demonstrate current urban infrastructure 
vulnerabilities. With its long service life, 
urban infrastructure must be able to 
endure a future climate that is different 
from the past. Forward-looking design 
informs investment in reliable infrastruc- 
ture that can withstand ongoing and 
future climate risks. 

 
Urban infrastructure needs to perform reliably 
throughout its long service life. Infrastructure 
designed for historical climate trends is more 
vulnerable to future weather extremes and 
climate change. Impacts include changes in 
building enclosure vapor drive, energy perfor- 
mance, and corrosion of structures.14,62 Above- 
and below-grade transportation systems are at 
increased risk from flooding and degradation 
that reduce expected service life (Ch. 12: 
Transportation, KM 1). Higher temperatures 
increase stress on cooling systems to perform 
as designed. High indoor temperatures reduce 
thermal comfort and office worker productivi- 
ty, potentially requiring building closures. Over 
time, sea level rise and flooding are expected 
to destroy, or make unusable, properties and 
public infrastructure in many U.S. coastal cities 
(Ch. 8: Coastal, KM 1). Investor costs increase 
when infrastructure is degraded, damaged, 
or abandoned ahead of its anticipated 
useful life.63,64 

 
Damages from extreme weather events 
demonstrate existing infrastructure vul- 
nerabilities. Long-term, gradual risks such 
as sea level rise further exacerbate these 
vulnerabilities. Current levels of infrastructure 
investment in the United States are not enough 
to cover needed repairs and replacement.13 

Infrastructure age and disrepair make failure or 
interrupted service from extreme weather even 
more likely.13 Heavy rainfall during Arizona’s 
2014 monsoon season shut down freeways and 
city streets in Phoenix because key pumping 
stations failed.65 Climate change has already 
altered the likelihood and intensity of some 
extreme events, and there is emerging evi- 
dence that many types of extreme events will 
increase in intensity, duration, and frequency 
in the future.27,66,67,68,69 Projecting specific 
changes in extreme events in particular places 
remains a challenge. 

 
Costs are felt nationally as business operations, 
production inputs, and supply chains are 
affected.70,71 Higher temperatures reduce labor 
productivity in construction and other out- 
door industries.12,44,72,73 Upgrades to buildings 
and the electrical grid are needed to handle 
higher temperatures.74,75,76 Risk portfolios in the 
housing finance, municipal bond, and insur- 
ance industries may need to be adjusted.44,72,77 

Forward-looking design and risk management 
approaches support the achievement of design 
and investment performance goals.78,79,80,81 

 
Incorporating climate projections into infra- 
structure design, investment and appraisal 
criteria, and model building codes is uncom- 
mon.82,83,84,85,86,87,88,89 Standardized methodologies 
do not exist,62,90,91,92 and the incorporation of 
climate projections is not required in the edu- 
cation or licensing of U.S. design, investment, 
or appraisal professionals.80,93,94,95 Building 
codes and rating systems tend to be focused  
on current short-term, extreme weather. 
Investment and design standards, professional 
education and licensing, building codes, and 
zoning that use forward-looking design can 
protect urban assets and limit investor risk 
exposure.83,96,97,98 

 
A handful of cities have begun to take a 
longer-term view toward planning.99,100,101 

Forward-Looking Design for Urban 
Infrastructure 
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These cities have developed adaptation plans, 
resilience guidelines, and risk-informed 
frameworks. However, they do not yet have a 
portfolio of completed projects.59,102 Adaptation 
planning is not always informed by technical 
analysis of changing hazards, climate vulnera- 
bility assessments, and monitoring and control 
systems.79 U.S. cities can examine  methods 
and learn from completed projects, such as 
those developed by Engineers Canada and 
UKCIP Design for Future Climate.62,90 Managing 
climate risks promotes the integrity, effi- 
ciency, and safety of infrastructure to ensure 
reliable performance over the infrastructure’s 
service life.14,81 

 

 
Flash Flooding Impacts Urban Infrastructure 
and Well-Being 
Figure 11.5: Flash flooding overwhelmed drainage systems 
and swamped roadways in Pittsburgh, Pennsylvania, in 2011. 
The flooding disrupted businesses and commutes, damaged 
homes, and caused four deaths. Photo credit: Pittsburgh 
Post-Gazette. 

Key Message 3 
 

Interdependent networks of infrastruc- 
ture, ecosystems, and social systems 
provide essential urban goods and ser- 
vices. Damage to such networks from 
current weather extremes and future 
climate will adversely affect urban life. 
Coordinated local, state, and federal 
efforts can address these interconnected 
vulnerabilities. 

 
The essential goods and services that form 
the backbone of urban life are increasingly 
vulnerable to climate change. Cities are hubs 
of production and consumption of goods, 
and they are enmeshed in regional-to-global 
supply chains. They rely on local services 
and interdependent networks for telecom- 
munications, energy, water, healthcare, 
transportation, and more (Ch. 4: Energy, KM 
1; Ch. 3: Water, KM 1; Ch. 14: Human Health, 
KM 2; Ch. 12: Transportation, KM 2; Ch. 17: 
Complex Systems, KM 1). Gradual and abrupt 
climate changes disrupt the flow of these 
goods and services.44 For example, the 2012 
High Park Fire in Colorado had wide-reaching 
impacts on air and water quality. The city of 
Fort Collins experienced air quality that was 
seven times worse than the daily average (Ch. 
13: Air Quality, KM 2).103 Storms washed ash 
and debris into the Cache la Poudre River, 
polluting the city’s drinking water source for 
residents and industries.104 In another example, 
two inches of rain fell in a single hour in Pitts- 
burgh in August 2011. Four people died in the 
resulting flash flood. Impervious surfaces and 
combined sewer systems contribute to urban 
flash flooding risks (Figure 11.5).105 For similar 
examples of cascading impacts, see Chapter 17: 
Complex Systems, Box 17.1 on Hurricane Harvey 
and Box 17.5 on the 2003 Northeast Blackout. 

Impacts on Urban Goods and 
Services 
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Cascading Consequences of Heavy Rainfall for Urban Systems 
 

Figure 11.6: With heavy downpours increasing nationally, urban areas experience costly impacts. (top) In cities with combined 
sewer systems, storm water runoff flows into pipes containing sewage from homes and industrial wastewater. Intense rainfall can 
overwhelm the system so untreated wastewater overflows into rivers. Overflows are a water pollution concern and increase risk 
of exposure to waterborne diseases. (bottom) Intense rainfall can also result in localized flooding. Closed roads and disrupted 
mass transit prevent residents from going to work or school and first responders from reaching those in need. Home and 
commercial property owners may need to make costly repairs, and businesses may lose revenue. Source: EPA. 

Figure 11.6 describes how heavy rainfalls, which 
are projected to increase with climate change, 
can disrupt the flow of goods and services to 
urban residents through increased runoff and 
localized flooding. 

As interconnections among sectors increase, 
urban areas are more vulnerable to disrup- 
tions.106 For example, energy and water systems 
are closely intertwined (Ch. 3: Water; Ch. 4: 
Energy; Ch.17: Complex Systems). Both higher 
water temperatures and extreme weather that 
causes power outages affect urban drinking 
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water treatment and distribution. Higher air 
temperatures increase urban energy demand 
for cooling and water demand for landscaping. 
Elevated water temperatures affect cooling for 
electricity production. Higher river tempera- 
tures during periods of low flow can require 
power plants to shut down or curtail power 
generation to stay within defined regulatory 
temperature limits. Higher energy loads raise 
the risk of power outages. Flooding can drown 
electrical substations. Disruptions to water and 
power supplies can result in problems—such 
as unsafe drinking water, limited access to 
money systems, no functioning gas stations, 
few available modes of transportation, no air 
conditioning or heating, and limited ability to 
communicate with others—that pose risks to 
urban dwellers. 

 
Climate change also threatens food security 
in urban areas.107,108 Loss of electricity from 
extreme weather leads to food spoilage. Trans- 
portation disruptions along the supply chain 
limit food mobility. Heat effects on agricultural 
labor impact product availability. Changes to 
the food supply generally lead to price vola- 
tility and food shortages, affecting household 
budgets and nutrition, cultural foodways, and 
food service profits. Urban populations who 
already experience food insecurity are likely to 
be affected the most. 

 
Targeted coordination that addresses inter- 
connected vulnerabilities can build urban resil- 
ience to climate change.109,110,111 Coordination 
may involve municipal offices, public–private 
partnerships, or state and local agencies. The 
Charleston Resilience Network, for example, 
brought together public safety and health 
services, business organizations, and the state 
transportation department to discuss their 
performance during the region’s October 
2015 floods and to identify best practices to 
improve resilience.112 

Key Message 4 
 

Cities across the United States are 
leading efforts to respond to climate 
change. Urban adaptation and miti- 
gation actions can affect current and 
projected impacts of climate change and 
provide near-term benefits. Challenges 
to implementing these plans remain. 
Cities can build on local knowledge 
and risk management approaches, in- 
tegrate social equity concerns, and join 
multicity networks to begin to address 
these challenges. 

Cities across the United States are taking action 
in response to climate change for a number 
of reasons: recent extreme weather events, 
available financial resources, motivated leaders, 
and the goal of achieving co-benefits.113,114,115,116 

One strategy being used is to mainstream 
adaptation and mitigation into land-use, hazard 
mitigation, development, and capital investment 
planning.45,115,117 Municipal departments from 
public works to transportation play roles, as do 
water and energy utilities, professional societies, 
school boards, libraries, businesses, emergency 
responders, museums, healthcare systems, 
philanthropies, faith-based organizations, 
nongovernmental organizations, and residents. 
City governments use a variety of policy mech- 
anisms to achieve adaptation and mitigation 
goals. They adopt building codes, prioritize 
green purchasing, enact energy conservation 
measures, modify zoning, and buy out properties 
in floodplains. Nongovernmental stakeholders 
take action through voluntary protocols, rating 
systems, and public–private partnerships, among 
other strategies. 

 
U.S. cities are at the forefront of reducing green- 
house gas (GHG) emissions (Ch. 29: Mitigation, 
KM 1). Urban mitigation actions include acquiring 

Urban Response to Climate Change 
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high-performance vehicle fleets and constructing 
energy efficient buildings. A number of cities are 
conducting GHG inventories to inform decisions 
and make commitments to reduce their emis- 
sions. Comprehensive urban carbon management 
involves decisions at many levels of governance.19 

 
Many U.S. cities have also begun adaptation 
planning. A common approach is to enhance 
physical protection of urban assets from extreme 
weather. For example, protection against sea level 
rise and flooding can involve engineering (such 
as seawalls and pumps) and ecological solutions 
(such as wetlands and mangroves) (Ch. 8: Coastal, 
KM 2).118 Green infrastructure lowers flood risk 
by reducing impervious surfaces and improving 
storm water infiltration into the ground.72,119 Green 

roofs use rooftop vegetation to absorb rainfall. 
Urban drainage systems can be upgraded to han- 
dle increased runoff.72 Climate-resilient building 
and streetscape design reduces exposure to high 
temperatures through tree canopy cover and 
cool roofs with high albedo that reflect sunlight. 
Ensuring that critical urban infrastructure, such 
as drinking water systems, continues to provide 
services through floods or droughts involves a 
combination of technology, physical protection, 
and outreach (Ch. 3: Water, KM 3; Ch. 19: South- 
east, KM 1).120,121,122 

 
Social and institutional changes are central  
to urban responses to climate change (Figure 
11.7).59,114 Urban development patterns reflect 
social, economic, and political inequities. As such, 

Urban Adaptation Strategies and Stakeholders 
 

Figure 11.7: Protecting vulnerable people and places from the impacts of climate change involves infrastructure design (for 
example, green space and highly reflective roofing), along with social and institutional change (such as designating cooling 
centers). Social equity is supported by widespread participation in adaptation decision-making by non-profit organizations, local 
businesses, vulnerable populations, school districts, city governments, utility providers, and others. Source: EPA. 
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decisions about where to prioritize physical pro- 
tections, install green infrastructure, locate cool- 
ing centers, or route public transportation have 
differential impacts on urban residents.60,123,124,125 If 
urban responses do not address social inequities 
and listen to the voices of vulnerable populations, 
they can inadvertently harm low-income and 
minority residents.60,123,124 

 
Urban  actions  can  reduce  climate  change  
impacts on cities.12,126,127,128,129,130 Urban adaptation 
plans often begin with small steps, such as 
improving emergency planning or requiring that 
development be set back from waterways (Ch. 28: 
Adaptation).59,131 Not all plans address weightier 
concerns, tradeoffs, behaviors, and values. For 
example, coastal cities at risk from sea level rise 
may  be  constructing  storm  surge   protections, 
but not discussing the possibility of eventual 

relocation or retreat (Ch. 8: Coastal, KM 3).59,131 

Increasing tree canopy and planting vegetation 
to manage storm water and provide cooling can 
increase water use, which may present difficulties 
for water-strapped cities.132,133 

 
Urban adaptation and mitigation actions can 
provide near-term benefits to cities, including 
co-benefits to the local economy and quality of 
life (Ch. 29: Mitigation, KM 4).3,19,113,134,135,136,137 Tree 
canopies and greenways increase thermal com- 
fort and improve storm water management. They 
also enhance air quality, recreational opportuni- 
ties, and property values (Figure 11.8). Wetlands 
serve to buffer flooding and are also a source of 
biodiversity and ecosystem regulation. 

 
Urban climate change responses are often 
constrained by funding, technical resources, 

 

 

Greenway in Dubuque, Iowa 
Figure 11.8: In response to a history of flooding, Dubuque, Iowa, installed the Bee Branch Creek Greenway to control flooding 
and provide recreational space.138 Photo credit: City of Dubuque, Iowa. 
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existing social inequities, authority, and 
competing priorities.19,114,119,139,140,141 Coordinating 
among multiple jurisdictions and agencies 
is a challenge. Using scarce resources to 
address future risks is often a lower priority 
than tackling current problem areas. The 
absence of locally specific climate data and a 
standard methodology for estimating urban 
GHG emissions poses additional obstacles to 
urban responses.19,72,114 Cities are dependent on 
state and national policies to modify statewide 
building codes, manage across landscapes and 
watersheds, incentivize energy efficiency, and 
discourage development that puts people and 
property in harm’s way. Strong leadership and 
political will are central to addressing these 
challenges.59,131,142 Many U.S. cities participate in 
networks such as the U.S. Conference of May- 
ors, ICLEI, the C40 Cities Climate Leadership 
Group (C40), and 100 Resilient Cities. Others 
participate in regional coalitions such as the 
Southeast Florida Regional Climate Change 
Compact. Multicity networks support devel- 
opment of urban climate policies and peer-to- 
peer learning (Ch. 28: Adaptation).59,110,113,117,120,143 

Effective urban planning to respond to climate 
change addresses social inequities and 
quality of life, uses participatory processes 
and risk management approaches, builds 
on local knowledge and values, encourages 
forward-looking investment, and coordinates 
across sectors and jurisdictions (Ch. 8: Coastal, 
KM 3).59,60,115,120,124,140,142,144 

Acknowledgments 
Technical Contributors 
Julie Blue 
Eastern Research Group, Inc. 

 
Kevin Bush 
U.S. Department of Housing and Urban Development 
(through August 2017) 

 
USGCRP Coordinators 
Natalie Bennett 
Adaptation and Assessment Analyst 

 
Fredric Lipschultz 
Senior Scientist and Regional Coordinator 

 
Opening Image Credit 
Cleveland, Ohio: © Erik Drost/Flickr (CC BY 2.0). 
Adaptation: cropped top and bottom to conform to the 
size needed for publication. 

https://creativecommons.org/licenses/by/2.0/legalcode


447 U.S. Global Change Research Program Fourth National Climate Assessment 

11 | Built Environment, Urban Systems, and Cities - Traceable Accounts 
 

 

 

Traceable Accounts 
Process Description 
Report authors developed this chapter through technical discussions of relevant evidence and 
expert deliberation and through regular teleconferences, meetings, and email exchanges. (For 
additional information on the overall report process, see App. 1: Process.) The author team evalu- 
ated scientific evidence from peer-reviewed literature, technical reports, and consultations with 
professional experts and the public via webinar and teleconferences. The scope of this chapter 
is urban climate change impacts, vulnerability, and response. It covers the built environment and 
infrastructure systems in the socioeconomic context of urban areas. This chapter updates find- 
ings from the Third National Climate Assessment and advances the understanding of previously 
identified urban impacts by including emerging literature on urban adaptation and emphasizing 
how urban social and ecological systems are related to the built environment and infrastructure. 
The five case-study cities were selected because they represent a geographic diversity of urban 
impacts from wildfire, sea level rise, heat, and inland flooding. The author team was selected 
based on their experiences and expertise in the urban sector. They bring a diversity of disciplinary 
perspectives and have a strong knowledge base for analyzing the complex ways that climate 
change affects the built environment, infrastructure, and urban systems. 

Key Message 1 
 

The opportunities and resources in urban areas are critically important to the health and 
well-being of people who work, live, and visit there (very high confidence). Climate change 
can exacerbate existing challenges to urban quality of life, including social inequality, aging 
and deteriorating infrastructure, and stressed ecosystems (high confidence). Many cities are 
engaging in creative problem solving to improve quality of life while simultaneously addressing 
climate change impacts (medium confidence). 

 
Description of evidence base 
Urban areas provide resources and opportunities for residents’ quality of life.145,146 However, many 
cities face challenges to prosperity, including aging and deteriorating infrastructure,13 social 
inequalities,9,46 and lack of economic growth.147,148 These challenges play out differently depending 
on a city’s geographic location, economic history, urban development pattern, and governance. 
Studies link urban development with lower  air,15  water,16  and  soil17  quality;  altered  microclimates 
(for example, urban  heat  islands);149,150  increased  risk  of  certain  vector-borne  diseases;151  and 
adverse effects on biodiversity and ecosystem functioning.152,153,154 Exposure  to  temperature 
extremes,155 allergens,156 and toxic substances157 and limited access to healthy food10,158,159 and green 
space11,160,161 create environmental and social  vulnerabilities  for  urban  populations.  Vulnerabilities 
are distributed unevenly within cities and reflect social inequalities related to differences in race,    
class, ethnicity, gender, health, and disability.1 These populations of concern are at a greater risk of 
exposure to climate change and its impacts.3,46,123 

Impacts on Urban Quality of Life 
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Climate change combines with other trends to increase stress  on  the  health  and  well-being  of 
urban residents.10,46,155,158 Research demonstrates that climate change can exacerbate many of the 
vulnerabilities described above. It raises temperatures, alters weather patterns, and increases the 
frequency and severity of extreme weather events, creating risks to  urban  ecosystems  (such  as 
urban tree cover),162,163,164 infrastructure both above and below grade,165,166,167 historic and cultural 
sites,51,52,164,168,169,170 and residents’ physical and mental health.171,172,173,174 Coupled with climate change, 
urban expansion increases the risk of infectious disease175,176 and air quality problems from 
wildfires.55,177 

Metropolitan areas often have more resources than rural ones, as reflected in income per capita, 
employment rates, and workforce education.178,179 Innovative urban problem solving that builds on 
these resources can take the form of policies and institutional collaborations,58,180 technologies,145,181 

eco- and nature-based solutions,182,183 public–private partnerships,59 social network and climate 
justice initiatives,60,184 “smart” cities,106,145,181 or a combination of approaches. However, cities vary 
greatly in their capacity to innovate for reasons related to size, staffing, and existing resources. 

Major uncertainties 

It is difficult to predict future urban trends with certainty. Many factors influence the size and 
composition of urban populations, development patterns, social networks, cultural resources, 
and economic growth.180 The degree to which climate change will exacerbate existing urban 
vulnerabilities depends in part on the frequency and intensity of extreme weather events,145 which 
are projected with far less certainty than incremental changes in average conditions.81 Moreover, 
projections are not often made at the city scale.185 Climate change may accelerate urban tree 
growth, but overall effects on growing conditions depend on a variety of factors.186 These uncer- 
tainties make it difficult to predict how climate change and other factors will intersect to affect 
urban quality of life. Furthermore, quality of life is difficult to measure, although some metrics 
are available.187 

Urban climate vulnerability depends on local social, political, demographic, environmental, 
and economic characteristics.59,110,145 Urban exposure to climate change depends on geographic 
factors (such as latitude, elevation, hydrology, distance from the coast).145 Some places may be 
able to protect quality of life from minor climate stresses but not from extreme, though rare, 
events.145 The speed and pace of innovative problem solving is difficult to predict, as is its effect on 
quality of life..59 

Description of confidence and likelihood 

There is very high confidence that the opportunities and resources available in a particular urban 
area influence the health and well-being of its residents. There is high confidence that climate 
change exacerbates challenges to aging and deteriorating infrastructure, degrading urban ecosys- 
tems, and urban residents’ health and well-being. There is medium confidence that many cities are 
engaging in creative problem solving to address the challenges to quality of life posed by climate 
change. The effectiveness of this response depends on many factors (for example, intensity of 
extreme weather events, stakeholder collaboration, and internal and external resources available). 
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Key Message 2 
 

Damages from extreme weather events demonstrate current urban infrastructure vulnerabilities 
(very high confidence). With its long service life, urban infrastructure must be able to endure 
a future climate that is different from the past (very high confidence). Forward-looking design 
informs investment in reliable infrastructure that can withstand ongoing and future climate risks 
(high confidence). 

 
Description of evidence base 
There is wide agreement that architects, engineers, and city planners need to consider a range           
of future climate conditions in urban infrastructure design to guarantee that assets perform for       
the duration of their expected service lives.14,62,80,81,188,189,190,191,192 Many researchers and professionals 
from various industries—engineering,80,81,193,194 water resources,195,196 architecture, construction and 
building  science,62,190,197,198,199,200,201,202  transportation,203,204,205  energy,206  and   insurance207,208—are   active- 
ly developing or have proposed strategies to integrate climate change science and infrastructure 
design. The Government Accountability Office, the State of California, and a variety of professional 
organizations have recognized the importance of  incorporating  forward-looking  climate  infor- 
mation (planning for or anticipating possible future events and conditions) in design standards, 
building codes, zoning requirements, and professional education and training programs to protect   
and adapt built systems and structures. This includes the need to develop and adopt design meth- 
odologies using risk management principles for uncertainty (see Ch. 28: Adaptation, KM 3 for more 
discussion)90 and the integration of  climate  projections,  nonstationarity,  and  extreme  value  anal- 
ysis to inform designs that can adapt to a range of future conditions.8,14,80,81,90,188,190,209,210,211,212,213,214,215 

Similarly, there is support for incorporating climate  change  risk  considerations  into  the  prepa- 
ration of financial disclosures.44,96,191,216,217 Reports from multiple  sectors  highlight  the  need  for 
licensed design professionals, property industry professionals, and decision-makers to be aware of 
emerging legal liabilities linked to climate change risks.80,95,208,218,219,220 

Numerous studies document substantial economic damages in urban areas following extreme 
weather events and predict an increase in damages through time as these events occur with 
greater frequency and intensity.14,165,166,167,205,221 Due to underinvestment in urban infrastructure13,222 

and well-documented urban vulnerabilities to the effects of climate change and extreme 
weather,80,81,223 forward-looking design strategies are critical to the future reliability of urban 
infrastructure.14,80 

Major uncertainties 

There are gaps in our understanding of the performance capacity of existing structures exposed 
to climate change stressors and of the available resources and commitment (at the state, local, 
tribe, and federal level) to implement forward-looking designs in investments.192,224 The scale and 
speed with which climate security design principles will be integrated into infrastructure design, 
investments, and funding sources are difficult to predict, as are the implications for municipal 
bonds, solvency, and investment transparency.77,83,96,97,98,192 There is also uncertainty regarding how 

Forward-Looking Design for Urban Infrastructure 
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the U.S. legal system will determine the limits of professional liability for climate-related risks for 
licensed design professionals, attorneys, and investors.95,218,219,220,225 

The extent to which key climate stressors will change over the design life of urban systems and 
structures is uncertain. It depends on the rate of global climate change as well as regional and 
local factors.150,185,192 Engineering and architectural design is largely concerned with weather 
extremes,80,81,190,226 which are generally projected with far less certainty than changes in average 
conditions.81 Action depends on how individual decision-makers weigh the costs and benefits of 
implementing designs that attempt to account for future climate change. The extent to which the 
U.S. market is able to innovate to provide these services to the global market is unknown. 

Description of confidence and likelihood 

There is very high confidence that the integrity of urban infrastructure is and will continue to be 
threatened by exposure to climate change stressors (for example, more frequent and extreme 
precipitation events, sea level rise, and heat) and that damages from weather events demonstrate 
infrastructure vulnerability. Many urban areas have endured high costs from such events, and 
many of those costs can be attributed to infrastructure failures or damages. There is very high 
confidence that urban infrastructure will need to endure a future climate that is different from    
the past in order to fulfill its long service life. There is high confidence that investment in for- 
ward-looking design provides a foundation for reliable infrastructure that can withstand ongoing 
and future climate risks. How much implementing forward-looking design will reduce risks is less 
clear, since much depends on other factors such as changes in urban population, social inequali- 
ties, the broader economy, and rates of climate change. 

Key Message 3 
 

Interdependent networks of infrastructure, ecosystems, and social systems provide essential 
urban goods and services (very high confidence). Damage to such networks from current 
weather extremes and future climate will adversely affect urban life (medium confidence). 
Coordinated local, state, and federal efforts can address these interconnected vulnerabilities 
(medium confidence). 

 
Description of evidence base 
Research focusing on urban areas shows that climate change has or is anticipated to have a net 
negative effect on transportation,43,205,223,227 food,44,107,108 housing,228 the economy,44,228,229,230,231 ecolo- 
gy,3,152 public health,2,3,12,44,231,232 energy,43,44,233,234 water,43,122,228,235 and sports and recreation.2,235,236 

Researchers have modeled and documented how negative effects on one system that provides 
urban goods and services cascade into others that rely on it.3,43,44,109,122,229,231,233,234 Several draw on 
the example of Superstorm Sandy. These effects scale up to the national economy and across to 
other sectors, creating longer-term hazards and vulnerabilities.44,99,109,227 The energy–water nexus, 
defined as the reliance of energy and water systems on each other for functionality, is a good 
example of documented system interdependency.43,234 Research indicates that direct or high-level 

Impacts on Urban Goods and Services 
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climate impacts on a variety of urban sectors (such as transportation, energy, drinking water, 
storm water) have cascading economic, socioeconomic, and public health consequences.3,12,44,229,231 

The literature shows that coordinated resilience planning across sectors and jurisdictions to 
address interdependencies involves using models and plans,3,43,108,111,227,237,238 finding effective 
intervention points,109 creating system redundancy,43,237 and motivating behavioral change. Recent 
reports discuss how interdependencies among energy, water, transportation, and communications 
services inform adaptation strategies that span sectors.43,227 

Major uncertainties 

Interconnections among urban systems have been studied less extensively than climate change 
effects on individual urban sectors, and there are still gaps to be filled.239,240,241 The complexity of 
urban systems leads to uncertainty and modeling challenges. System models need to account for 
interconnections, feedback loops, and cascading effects from rural areas, among urban sectors, 
and within a sector. Creating a comprehensive framework to understand these connections is 
difficult.239,242 There is a lack of forward-looking models of how projected climate changes will 
impact interdependent urban systems. Cities do not usually have the range of data needed to 
fully analyze system connections.102,111 Mixed methods analysis, where professional experience 
and qualitative data supplement available datasets, may partially compensate for this problem.241 

Despite information gaps, urban stakeholders are beginning to address system interconnections in 
adaptation efforts.59 

While it has been demonstrated that climate change affects urban systems, the extent to which 
climate change will affect a given urban system is difficult to predict. It depends on the unique 
strengths and vulnerabilities of that system as well as the regional and local climate conditions to 
which the system is exposed.110,223,243 Modifying factors include spatial layout, age of infrastructure, 
available resources, and ongoing resilience efforts.43,244 Similarly, critical points of intervention are 
unique to each urban area. Local-scale analysis of vulnerability and resilience has not been done 
for most U.S. cities.102,241 

The severity of future climate impacts and cascading consequences for urban networks depends 
on the magnitude of global climate change.223 Urban systems may be able to tolerate some levels 
of stress with only minor disruptions. Stresses of greater frequency, longer duration, or greater 
intensity may compromise a system’s ability to function.36,43,109,122,227 Models can reveal changes 
in the likelihood or frequency of occurrence for a particular type of extreme event (such as a 
100-year flood), but they cannot predict when these events will occur or whether they will hit a 
particular city or town.245 

Description of confidence and likelihood 

There is very high confidence that urban areas rely on essential goods and services that are 
vulnerable to climate change because they are part of interdependent networks of infrastructure, 
ecosystems, and social systems. There is high confidence that extreme weather events have   
resulted in adverse cascading effects across urban sectors and systems, as there is documentation 
of a significant number of case studies of urban areas demonstrating these effects. It is projected 
with medium confidence that network damages from future climate change will disrupt many 
aspects of urban life, given that the complexity of urban life and the many factors affecting urban 
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resilience to climate change make future disruptions difficult to predict. Similarly, there is medium 
confidence that addressing interconnected vulnerabilities via coordinated efforts can build urban 
resilience to climate change. 

Key Message 4 
 

Cities across the United States are leading efforts to respond to climate change (high 
confidence). Urban adaptation and mitigation actions can affect current and projected 
impacts of climate change and provide near-term benefits (medium confidence). Challenges to 
implementing these plans remain. Cities can build on local knowledge and risk management 
approaches, integrate social equity concerns, and join multicity networks to begin to address 
these challenges (high confidence). 

 
Description of evidence base 
Multiple review studies have documented that cities in all parts of the United States are under- 
taking adaptation and mitigation actions.45,115,246 Municipal departments, including public works, 
water systems, and transportation, along with public, private, and civic actors, work to assess 
vulnerability and reduce risk. Actions include land-use planning, protecting critical infrastructure 
and ecosystems, installing green infrastructure, and improving emergency preparedness and 
response.45,114,115,117,247 Many cities are part of multicity networks (for example, the Great Lakes Cli- 
mate Adaptation Network, ICLEI, and C40 Cities Climate Leadership Group) that provide opportu- 
nities for peer-to-peer learning, sharing best practices, and technical assistance.59,114,117,120 Research- 
ers have recognized the benefits of shared motivation and resource pooling across cities59 and 
of incorporating local knowledge, priorities, and values into adaptation planning.45,248 The private 
sector, utilities, nongovernmental organizations, libraries, museums, and civic organizations are 
involved with urban adaptation and mitigation.2,45,59,115,196,249,250 Studies are beginning to analyze the 
social, economic, and political factors that shape whether and how cities carry out climate change 
response.114,115,116,131,142 

Numerous studies have examined the ways in which adaptation actions reduce the impacts 
of weather extremes in urban areas. Documented benefits include reductions in urban heat 
risk48,126,127,128,130,251 and flooding impacts.118,252,253 These actions can provide additional public health 
and economic benefits.59,254,255,256,257 Studies have also noted that low-regret and incremental urban 
adaptation are not likely to significantly reduce the impacts of projected climate change.59,131,258 In 
addition, several studies discuss how urban adaptation can cause adverse consequences related 
to existing socioeconomic and spatial inequalities and the uneven distribution of urban climate 
risks.60,123,124,125 

Major uncertainties 

While urban adaptation actions can reduce the effects of extreme weather, there is uncertainty 
regarding the effectiveness of these actions against future climate change.115,246 Much of this 
uncertainty arises from the difficulties inherent in predicting the future impacts of climate  
change. This uncertainty is compounded by a lack of regional and local data for many cities, by the 

Urban Response to Climate Change 
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difficulty of evaluating the effects of climate change on local extremes,150,251 and by the inability of 
knowing how climate changes intersect with other urban changes.67,185 Moreover, there is a lack 
of forward-looking models and standardized monitoring strategies to test the costs, co-benefits, 
and effectiveness of urban response. Adaptation actions that focus solely on physical protection 
of urban assets are not likely to effectively address social vulnerability.114,123 Urban adaptation 
effectiveness depends heavily on local characteristics. While cities do learn best practices through 
multicity networks, one city’s strategy may not be as applicable to other cities. 

Research on drivers of and challenges to urban response is in the incipient stage, with divergent 
results about social and political requirements for effective response.114,116,142 Although cities are 
leading the way in adaptation and mitigation, many face significant barriers such as resource 
challenges, which will affect the rate of spread, extent, and duration of urban response.45,145 There 
is little research on the effectiveness of different incentives for urban response or how to best 
support action in low-income communities. 

Description of confidence and likelihood 

There is high confidence that municipal governments and other institutions in many U.S. cities are 
planning and implementing climate change adaptation and mitigation actions. There is high con- 
fidence that urban adaptation and mitigation can provide additional near-term benefits, although 
the distribution of benefits and harms within cities is uneven. There is medium confidence in the 
effect these actions have and will have on current and future climate change impacts. If cities take 
only small actions, they are unlikely to fully protect urban residents from devastating impacts, 
particularly given projected levels of climate change. There is high confidence that cities face 
challenges in responding to climate change and that when cities build on local knowledge, use 
risk management approaches, explicitly address social vulnerability, and participate in multicity 
networks, their ability to respond to climate change is improved. The degree of improvement 
depends on other factors that affect urban response outcomes. 
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Key Message 1 St. Louis, Missouri 
 

 
A reliable, safe, and efficient U.S. transportation system is at risk from increases in 
heavy precipitation, coastal flooding, heat, wildfires, and other extreme events, as 
well as changes to average temperature. Throughout this century, climate change will 
continue to pose a risk to U.S. transportation infrastructure, with regional differences. 

Key Message 2 
 

Extreme events that increasingly impact the transportation network are inducing 
societal and economic consequences, some of which disproportionately affect 
vulnerable populations. In the absence of intervention, future changes in climate will 
lead to increasing transportation challenges, particularly because of system complexity, 
aging infrastructure, and dependency across sectors. 

Key Message 3 
 

Engineers, planners, and researchers in the transportation field are showing increasing 
interest and sophistication in understanding the risks that climate hazards pose to 
transportation assets and services. Transportation practitioner efforts demonstrate 
the connection between advanced assessment and the implementation of adaptive 
measures, though many communities still face challenges and barriers to action. 

Transportation at Risk 

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 

12 Transportation 

Impacts to Urban and Rural Transportation 

Vulnerability Assessments 
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Executive Summary 
 

Transportation is the backbone of economic 
activity, connecting manufacturers with supply 
chains, consumers with products and tourism, 
and people with their workplaces, homes, 
and communities across both urban and rural 
landscapes. However, the ability of the trans- 
portation sector to perform reliably, safely,  
and efficiently is undermined by a changing 
climate. Heavy precipitation, coastal flooding, 
heat, wildfires, freeze–thaw cycles, and chang- 
es in average precipitation and temperature 
impact individual assets across all modes. 
These impacts threaten the performance of 
the entire network, with critical ramifications 
for economic vitality and mobility, particu- 
larly for vulnerable populations and urban 
infrastructure. 

 
Sea level rise is progressively making coastal 
roads and bridges more vulnerable and less 
functional. Many coastal cities across the 
United States have already experienced an 
increase in high tide flooding that reduces the 
functionality of low-elevation roadways, rail, 
and bridges, often causing costly congestion 
and damage to infrastructure.1,2 Inland trans- 
portation infrastructure is highly vulnerable to 
intense rainfall and flooding. In some regions, 
the increasing frequency and intensity of heavy 
precipitation events reduce transportation 
system efficiency3 and increase accident risk. 
High temperatures can stress bridge integrity4,5 

and have caused more frequent and extended 
delays to passenger and freight rail systems 
and air traffic.4,6 

Transportation is not only vulnerable to 
impacts of climate change but also contributes 
significantly to the causes of climate change. In 
2016, the transportation sector became the top 
contributor to U.S. greenhouse gas emissions.7 

The transportation system is rapidly growing 
and evolving in response to market demand 
and innovation. This growth could make cli- 
mate mitigation and adaptation progressively 
more challenging to implement and more 
important to achieve. However, transportation 
practitioners are increasingly invested in 
addressing climate risks, as evidenced in 
more numerous and diverse assessments of 
transportation sector vulnerabilities across the 
United States. 
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U.S. Transportation Assets and Goals at Risk 

Heavy precipitation, coastal flooding, heat, and changes in average precipitation and temperature affect assets (such as roads 
and bridges) across all modes of transportation. The figure shows major climate-related hazards and the transportation assets 
impacted. Photos illustrate national performance goals (listed in 23 U.S.C. § 150) that are at risk due to climate-related hazards. 
From Figure 12.1 (Source: USGCRP. Photo credits from left to right: JAXPORT, Meredith Fordham Hughes [CC BY-NC 2.0]; 
Oregon Department of Transportation [CC BY 2.0]; NPS–Mississippi National River and Recreation Area; Flickr user Tom 
Driggers [CC BY 2.0]; Flickr user Mike Mozart [CC BY 2.0]; Flickr user Jeff Turner [CC BY 2.0]; Flickr user William Garrett [CC 
BY 2.0] — see https://creativecommons.org/licenses/ for specific Creative Commons licenses). 

https://creativecommons.org/licenses/
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State of the Sector 
Transportation is the backbone of economic 
activity, connecting manufacturers with supply 
chains, consumers with products and tourism, 
and people with their workplaces, homes, 
and communities across both urban and rural 
landscapes. In 2017, the transportation sector 
added over $400 billion to the U.S. gross 
domestic product.9 Transportation is also an 
important lifeline during emergencies, which 
may become increasingly common under cli- 
mate change scenarios (see Kossin et al. 201710). 
In the event of a disaster, roads, airports, and 
harbors may serve as key modes of evacuation 
and often become hubs for emergency person- 
nel and relief supplies. 

 
The transportation sector consists of a vast, inter- 
connected system of assets and derived services, 
but a changing climate undermines the system’s 
ability to perform reliably, safely, and efficiently 
(Figure 12.1). Heavy precipitation, coastal flooding, 
heat, and changes in average precipitation and 
temperature impact individual assets across all 
modes. These impacts threaten the performance 
(defined by national goals listed in 23 U.S.C. § 1508) 
of the entire network,11 with critical ramifications 
for safety, environmental sustainability, economic 
vitality and mobility, congestion, and system reli- 
ability, particularly for vulnerable populations and 
urban infrastructure. Fortunately, transportation 
professionals have made progress understanding 
and managing risks, though barriers persist. 

 
Particularly as impacts compound, climate 
change threatens to increase the cost of 
maintaining infrastructure12 approaching or 
beyond its design life—infrastructure that is 
chronically underfunded.13 Without considering 
climate impacts, the American Society of Civil 
Engineers14 estimates that there is already a 
$1.2 trillion gap in transportation infrastructure 
needs. The transportation network is also 
interdependent on other sectors, such as 

energy and telecommunications, which have 
their own climate-related vulnerabilities and 
existing costs. 

 
Transportation is vulnerable to the impacts of 
climate change, but it also contributes signifi- 
cantly to the causes of climate change. In 2016, 
the transportation sector became the top con- 
tributor to U.S. greenhouse gas emissions.7 Low 
fuel prices, which lead to more driving, coupled 
with increasing volumes of freight trucking, 
containerized shipments, and air cargo, under- 
lie the rise in transportation emissions.15 

 
The transportation system is rapidly growing 
and evolving in response to market demand 
and innovation. Passenger miles traveled on 
highways and on commuter rail have increased 
approximately 250% and 175%, respectively, 
since 1960,16 and similar trends are expected 
to continue.15 Projected population growth of 
30% to 50% by mid-century and significant 
expansion of existing urban centers and 
surrounding communities17 will require the 
transportation system to grow and will place 
additional demands on the existing network. 
Long-haul freight is expected to increase 40% 
by 2040,18 while air and marine transportation 
will continue to grow in tandem with economic 
growth and international trade. This population 
growth and land-use change can make climate 
mitigation, environmental sustainability, and 
adaptation progressively more challenging to 
implement and more important to achieve. 

 
The shifting future of transportation presents  
new, pressing complexities and challenges. Trans- 
portation innovations such as shared mobility (for 
example, car sharing, carpooling, and ride-sourc- 
ing), transit-oriented development (TOD; that is, 
efforts to create compact, pedestrian-oriented, 
mixed-use communities centered around train 
systems), autonomous and electrified vehicles, 
Next Generation air  transportation  technolo- 
gies, megaships, and hull-cleaning robots are 
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emerging, but their impact on and vulnerability 
to climate change are still largely uncertain. 
For example, TOD, one of the older innovative 
transportation solutions, is very likely to reduce 
emissions and help build resilience.19,20,21,22,23 Fuel 
consumption impacts of autonomous vehicles 

could vary greatly, depending on how they are 
deployed.24 Similarly unclear is the impact that 
new transportation patterns, combined with 
deteriorating infrastructure, population growth, 
and land-use change, will have on the system’s 
ability to adapt to climate change. 

 

U.S. Transportation Assets and Goals at Risk 

Figure 12.1: Heavy precipitation, coastal flooding, heat, and changes in average precipitation and temperature affect assets 
(such as roads and bridges) across all modes of transportation. The figure shows major climate-related hazards and the 
transportation assets impacted. Photos illustrate national performance goals (listed in 23 U.S.C. § 1508) that are at risk due    
to climate-related hazards. Source: USGCRP. Photo credits from left to right: JAXPORT, Meredith Fordham Hughes [CC BY- 
NC 2.0]; Oregon Department of Transportation [CC BY 2.0]; NPS–Mississippi National River and Recreation Area; Flickr user 
Tom Driggers [CC BY 2.0]; Flickr user Mike Mozart [CC BY 2.0]; Flickr user Jeff Turner [CC BY 2.0]; Flickr user William Garrett 
[CC BY 2.0]. 

https://creativecommons.org/licenses/by-nc/2.0/legalcode
https://creativecommons.org/licenses/by-nc/2.0/legalcode
https://creativecommons.org/licenses/by/2.0/legalcode
https://creativecommons.org/licenses/by/2.0/legalcode
https://creativecommons.org/licenses/by/2.0/legalcode
https://creativecommons.org/licenses/by/2.0/legalcode
https://creativecommons.org/licenses/by/2.0/legalcode
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Regional Summary 

Precipitation changes are projected to vary 
across the country, with certainty about impacts 
much higher in some regions than others (Ch. 
18: Northeast).25 In the Northeast, rainfall volume 
and intensity have increased25,26 and may impact 
transportation performance due to roadway 
washouts, bridge scour, and heaving or rutting 
due to freeze–thaw cycles, depending on 
site-specific conditions.12,27,28,29 Intense precipita- 
tion at Northeast and mid-Atlantic airports has 
cascading effects on other airports and cargo 
movement networks, such as trucking and rail, 
due to delayed or canceled flights and stranded 
crews.30,31,32 The projected increases in tropical 
cyclone wind speeds and rainfall intensity33 by 
the end of the century indicate that shipments in 
Hawai‘i and the Pacific Islands may be interrupted 
more frequently and for longer periods.34 Storms 
also cause erosion and dramatic changes to island 
coastlines, with associated damages to roadways, 
harbors, and airports (Ch. 27: Hawai‘i & Pacific 
Islands, KM 3). 

 
In the Midwest, which has experienced an 
increase in riverine flooding resulting in long- 
term interstate freeway closures, future flooding 
is the main concern for transportation infrastruc- 
ture (Ch. 21: Midwest, KM 5).30 In Northeast urban 
regions, transportation network disruptions 
from high tide flooding are increasing and 
further stressing congested networks and storm 
water management systems (Ch. 18: Northeast, 
KM 3). Similarly, flooding in the Northwest has 
repeatedly blocked railways, flooded interstates, 
and halted freight movement, impacting access to 
critical services (Ch. 24: Northwest, KM 3 and 5). 
In the first three months of 2017, Spokane County, 
Washington, had already spent $2 million more 
than its yearly budget for road maintenance due 
to flooding from rapid snowmelt.35 Flooding in 
the Pacific Northwest may also threaten access to 
recreation on federal lands, an economic driver 
for the region.36 

Lack of precipitation is also a concern for the 
transportation network. In the past, high and 
low extremes in water levels in the Mississippi 
River and Great Lakes have limited boat traffic, 
affecting jobs and the ability of goods to get to 
domestic and international markets37,38,39 and 
potentially increasing shipping costs in the 
future (Ch. 21: Midwest).40 

 
In the Midwest, Northeast, Northern Great Plains, 
and Alaska, in particular, warming winters with 
fewer extremely cold days41 and fewer snow and 
icing events25 will likely extend the construction 
season, reduce winter road maintenance demand, 
and reduce vehicle accident risk.42,43,44 However, 
when ice roads that run over a frozen water 
surface, such as a river or lake, start to thaw and 
allowable vehicle weight is therefore reduced, 
trucking and logging industries lose money due to 
limited access to road networks,45 thus increasing 
transport costs (Ch. 26: Alaska, KM 5). Warming 
winters will also change the timing and location 
of freeze and thaw events, potentially increasing 
pavement cracking and pothole conditions in 
northern states.12,45 In Alaska, near-surface per- 
mafrost thaw is responsible for severe damages 
to roads, airport runways, railroads, and pipelines 
(Ch. 26: Alaska).46 

 
Climate change is projected to increase the costs 
of maintaining, repairing, and replacing infra- 
structure, with regional differences proportional 
to the magnitude and severity of impacts. Nation- 
ally, the total annual damages from temperature- 
and precipitation-related damages to paved roads 
are estimated at up to $20 billion under RCP8.5 in 
2090 (in 2015 dollars, undiscounted, five-model 
average) (see the Scenario Products section of 
App. 3 for more on the RCPs). Inland flooding, 
projected to increase over the coming century, 
threatens approximately 2,500 to 4,600 bridges 
across the United States and is anticipated to 
result in average annual damages of $1.2 to $1.4 
billion each year by 2050 (in 2015 dollars, undis- 
counted, five-model average).47 
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The transportation chapter of the Third 
National Climate Assessment highlighted 
Arctic warming, ports, weather-related 
disruptions, and adaptation strategies.48 New 
research indicates that those findings are 
still valid concerns for the transportation 
sector. Some new research highlighted in this 
chapter includes 1) socioeconomic disparities 
in response to transportation vulnerabilities, 
2) intermodal and cross-sector dependencies 
and strategies (moving toward a more holistic 
system as opposed to an asset-based analysis), 
and 3) communities’ challenges, including rural 
communities, to identify and justify investment 
in transportation. 

 
The three Key Messages discuss the physical 
impacts of specific climate hazards on the 
transportation system, economic implications 
of interrupted transportation, and the efforts 
transportation engineers, planners, and 
researchers are taking to understand and 
address current and future vulnerabilities. 

Key Message 1 
 

A reliable, safe, and efficient U.S. 
transportation system is at risk from 
increases in heavy precipitation, coastal 
flooding, heat, wildfires, and other 
extreme events, as well as changes to 
average temperature. Throughout this 
century, climate change will continue to 
pose a risk to U.S. transportation infra- 
structure, with regional differences. 

 
Coastal Risks 
Sea level rise (SLR) is progressively making 
coastal roads and bridges more vulnerable and 
less reliable. The more than 60,000 miles of 
U.S. roads and bridges in coastal floodplains 
are clearly already vulnerable to extreme 
storms and hurricanes that cost billions in 

repairs.49 Higher sea levels will cause more  
severe flooding and more  damage  during 
coastal storms  and  hurricanes.50  Recent 
modeling shows how 1 foot of SLR combined 
with storm surge can result in more than 1 foot  
of increased storm surge.51,52 Low-clearance 
bridges are particularly vulnerable to increased 
wave loads from storm surges that can dislodge  
a bridge deck.53,54 Since the Third National 
Climate Assessment, new work has found that 
SLR has already contributed to damage of 
one major U.S. bridge during a hurricane: the 
3-mile-long bridge carrying I-10 over Escambia 
Bay, in Pensacola, Florida, was severely dam- 
aged during Hurricane Ivan in 2004 (the same 
mechanism was observed in 2005 after Hurri- 
cane Katrina) by wave-induced loads due to a 
historically high storm surge.53,55 Ports, which 
serve as a gateway for 99% of U.S. overseas 
trade,56 are particularly vulnerable to climate 
impacts from extreme weather events associ- 
ated with rising sea levels and tropical storm 
activity.57 SLR and storm surge also threaten 
coastal airports.58 

 
Global average sea levels are expected to contin- 
ue to rise by at least several inches over the next 
15 years and by 1–4 feet by 2100. This 1-to-4-foot 
range includes the likely projected ranges under 
all the RCP scenarios.2 However, a rise of as 
much as 8 feet by 2100 is scientifically plausible 
due to possible Antarctic ice sheet instabilities.2 

Coastal infrastructure will be exposed to the 
effects of relative SLR, which includes vertical 
land motion in addition to regional variations in 
the distribution of the global SLR. For example, 
relative SLR will be higher than the global average 
on the East and Gulf Coasts of the United States 
because of the sum of these effects.2 It is common 
practice for assessment and planning purposes to 
develop a range of scenarios of future sea levels 
that are consistent with these scientific estimates 
but not specifically based on any one. Scenarios 
developed by the Federal Interagency Sea Level 
Rise and Coastal Flood Hazard Scenarios and 

Transportation at Risk 
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Tools Task Force span the scientifically plausible 
range and include an Intermediate-Low scenario 
of 1.6 feet of global average sea level rise by 
2100, an Intermediate scenario of 3.3 feet, and 
an Extreme scenario of 8.2 feet.59 The relative 
SLR corresponding to some of these scenarios 
is used below to estimate increased coastal 
flooding delays. 

 
Many coastal cities across the United States have 
experienced an increase in high tide flooding 
(Ch. 27: Hawai‘i & Pacific Islands),2 causing areas 
of permanent inundation and increased local 
flooding that reduce the functional performance 
for low-elevation roadways, rail, and bridges and 
often causing costly congestion and damage to 
infrastructure.1,2 In Hampton Roads, Virginia, 
one-third of residents report flooding in their 
neighborhoods at least a couple of times a year, 
and nearly half of residents were not able to get in 
or out of their neighborhoods at least once within 
the past year due to high tide flooding.60 On the 
U.S. East Coast alone, more than 7,500 miles of 
roadway are located in high tide flooding zones. 
Unmitigated, this flooding has the potential 
to nearly double the current 100 million vehi- 
cle-hours of delay likely by 2020 (representing an 
85% increase from 2010), with a 10-fold increase 
by 2060 even under the Intermediate-Low SLR 
scenario (Figure 12.2).61 US Route 17 in Charleston, 
South Carolina, currently floods more than 10 
times per year and is expected to experience up 
to 180 floods annually by 2045, with each flood 
costing the city $12.5 million (in 2009 dollars, 
undiscounted; $13.75 million in 2015 dollars) (Ch. 
19: Southeast).2 Even if a roadway is not inun- 
dated, higher groundwater tables from SLR can 
impact tunnels and utility corridors and weaken 
roadway base materials in low-lying coastal 
regions.62,63,64,65 

 
Precipitation and Flooding Risks 
In most parts of the United States, heavy 
precipitation is increasing in frequency and 
intensity, and more severe precipitation events 

are anticipated in the future.25 Inland trans- 
portation infrastructure is highly vulnerable 
to intense rainfall and flooding, with impacts 
including less reliable transportation systems3 

and increased accident risk.66,67 Extreme 
precipitation events annually shut down parts 
of the Interstate Highway System for days 
or weeks due to flooding and mudslides, as 
happened in the first five months of 2017 in, for 
example, northern California (I-80) and south- 
ern California (I-880) in January, north central 
California (I-5) in February, Idaho (I-86) in 
March, and the central United States including 
Missouri (I-44 and I-55) in May. 

 
Nationally, projected future increases in inland 
precipitation over this century will threaten 
approximately 2,500 to 4,600 bridges by 2050, 
and 5,000 to 6,000 bridges by 2090, respectively, 
for the lower and higher scenarios (RCP4.5 
and RCP8.5).47 Bridge failure is most common 
during unprecedented floods.68 Damage due 
to bridge scour can result during less extreme 
events. This occurs when sediment around piers 
and abutments is washed away, compromising 
bridges’ structural integrity.68 Increases in rainfall 
intensity can accelerate bridge foundation ero- 
sion and compromise the integrity and stability of 
scour-critical bridges.69 

 
Freight movement at major international ports 
can be delayed under extreme weather events 
that include heavy rains and/or high winds 
affecting crane operations and truck service.57 

Even without such disruptions, major interna- 
tional trade gateways, hubs, and distribution 
centers already experience some of the worst 
congestion in the country.15 

 
Transportation systems that are most vul- 
nerable to the recent observed and projected 
increases in precipitation intensity25 are those 
where drainage is already at capacity, where 
projected heavy rainfall events will occur over 
prolonged periods, and where changing winter 
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Annual Vehicle-Hours of Delay Due to High Tide Flooding 
 

Figure 12.2: The figure shows annual vehicle-hours of delay for major roads (principal arterials, minor arterials, and major 
collectors) due to high tide flooding by state, year, and sea level rise scenario (from Sweet et al. 2017).59 Years are shown using 
decadal average (10-year) values (that is, 2020 is 2016–2025), except 2100, which is a 5-year average (2096–2100). One 
vehicle-hour of delay is equivalent to one vehicle delayed for one hour. Source: Jacobs et al. 2018,61 Figure 3, reproduced with 
permission of the Transportation Research Board. 
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precipitation increases transportation hazards 
from landslides and washouts.50 In the western 
United States, large wildfires have increased 
and are likely to increase further in the future.70 

Debris flows, which consist of water, mud, 
and debris, are post-wildfire hazards that can 
escalate the vulnerability of transportation 
infrastructure to severe precipitation events71 

by blocking culverts and inundating roads.72 

 
Rising Temperature Risks 
The frequency of summer heat waves has 
increased since the 1960s, and average 
annual temperatures have increased over 
the past three decades; these temperature 
changes are projected to continue to increase 
in the future.41 Across the United States, 
record-breaking summer temperatures and 
heat waves have immediate and long-term 
impacts on transportation. Through the 
urban heat island effect, heat events may 
become hotter and longer in cities  than  in 
the surrounding rural and suburban areas 
(Ch. 11: Urban). 

 
High temperatures can stress bridge integ- 
rity.4,5 Extreme temperatures cause frequent 
and extended delays to passenger and freight 
rail systems and air traffic when local safe 
operating guidelines are exceeded.4,6 Rail tracks 
expand and weaken, sometimes even bend, 
under extreme heat.73 Air transport is sensitive 
to extreme heat because hotter air makes it 
more difficult for airplanes to generate lift (the 
force required for an airplane to take flight), 
especially at higher elevations, requiring 
weight reductions and/or longer takeoff dis- 
tances that may require runway extensions.74,75 

 
Heat also compromises worker and public 
safety. Temperature extremes cause vehicles 
to overheat and tires to shred, while buckled 
roadway joints can send vehicles airborne.76,77 

Elevated temperature, combined with 
increased salinity and humidity, accelerates 

deterioration in bridges and roads constructed 
with concrete.78,79 Higher ambient temperatures 
and extreme heat events can negatively impact 
pavement performance and, in turn, increase 
costs due to material upgrades to accommo- 
date higher temperatures; these costs are only 
modestly reduced by less frequent mainte- 
nance.12 For example, fixing pavement distress 
caused by a 2011 heat wave and drought cost 
the Texas Department of Transportation (DOT) 
$26 million (dollar year unspecified).80 

 
Heat waves and drought require state DOTs 
to allocate resources to repair damaged pave- 
ment. For example, Virginia DOT has dedicated 
crews who quickly repair roads during extreme 
heat events.81 Protocols that govern worker 
safety limit construction during heat waves3,76,82 

and result in lost productivity.83 Increased 
cooling needed to alleviate passenger dis- 
comfort and cargo overheating84 can cause 
mechanical failures and reduced service, as 
well as greater greenhouse gas emissions. 

 
An additional 20–30 days per year with tem- 
peratures exceeding 90°F (32°C) are projected 
in most areas by mid-century under a higher 
scenario (RCP8.5), with increases of 40–50 
days in much of the Southeast.41 In the United 
States, 5.8 million miles of paved roads are 
susceptible to increased rutting,  cracking, 
and buckling when sustained temperatures 
exceed 90°F.85  Climate change is anticipated 
to increase the current $73 billion in tempera- 
ture-induced railway delay costs by $25–$60 
billion (in 2015 dollars, discounted at 3%).6 Heat 
impacts to airports are expected to increase in 
the future74 and, in some cases, are the most 
critical vulnerability for a region.86 

 
It is possible that projected warmer conditions 
could have some positive effects. Milder 
winters will lengthen the shipping season in 
northern inland ports, including the Great 
Lakes and the Saint Lawrence Seaway.87,88 The 
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reduction of snow and icing events in southern 
regions will likely benefit transportation safety, 
because snow has a significantly higher vehicle 
accident risk than rainfall.66,82 Damage to 
bridges and roads caused by potholes and frost 
heaves costs hundreds of millions of dollars 
annually,4 and changing winter conditions will 
likely alleviate expenditures in some regions 
but amplify expenditures in others.12 However, 
thawing and freezing rain events may reduce 
some of the winter maintenance savings. The 
Alaska Department of Transportation and 
Public Facilities is anticipating significant 
challenges due to the effects of warming 
temperatures on roadways, and it may see 
increased costs in anti-icing measures in areas 
that previously rarely had mid-winter thawing 
and freezing rain.89 

Key Message 2 
 

 
Extreme events that increasingly impact 
the transportation network are inducing 
societal and economic consequences, 
some of which disproportionately affect 
vulnerable populations. In the absence 
of intervention, future changes in climate 
will lead to increasing transportation 
challenges, particularly because of 
system complexity, aging infrastructure, 
and dependency across sectors. 

 
Urban Transportation Network 
The urban transportation network can be 
highly complex and in high demand, with 
populations relying on many modes of trans- 
portation across air, water, and land. U.S. urban 
highways tend to accommodate more than 
double the vehicle miles traveled compared 
to rural highways.90 A high percentage of the 
urban population relies on public transit,91 with 
greatest usage in the Northeast.92 

The urban setting tends to amplify climate 
change impacts, such as flooding, on the 
performance of the transportation network. 
Combined sewer and storm sewer systems 
used in many cities are often not designed 
to withstand the capacity demand currently 
experienced during heavy rainfall events or 
rising high tides (Ch. 11: Urban). This situation is 
becoming increasingly problematic with more 
frequent localized flooding, leading to more 
frequent travel disruptions for commuters, 
travelers, and freight.93,94 The effect is com- 
pounded in cities with older infrastructure, 
such as Philadelphia, Miami, Chicago, and 
Charleston.94,95,96,97 

 
Interdependencies among transportation and 
other critical infrastructure sectors (such 
as energy) introduce the risk of significant 
cascading impacts on the operational  capacity 
of the transportation urban network (Ch. 17: 
Complex Systems, KM 1 and 3). For example,   
in December 2017, Atlanta’s Hartsfield–Jackson 
International Airport was shut down for nearly 
11 hours due to a catastrophic power outage, 
which caused the cancellation of 1,400 flights. 

 
In an urban environment, there is a greater 
chance of transportation network redundancy 
during an extreme weather event. For example, 
in the New York City metro area after Super- 
storm Sandy, additional bus service was able to 
partially compensate for flooded subway and 
commuter tunnels.98,99,100 Walking also serves as 
an essential backstop in urban environments. 
For cargo, if a portion of a railway suffers dam- 
age due to a future flood event, there may be 
opportunities to redirect freight to highways 
and/or waterways. 

 
Disruptions to the transportation network 
during extreme weather events can dispro- 
portionately affect low-income people, older 
adults, people with limited English proficiency, 
and other vulnerable urban populations. 

Impacts to Urban and 
Rural Transportation 
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These populations have fewer mobility 
options, reduced access to healthcare, and 
reduced economic ability to purchase goods 
and services to prepare for and recover from 
events.101,102,103 

 
With growing suburban populations, there 
is increasing dependence on a variety of 
transportation systems. For example, in 
Boston, almost 130,000 people take commuter 
rail daily.104 During extreme events, workers 
in suburban areas often cannot commute to 
urban offices, leading to economic losses. Evi- 
dence of this is seen from the transportation 
interruptions resulting from storms such as 
Hurricane Irene, which impacted Philadelphia 
and New York City, and Superstorm Sandy, 
which impacted the Northeast Corridor.105 

Telecommuting can mitigate some of these 
impacts, but a notable component of suburban 
areas and their economies remains dependent 
on a reliable transportation system. 

 
Rural Transportation Network 
The rural transportation network may lack 
redundancy, which increases the social and 
economic dependence on each road and 
affects agriculture, manufacturing, tourism, 
and more. Flood events are prolific and 
exemplify the dependency that rural areas 
have on their transportation networks. This 
dependence is illustrated by the 2013 flooding 
in Boulder, Colorado, where a 200-year flood 
event (an event having about a 0.5% chance 
of occurring in a given year) resulted in 485 
miles of damaged or destroyed roadways and 
1,100 landslide and hillslope failures that cut 
off many rural towns for weeks.106,107 In 2016, 
more than 10 inches of rain caused widespread 
flooding throughout eastern Iowa and iso- 
lated towns along the Cedar River.108 In 2017, 
Hurricane Irma entirely cut off road access to 
the Florida Keys. 

Relative to urban areas, rural areas have fewer 
options for funding the maintenance and 
rebuilding of roads.109 During recovery efforts, 
rural areas have logistical challenges that 
include the ability to transport the needed 
construction materials and a dependency on 
freight networks to support the population.110 

Rural communities face rebuilding challenges 
that often take additional time and inflict 
long-term economic damage to residents and 
local economies.111 

 
Resilience Planning 
Many federal, state, and municipal agencies 
have developed frameworks and tools to assess 
climate change transportation resilience, 
in some cases in response to legislative and 
policy actions. There has been an emergence 
of climate resilience design guidelines for 
new transportation infrastructure, as well 
as considerations of climate change in infra- 
structure regulations and permitting. For 
example, the City of New York and the Port 
Authority of New York and New Jersey have 
issued guidance that instructs project teams 
on how to incorporate future climate data into 
capital expenditures.112,113 However, it is not only 
large, urban areas that are addressing potential 
climate impacts to transportation systems. 
Municipalities in states such as Wisconsin, 
North Carolina, Mississippi, and Tennessee are 
including considerations for climate vulnerabil- 
ity and adaptation in long-range planning.114 

 
Challenges remain in the development of 
resilience plans. In the urban environment, 
issues such as predicting the potential costs of 
repair and identifying the rippling disruptions 
are required to inform the investment decision 
of implementing mitigation strategies.115 Com- 
pared to urban areas, rural areas sometimes 
struggle to create structures and justify resil- 
ience plans, which are both cost effective and 
address the potential risk from climate change. 
As illustrated by vulnerable areas such as the 
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Gulf Coast, increasing storm intensity suggests 
the need for investments in both improved 
emergency management planning techniques116 

and increased transportation redundancy. Sim- 
ilarly, in rural mountain areas, where increased 
precipitation can lead to landslides, the cost 
of preventive actions may be difficult to justify 
given the uncertainty of occurrence.117 

Key Message 3 
 

 
Engineers, planners, and researchers 
in the transportation field are showing 
increasing interest and sophistication 
in understanding the risks that climate 
hazards pose to transportation assets 
and services. Transportation practitioner 
efforts demonstrate the connection 
between advanced assessment and the 
implementation of adaptive measures, 
though many communities still face 
challenges and barriers to action. 

 
Motivation for Vulnerability Assessments 
Transportation practitioners are increasingly 
invested in addressing climate risks, as evidenced 
in more numerous and diverse assessments of 
transportation sector vulnerabilities across the 
United States. These assessments address the 
direct and indirect reactions to extreme events, 
funding opportunities and technical assistance 
and expertise, and the improved availability of cli- 
mate model outputs. Federal agencies and others 
have made funding and tools available to evaluate 
asset-specific and system-wide vulnerabilities in 
the transportation sector.118,119,120 For example, the 
Federal Highway Administration (FHWA) funded 
24 pilot studies between 2010 and 2015; these 
pilots road-tested and advanced frameworks for 
conducting vulnerability assessments.120,121,122,123 In 
the airport sector, the Transportation Research 
Board supported research and developed guid- 
ance for climate risk assessments,124 adaptation 

strategies, the integration of climate risk into 
airport management systems, and benefit–cost 
analyses. A review of more than 60 vulnerability 
assessments published between 2012 and 2016 
was conducted for this chapter. Results of this 
review are summarized below and depicted 
in Figure 12.3. 

 
Vulnerability Assessments Synopsis 
Transportation  vulnerabilities  to  climate 
change can be very different from one location  
to another. Examining the commonality and 
differences among place-based vulnerability 
assessments provides insights into what com- 
munities feel are their greatest vulnerabilities. 
While early climate risk assessment relied on 
readily available indicators (such as location, 
elevation, and condition) to screen assets for 
exposure to climate risks, asset owners and 
operators have increasingly conducted more 
focused studies of particular assets that con- 
sider multiple climate hazards and scenarios in 
the context of  asset-specific  information,  such 
as design lifetime. Of  the  60  studies  included 
in the online version of Figure 12.3, roadways 
were the most commonly assessed asset, 
followed by bridges and rail. Most assessments 
used geospatial data to identify vulnerabilities; 
more  sophisticated  assessments  utilized 
models as well (for example, Transportation 
Engineering Approaches to Climate Resiliency, 
GC2, and the Massachusetts Department of 
Transportation).125,126,127 Building on guidance 
from the FHWA and others,28 some agencies 
engaged stakeholders to ground-truth and/or 
fortify their results.128 

 
Most studies focus on multiple climate stressors, 
including both chronic issues (such as sea 
level rise) and extreme events (such as flooding, 
storm surge, and extreme heat). Sea level rise  
and flooding are the most commonly assessed 
individual stressors. Although combined risks are 
rarely assessed, sea level rise and storm surge are 
sometimes considered together. The majority of 

Vulnerability Assessments 



12 | Transportation 

484 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 

Transportation Vulnerability and Risk Assessments 
 

Figure 12.3: This figure shows transportation vulnerability and/or risk assessments from 2012 to 2016 by location. Cumulatively, 
these vulnerability assessments elucidate national-scale vulnerabilities and progress. Data for the U.S. Caribbean region were 
not available. See the online version of this map at http://nca2018.globalchange.gov/chapter/12#fig-12-3 to access the complete 
set of vulnerability and risk assessments. Sources: ICF and U.S. Department of Transportation. 

assessments consider only asset-specific vul- 
nerabilities and not transportation system-wide 
vulnerabilities or vulnerabilities influencing or 
arising from interdependencies with other sec- 
tors (such as water or energy). 

 
The few studies that quantify the costs and 
benefits from adaptation primarily focus on single 
assets, rather than the system, and do not quan- 
tify both the direct and indirect (such as labor 
costs) economic costs of transportation system 
disruptions. The U.S. DOT Hampton Roads 
Climate Impact Quantification Initiative, currently 
underway, seeks to demonstrate a replicable 
approach to considering these costs.129 

 
Implementation of Resilience Measures 
Proactive implementation of resilience mea- 
sures is still limited. Resilient solutions for 
transportation facilities vary greatly depending 
on the climate stressor, the specifics of a 
given site, and the availability of funding for 

implementation (see “Three Case Studies of 
Resilience Measures for Highway Facilities”). 
Building the business case for adaptation and 
aligning the required long-term investments 
with existing time frames for decision-making 
is difficult.3,130,131 Uncertainties associated with 
projections of future climate hazards in specif- 
ic geographic locations130,132,133 and the lack of 
specific, detailed adaptation strategies134 make 
assessment more complicated. However, in the 
wake of extreme events, some transportation 
agencies implemented resilience measures to 
withstand similar events in the future. 

 
Future changes to and uncertainties about 
transportation technologies and transporta- 
tion-related behaviors complicate agencies’ 
ability to assess the adaptive capacity of trans- 
portation systems, their ability to withstand 
and recover from a disruption, and opportuni- 
ties for cost-effective risk mitigation strategies 
(such as workplace telecommuting policies). 

http://nca2018.globalchange.gov/chapter/12#fig-12-3
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Case Study: Three Case Studies of Resilience Measures for Highway Facilities 
 

In Florida, storm surges overwashing US 98 on Okaloosa Island undermined the highway foundation during Hurricane 
Ivan in 2004 and then again during other tropical storms in 2005. To prevent damage from overwash in the future, the 
Florida Department of Transportation installed buried erosion protection along the edge of the road. FHWA’s analysis 
found that this proactive countermeasure was economically justified when it was done in 2006 and, further, that the 
benefit–cost ratio will quadruple over the next 50 years as sea levels continue to rise.135

 

 
Shore Road in Brookhaven, New York, is experiencing wave-induced bank erosion during storms. The road elevation is 
about 2 feet higher than the typical high tide today, and a recent study determined that constructing a coastal marsh 
can protect the roadway for decades at a low cost while enhancing ecosystems. At a later point, the town could in- 
crease the elevation of the road and install more expensive sheet pile walls or rock revetments if needed.136

 

 
In 2013 in Colorado, precipitation following wildfires caused massive debris flows that overwhelmed culverts and 
damaged US 24 (see Figure 12.4 for similar case). Recognizing the seriousness of this type of impact, engineering 
tools driven by future climate simulations were used to evaluate changing wildfire-induced debris flows and precipi- 
tation risks to culverts when rebuilding a similar highway (US 34). The best approach identified was to quickly adapt 
a culvert if and when a wildfire occurs in that watershed, with the goal of upsizing the structure before a rainfall event 
can cause it to fail. Adapting every culvert to account for wildfire risk would be prohibitively costly, especially given the 
high uncertainty and low probability that any particular culvert will be impacted by a wildfire over its service life.72

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flood Impacts on Colorado Highway 
Figure 12.4: Flooding events can result in serious damage to road infrastructure. Here, debris flow covers US Highway 14 
(Poudre Canyon) after the High Park Fire in 2012. Photo credit: Justin Pipe, Colorado Department of Transportation. 
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Traceable Accounts 
Process Description 
We sought an author team that could bring diverse experiences and perspectives to the chapter, 
including some who have participated in prior national-level assessments within the sector. All are 
experts in the field of climate adaptation and transportation infrastructure. The team represents 
geographic expertise in the Northeast, Mid-Atlantic, South, Central, and Western regions, includ- 
ing urban and rural as well as coastal and inland perspectives. Team members come from the 
public (federal and city government and academia) and private sectors (consulting and engineer- 
ing), with practitioner and research backgrounds. 

The chapter was developed through technical discussions of relevant evidence and expert delib- 
eration by the report authors at several workshops and teleconferences and via email exchanges. 
The authors considered inputs and comments submitted by the public, the National Academies 
of Sciences, Engineering, and Medicine, and federal agencies. For additional information on the 
overall report process, see Appendix 1: Process. The author team also engaged in targeted consul- 
tations with transportation experts during multiple listening sessions. 

Because the impacts of climate change on transportation assets for the United States and glob- 
ally have been widely examined elsewhere, including in the Third National Climate Assessment 
(NCA3),137 this chapter addresses previously identified climate change impacts on transportation 
assets that persist nationally, with a focus on recent literature that describes newly identified 
impacts and advances in understanding. Asset vulnerability and impacts are of national impor- 
tance because there are societal and economic consequences that transcend regional or subre- 
gional boundaries when a transportation network fails to perform as designed; a chapter focus 
is the emerging understanding of those impacts. Further, place-based, societally relevant under- 
standing of transportation system resilience has been strongly informed by numerous recent local 
and state assessments that capture regionally relevant climate impacts on transportation and 
collectively inform national level risks and resilience. The chapter synthesizes the transportation 
communities’ national awareness of and readiness for climate threats that are most relevant in  
the United States. 

Key Message 1 

A reliable, safe, and efficient U.S. transportation system is at risk from increases in heavy 
precipitation, coastal flooding, heat, wildfires, and other extreme events, as well as changes to 
average temperature (high confidence). Throughout this century, climate change will continue to 
pose a risk to U.S. transportation infrastructure, with regional differences (high confidence). 

 
Description of evidence base 
Global mean sea level has risen since 1900 and is expected to continue to rise.2 High tide flooding 
is increasing and is projected to continue increasing.1 The peak storm surge levels are expected  
to rise more than the rise in sea level; models show that if the depth of storm flooding today is A 
and the rise in sea level between now and a future occurrence of an identical storm is B, then the 
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resulting future storm surge depths can be greater than A + B.52 The U.S. roads and bridges in the 
coastal floodplain49 are vulnerable today, as storms are repeatedly causing damage.50,53,54,138 Sea 
level rise is also projected to impact ports,57 airports,58 and roads.63,64,65 High tide flooding currently 
makes some roads impassable due to flooding60,61 and is very likely to increase transportation 
disruptions in the future.61 

In most parts of the United States, heavy precipitation is increasing in frequency and intensity, 
and more severe precipitation events are anticipated in the future.25 Inland transportation infra- 
structure is highly vulnerable to intense rainfall and flooding.3,25,66,67,69,139 In the western United 
States, large wildfires have increased and are likely to increase in the future,70 escalating the 
vulnerability of transportation infrastructure to severe precipitation events.71,72 

The frequency of summer heat waves has increased since the 1960s, and average annual tem- 
peratures have increased over the past three decades; these temperature changes are projected     
to continue to increase in the future.41 Warming temperatures have increased costs81 and reduced 
the performance of roads,80 bridges,4,5 railways,4,5,6 and air transport.3,74,86 Future temperature 
increases are projected to reduce infrastructure lifetime78,79,122 and increase road costs.12 Milder 
winters will likely lengthen the shipping season in northern inland ports,87,88 benefit transportation 
safety,42,43,44,66,82 and reduce winter maintenance.4,12,45 In Alaska, however, permafrost thawing will 
damage roads46 and increase the cost of roads (Ch. 26: Alaska). 

Major uncertainties 

Peer-reviewed literature on climate impacts to some assets is limited. Most literature addresses 
local- or regional-scale issues. Uncertainty in the ranges of climate change projection leads to 
challenges to quantifying impacts on transportation assets, which have long lifetimes. 

Impacts to transportation infrastructure from climate change will depend on many factors, 
including population growth, economic demands, policy decisions, and technological changes. 
How these factors, with their potential compounding effects, as well as the impacts of disruptive 
or transformative technologies (such as automated vehicles or autonomous aerial vehicles), will 
contribute to transportation performance in the future is poorly understood. 

The relationship among increases in large precipitation events and flood-induced infrastructure 
damage is uncertain because multiple factors (including land use, topography, and even flood 
control) impact flooding.140,141,142,143 Hirsch and Ryberg (2012)144 found limited evidence of increasing 
global mean carbon dioxide concentrations resulting in increasing flooding in any region of the 
United States. Archfield et al. (2016)145 found that flood changes to date are fragmented and that a 
climate change signal on flood changes was not yet clear. 

Description of confidence and likelihood 

There is very high confidence that sea level rise and increases in flooding during coastal storms 
and astronomical high tides will lead to damage and service reductions with coastal bridges, 
roads, rails, and ports. 

There is high confidence that heavy precipitation events have increased in intensity and frequency 
since 1901 (with the largest increase seen in the Northeast); this trend is projected to continue.25 

There is medium confidence that precipitation increases will lead to surface and rail transit delays 
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in urban areas. There is medium confidence that flood-induced damages to roads and bridg- 
es will increase. 

Rising temperatures and extreme heat (high confidence) will damage pavement and increase 
railway and air transit delays. However, the actual magnitude of those impacts will depend on 
technological advancements and policy decisions about design and operations. 

Key Message 2 

Extreme events that increasingly impact the transportation network are inducing societal and 
economic consequences, some of which disproportionately affect vulnerable populations (high 
confidence). In the absence of intervention, future changes in climate will lead to increasing 
transportation challenges, particularly because of system complexity, aging infrastructure, and 
dependency across sectors (high confidence). 

 
Description of evidence base 
The Key Message is largely supported by observation and empirical evidence that is well docu- 
mented in the gray (non-peer-reviewed) literature and recent government reports. Because this is 
an important emerging area of research, the peer-reviewed scientific literature is sparse. Hence, 
much of the supporting materials for this Key Message are descriptions of impacts of recent 
events provided by news organizations and government summaries. 

Many urban locations have experienced disruptive extreme events that have impacted the 
transportation network and led to societal and economic consequences. Louisiana experienced 
historic floods in 2016 that disrupted all modes of transportation and caused adverse impacts on 
major industries and businesses due to the halt of freight movement and employees’ inability to 
get to work.146 The 2016 floods that affected Texas from March to June resulted in major business 
disruption due to the loss of a major transportation corridor.147 In 2017, Hurricane Harvey affected 
population and freight mobility in Houston, Texas, when 23 ports were closed and over 700 roads 
were deemed impassable.148 Consequences of extreme events can be magnified when events are 
cumulative. The 2017 hurricanes impacting the southern Atlantic and Gulf Coasts and Puerto Rico 
created rising freight costs because freight carriers had to deal with poor traveling conditions, 
an unreliable fuel stock, and limited exports for the return trip.149,150 Low-income populations 
have been linked to differences in perceived risks associated with an extreme event, in how they 
respond, and in their ability to evacuate or relocate.151 Delays in evacuations can potentially lead 
to significant transportation delays, affecting the timeliness of first responders and evacuations. 
National- and local-level decision-makers are considering strategies during storm recovery and 
its aftermath to identify and support vulnerable populations to ensure transportation and access 
to schools, work, and community services (for example, the 2016 Baton Rouge flood event). 

Similar to the urban and suburban scenarios, rural areas across the country have also experienced 
disruptions and impacts from climate events. Hurricane Irene resulted in the damage or destruc- 
tion of roads throughout New England, resulting in small towns being isolated throughout the 
region.152 Similarly, Hurricane Katrina devastated rural community infrastructure across the Gulf 
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Coast, which resulted in extended periods of isolation and population movement.153 Lesser-known 
events are also causing regular impacts to rural communities, such as flood events in 2014 in 
Minnesota and in 2017 throughout the Midwest, which impacted towns for months due to dam- 
aged road infrastructure.154,155 

Although flooding events and hurricanes receive significant attention, other weather-based events 
cause equal or greater impacts to rural areas. Landslide events have isolated rural communities 
by reducing them to single-road access.156,157 Extreme heat events combined with drought have 
resulted in increases in wildfire activity that have impacted rural areas in several regions. The 
impacts of these wildfire events include damage to infrastructure both within rural communities 
and to access points to the communities.158 

As documented, rural communities incur impacts from climate events that are similar to those 
experienced in urban and suburban communities. However, rural and isolated areas experience 
the additional concerns of recovering from extreme events with fewer resources and less capac- 
ity.111 This difference often results in rural communities facing extended periods of time with 
limited access for commercial and residential traffic. 

Major uncertainties 

Realized societal and economic impacts from transportation disruptions vary by extreme event, 
depending on the intensity and duration of the storm; pre-storm conditions, including cumulative 
events; planning mechanisms (such as zoning practices); and so on. In addition, a combination of 
weather stressors, such as heavy precipitation with notable storm surge, can amplify effects on 
different assets, compounding the societal and economic consequences. These amplifications are 
poorly understood but directly affect transportation users. Interdependencies among transpor- 
tation and other lifeline sectors can also have significant impacts on the degree of consequences 
experienced. These impacts are also poorly understood. 

Description of confidence and likelihood 

There is medium to high confidence that the urban setting can amplify heat.159 There is also medium   
to high confidence that transportation networks are impacted by inland and coastal flooding.70  

There is medium confidence that socioeconomic conditions are strongly related to a population’s 
resilience to extreme events.151 

There is high confidence that impacts to the transportation network from extreme events are 
inducing societal and economic consequences, some of which disproportionately affect vulnerable 
populations (medium confidence). In the absence of intervention, projected changes in climate 
will likely lead to increasing transportation challenges as a result of system complexity, aging 
infrastructure with hundreds of billions of dollars in rehabilitation backlogs,13 and dependency 
across sectors. 
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Key Message 3 

Engineers, planners, and researchers in the transportation field are showing increasing interest 
and sophistication in understanding the risks that climate hazards pose to transportation 
assets and services (very high confidence). Transportation practitioner efforts demonstrate 
the connection between advanced assessment and the implementation of adaptive measures, 
though many communities still face challenges and barriers to action (high confidence). 

 
Description of evidence base 
Chapter authors reviewed more than 60 recently published vulnerability assessments (details and 
links available through the online version of Figure 12.3) conducted by or for states and localities. 
The research approach involved internet searches, consultations with experts, and leveraging 
existing syntheses and compilations of transportation-related vulnerability assessments. The 
authors cast a broad net to ensure that as many assessments as possible were captured in the 
review. The studies were screened for a variety of metrics (for example, method of assessment, 
hazard type, asset category, vulnerability assessment type, economic analysis, and adaptation 
actions), and findings were used to inform the conclusions reached in this section. 

Major uncertainties 

Most of the literature and the practitioner studies cited for Key Message 3 were gray literature, 
which is not peer-reviewed but serves the purpose of documenting the state of the practice. This 
section was not an assessment of the science (that is, the validity of individual study results was 
not assessed) but surveyed how transportation practitioners are assessing and managing climate 
impacts. The conclusions are not predicated on selection of or relative benefits of specific model- 
ing or technological advances. 

Practitioners’ motivations underlying changes in the state of the practice were derived from 
information in the studies and from cited literature. The authors of this section did not survey 
authors of individual vulnerability studies to determine their situation-specific motivations. 

Description of confidence and likelihood 

There is high confidence regarding the efforts of state and local transportation agencies to under- 
stand climate impacts through assessments like those referenced in Figure 12.3. There is medium 
confidence in the reasons for delay in implementing resilience measures and the motivations for 
vulnerability assessments. There is no consensus on how emerging transportation technologies 
will develop in the coming years and how this change will affect climate mitigation, adaptation, 
and resilience. 

Vulnerability Assessments 
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Key Message 1 Carr Fire, Shasta County, California, August 2018 
 

 
More than 100 million people in the United States live in communities where air pollution 
exceeds health-based air quality standards. Unless counteracting efforts to improve 
air quality are implemented, climate change will worsen existing air pollution levels. 
This worsened air pollution would increase the incidence of adverse respiratory and 
cardiovascular health effects, including premature death. Increased air pollution would 
also have other environmental consequences, including reduced visibility and damage to 
agricultural crops and forests. 

Key Message 2 
 

Wildfire smoke degrades air quality, increasing the health risks to tens of millions of 
people in the United States. More frequent and severe wildfires due to climate change 
would further diminish air quality, increase incidences of respiratory illness from 
exposure to wildfire smoke, impair visibility, and disrupt outdoor recreational activities. 

 
Key Message 3 

 

The frequency and severity of allergic illnesses, including asthma and hay fever, are 
likely to increase as a result of a changing climate. Earlier spring arrival, warmer 
temperatures, changes in precipitation, and higher carbon dioxide concentrations can 
increase exposure to airborne pollen allergens. 

Increasing Risks from Air Pollution 

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 

13 Air Quality 

Increasing Impacts of Wildfires 

Increases in Airborne Allergen Exposure 
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Key Message 4 
 

Many emission sources of greenhouse gases also emit air pollutants that harm human 
health. Controlling these common emission sources would both mitigate climate change 
and have immediate benefits for air quality and human health. Because methane is both a 
greenhouse gas and an ozone precursor, reductions of methane emissions have the 
potential to simultaneously mitigate climate change and improve air quality. 

 
 

Executive Summary 
Unless offset by additional emissions reduc- 
tions of ozone precursor emissions, there 
is high confidence that climate change will 
increase ozone levels over most of the United 
States, particularly over already polluted areas, 
thereby worsening the detrimental health 
and environmental effects due to ozone. The 
climate penalty results from changes in local 
weather conditions, including temperature and 
atmospheric circulation patterns, as well as 
changes in ozone precursor emissions that are 
influenced by meteorology. Climate change has 
already had an influence on ozone concentra- 
tions over the United States, offsetting some 
of the expected ozone benefit from reduced 
precursor emissions. The magnitude of the 
climate penalty over the United States could be 
reduced by mitigating climate change. 

 
Climatic changes, including warmer springs, 
longer summer dry seasons, and drier soils 
and vegetation, have already lengthened the 
wildfire season and increased the frequency 
of large wildfires. Exposure to wildfire smoke 
increases the risk of respiratory disease, 
resulting in adverse impacts to human health. 
Longer fire seasons and increases in the 
number of large fires would impair both human 
health and visibility. 

 

Climate change, specifically rising tempera- 
tures and increased carbon dioxide (CO2) 
concentrations, can influence plant-based 
allergens, hay fever, and asthma in three ways: 
by increasing the duration of the pollen season, 
by increasing the amount of pollen produced 
by plants, and by altering the degree of allergic 
reactions to the pollen. 

 
The energy sector, which includes energy 
production, conversion, and use, accounts for 
84% of greenhouse gas (GHG) emissions in 
the United States as well as 80% of emissions 
of nitrogen oxides (NOx) and 96% of sulfur 
dioxide, the major precursor of sulfate aerosol. 
In addition to reducing future warming, 
reductions in GHG emissions often result in 
co-benefits (other positive effects, such as 
improved air quality) and possibly some neg- 
ative effects (disbenefits) (Ch. 29: Mitigation). 
Specifically, mitigating GHG emissions can 
lower emissions of particulate matter (PM), 
ozone and PM precursors, and other hazardous 
pollutants, reducing the risks to human health 
from air pollution. 

Co-Benefits of Greenhouse Gas Mitigation 
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Projected Changes in Summer Season Ozone 
 

The maps show projected changes in summer averages of the maximum daily 8-hour ozone concentration (as compared to the 
1995–2005 average). Summertime ozone is projected to change non-uniformly across the United States based on multiyear 
simulations from the Community Multiscale Air Quality (CMAQ) modeling system. Those changes are amplified under the higher 
scenario (RCP8.5) compared with the lower scenario (RCP4.5), as well as at 2090 compared with 2050. Data are not available 
for Alaska, Hawai‘i, U.S.-Affiliated Pacific Islands, and the U.S. Caribbean. From Figure 13.2 (Source: adapted from EPA 20171). 
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State of the Sector 

Air quality is important for human health, 
vegetation, and crops as well as aesthetic 
considerations (such as visibility) that affect 
appreciation of the natural beauty of national 
parks and other outdoor spaces. Many of 
the processes that determine air quality 
are affected by weather (Figure 13.1). For 
example, hot, sunny days can increase ozone 
levels, while stagnant weather conditions can 
produce high concentrations of both ozone 
and particulate matter (PM). Ozone and PM 
are air pollutants that adversely affect human 
health and are monitored and regulated 
with national standards. Temperature, wind 
patterns, cloud cover, and precipitation, as 
well as the amounts and types of pollutants 
emitted into the air from human activities and 
natural sources, all affect air quality (Figure 
13.1). Thus, climate-driven changes in weather, 
human activity, and natural emissions are all 
expected to impact future air quality across the 
United States. 

 
These climate effects on air quality are not 
expected to occur uniformly at all locations. 
For example, as discussed in Chapter 2: 
Climate, precipitation is projected to increase 
in some regions of the country and decrease 
in other regions. Regions that experience 
excessive periods of drought and higher 
temperatures will have increased frequency of 
wildfires and more windblown dust from soils. 
At the same time, changes to temperatures and 
rainfall affect the types of crops that can be 
grown (Ch. 10: Ag & Rural) and the length of the 
growing season, the application of fertilizers 
and pesticides to crops, and ensuing transport 
and fate of those chemicals into the air, water, 
and soil. In the future, climate change is 
expected to alter the demand for heating and 
cooling of indoor spaces due to changes in 
temperatures. The resulting shift in fuel types 
and amounts used will modify the amount and 

composition of air pollutants emitted. Climate 
change can also increase the duration of the 
pollen season and the amount of pollen at 
some locations, as well as worsen respiratory 
health impacts due to pollen exposure. Despite 
the potential variability in regional impacts of 
climate change, there is evidence that climate 
change will increase the risk of unhealthy air 
quality in the future across the Nation in the 
absence of further air pollution control efforts 
(for other impacts of climate change on health, 
see Ch. 14: Human Health). 

 
Since people spend most of their time inside 
buildings, indoor air quality is important for 
human health. Indoor air pollutants may come 
from interior sources or may be transported 
into buildings with outdoor air. If there are 
changes in airborne pollutants of outdoor 
origin, such as ozone, pollen, mold, and PM2.5 

(particulate matter less than 2.5 micrometers 
in diameter), there will be changes in indoor 
exposures to these contaminants.2,3 

 
There is robust evidence from models and 
observations that climate change is worsening 
ozone pollution. The net effect of climate 
change on PM pollution is less certain than for 
ozone, but increases in smoke from wildfires 
and windblown dust from regions affected 
by drought are expected. The complex inter- 
actions of natural variability with changes 
in climate and emissions pose a significant 
challenge for air quality management. Some 
approaches to mitigating climate change 
could result in large near-term co-benefits 
for air quality. 
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Pathways by Which Climate Change Will Influence Air Pollution 
 

Figure 13.1: Climate change will alter (black bold text) chemical and physical interactions that create, remove, and transport air 
pollution (red text and gray arrows). Human activities and natural processes release precursors for ground-level ozone (O3) and 
particulate matter with a diameter less than 2.5 micrometers (PM2.5), including methane (CH4), carbon monoxide (CO), nitrogen 
oxides (NOx), non-methane volatile organic compounds (NMVOCs), sulfur dioxide (SO2), ammonia (NH3), organic carbon (OC), 
black carbon (BC), and dimethyl sulfide (DMS); and direct atmospheric pollutants, including mineral dust, sea salt, pollen, 
spores, and food particles. Source: adapted from Fiore et al. 2015.4 Reprinted by permission of the publisher (Taylor & Francis 
Ltd., http://www.tandfonline.com). 

 

Air Pollution Health Effects 
Ground-level ozone and particulate matter are 
common air pollutants that pose a serious risk to 
human health and the environment.5,6 Short- and 
long-term exposure to these pollutants results in 
adverse respiratory and cardiovascular effects,7 

including premature deaths,8 hospital and 
emergency room visits, aggravated asthma,3,9 and 
shortness of breath.10 Certain population groups, 
such as the elderly, children, and those with 

chronic illnesses, are especially susceptible to 
ozone and PM-related effects.11,12,13 

 
A growing body of evidence indicates the harmful 
effects of short-term (i.e., daily) exposures to 
ground-level ozone vary with climate conditions, 
specifically temperature.14,15,16,17,18 For  a  given  level 
of ozone, higher temperatures increase the risk of 
ozone-related premature  death.14,19,20,21   However, 
the risk of premature death is likely to decrease 
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as the prevalence of air conditioning increases, as 
is expected to occur with rising temperatures.22 

The extent to which the growing use of air con- 
ditioning will offset climate-induced increases in 
ozone-related premature death is unknown. 

 
Ozone Air Quality 
Ozone is not directly emitted but is formed in 
the atmosphere by reactions between nitrogen 
oxides (NOx) and volatile organic compounds 
(VOCs). Ozone concentrations depend on 
emissions of these two precursors as well 
as weather conditions such as temperature, 
humidity, cloud cover, and winds.3 These emis- 
sions come from a variety of human sources, 
such as power plants and motor vehicles, 
and from natural sources, such as forests and 
wildfires (Figure 13.1). Additionally, ozone con- 
centrations in one region may be influenced 
by the transport of either precursors or ozone 
itself from another region.23,24 

 
Ozone levels in the United States are often 
highest in Southern California and the North- 
east Corridor as well as  around  other  large 
cities like Dallas,  Houston,  Denver,  Phoenix, 
and Chicago,25 and during extended episodes of 
extreme heat and sunshine.26 Ozone  air  quality 
in the United States has improved dramatically 
over the past few decades due to NOx and VOC 
emissions control efforts,  despite  population 
and economic growth.27,28,29 Nationally, ozone 
concentrations have been reduced by 22% over 
the 1990 to 2016 period.29 Nonetheless, in 2015 
nearly 1 in 3 Americans were exposed to ozone 
values that exceeded the national standard 
determined by the U.S. Environmental Protec- 
tion Agency (EPA) to be protective of human 
health.29 Adverse human health impacts asso- 
ciated with exposure to ground-level ozone 
include premature death, respiratory hospital 
admissions, cases of aggravated asthma,  lost 
days of school,  and  reduced  productivity 
among outdoor workers.30,31,32 Ozone pollution 

can also damage crops and plant communities, 
including forests, by reducing photosynthesis.33 

 
Due in part to air pollutant regulations driven 
by the Clean Air Act, NOx and VOC emissions 
from human sources should continue to 
decline over the next few decades.34 These 
emissions reductions are designed to reduce 
ozone concentrations so that polluted areas 
of the country meet air quality standards. 
However, climate change will also influence 
future levels of ozone in the United States by 
altering weather conditions and impacting 
emissions from human and natural sources. 
The prevailing evidence strongly suggests that 
climate change alone introduces a climate 
penalty (an increase in air pollution resulting 
from climate change35,36) for ozone over most of 
the United States from warmer temperatures 
and increases in natural emissions.3,4,37,38 This 
climate penalty will partially counteract the 
continued reductions in emissions of ozone 
precursors from human activities. 

 
Particulate Matter 
Tiny liquid or solid particles suspended in the 
atmosphere are known as aerosols or partic- 
ulate matter (PM). PM includes many different 
chemical components, such as sulfate, nitrate, 
organic and black carbon, mineral dust, and sea 
spray. Unlike ozone, PM can be either directly 
emitted or formed in the atmosphere. PM2.5 

refers to atmospheric PM with a diameter less 
than 2.5 micrometers. These particles are small 
enough to be inhaled deeply, and exposure 
to high concentrations can result in serious 
health impacts, including premature death, 
nonfatal heart attacks, and adverse birth out- 
comes.5,39,40,41 PM2.5 concentrations vary greatly 
with daily weather conditions,42,43 depending 
particularly on wind speed (which affects the 
mixing of pollutants) and precipitation (which 
removes particles from the air).4 Concentra- 
tions of PM2.5 build up during long periods of 
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low wind speeds, and they are reduced when 
weather fronts move air through a region.4 

 
Wildfires not only emit gases that contribute 
to ozone formation44,45,46,47,48 but they also are a 
major source of PM, especially in the western 
United States during the summer49,50,51,52,53,54,55 

and in the Southeast48,56 (Ch. 6: Forests; Ch. 19: 
Southeast, Case Study “Prescribed Fire”; Ch. 
24: Northwest; Ch. 25: Southwest). Wildfire 
smoke can worsen air quality locally,57 with 
substantial public health impacts in regions 
with large populations near heavily forested 
areas.56,58,59,60,61 Exposure to wildfire smoke 
increases the incidence of respiratory illnesses, 
including asthma, chronic obstructive pul- 
monary disease, bronchitis, and pneumonia.62 

Smoke can decrease visibility63 and can be 
transported hundreds of miles downwind, 
often crossing national boundaries.54,64,65,66,67,68,69 

 
Climate change is expected to impact atmo- 
spheric PM concentrations in numerous 
ways.38,70 Changing weather patterns, including 
increased stagnation,71,72 altered frequency of 
weather fronts,73,74 more frequent heavy rain 
events,43 changing emissions from vegeta- 
tion75,76 and human sources,77 and increased 
evaporation of some aerosol components78 

will all affect PM concentrations. In addition, 
more frequent and longer droughts would 
lengthen the wildfire season79,80,81 and result in 
larger wildfires82,83 and increased dust emis- 
sions in some areas.84 Projections of regional 
precipitation changes show considerable 
variation across models and thus remain highly 
uncertain.85 Accurately assessing how PM2.5 

concentrations will respond to the changing 
climate is difficult due to these complex and 
highly spatially variable interactions. 

Key Message 1 
 

More than 100 million people in the 
United States live in communities where 
air pollution exceeds health-based air 
quality standards. Unless counteracting 
efforts to improve air quality are im- 
plemented, climate change will worsen 
existing air pollution levels. This wors- 
ened air pollution would increase the 
incidence of adverse respiratory and 
cardiovascular health effects, including 
premature death. Increased air pollution 
would also have other environmental 
consequences, including reduced 
visibility and damage to agricultural 
crops and forests. 

Unless offset by additional reductions of ozone 
precursor emissions, there is high confidence 
that climate change will increase ozone levels 
over most of the United States, particularly over 
already polluted areas,3,86 thereby worsening the 
detrimental health and environmental effects 
due to ozone. Although competing meteoro- 
logical effects determine local ozone levels, 
temperature is often the largest single driver.87 

The climate penalty35,36 results from changes in 
local weather conditions, including temperature 
and atmospheric circulation patterns,4,88 as well 
as changes in ozone precursor emissions that 
are influenced by meteorology.75,76,77 Climate 
change has already had an influence on ozone 
concentrations over the United States, offset- 
ting some of the expected ozone benefit from 
reduced precursor  emissions.89,90 Assessments 
of climate change impacts on ozone trends 
are complicated by year-to-year changes in 
weather conditions91 and require multiple years 
of model information to estimate the potential 
range of effects.92 Besides being affected by 
climate change, future ozone levels in the 
United States will also be affected greatly by 

Increasing Risks from Air Pollution 
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domestic emissions of ozone precursors as well 
as by international emissions of ozone precur- 
sors and global methane levels. Studies suggest 
that climate change will decrease the sensitivity 
of regional ozone air quality to interconti- 
nental sources.93 

 
PM2.5 accounts for most of the health impacts 
due to air pollution in the United States,94 and 
small changes in average concentrations have 
large implications for public health. Without 
consideration of climate effects, concentra- 
tions of PM2.5 in the United States are projected 
to decline through 2040 due to ongoing emis- 
sions control efforts.34 PM2.5 is highly sensitive 
to weather conditions, including temperature, 
humidity, wind speed, and rainfall. The effects 
of climate change on the timing, intensity, 
duration, and frequency of rainfall are highly 
uncertain, influencing both the removal of 
PM2.5 from air and the incidence of wildfires 
and their associated emissions. Accordingly, 
the net impact of climate-driven weather 
changes on PM2.5 concentrations is less certain 
than for ozone.3,4,43,70 However, some studies 
have indicated that even without considering 
increased wildfire frequency, climate change 
will cause a small but important increase in 
PM2.5 over North America.95,96 The impact of 
climate change on the PM2.5 contribution 
from intercontinental sources, which depends 

strongly on projected changes in precipitation, 
remains highly uncertain.24 

 
The health impacts of climate-induced changes 
in air quality may be reduced by various adap- 
tation measures. For example, as local author- 
ities issue air quality alerts, people may reduce 
their exposure to air pollution by postponing 
outdoor activities and staying indoors (for 
further information on the role of adaptation in 
reducing climate-related health risks, see Ch. 
14: Human Health, KM 3). 

 
The magnitude of the climate penalty over the 
United States could be reduced by mitigating 
climate change.1,90,97 For example, Figure 13.2 
shows results from one study1 projecting the 
change in summertime ozone resulting from 
two different future scenarios (RCP8.5 and 
RCP4.5) (see the Scenario Products section of 
App. 3 for additional information about these 
scenarios) at 2050 and 2090, with human 
emissions of ozone precursors held constant. 
Due to climate change, ozone is projected to 
increase over a broad portion of the United 
States. Mitigating climate change globally (for 
instance, following RCP4.5 rather than RCP8.5) 
would reduce the impact on ozone, resulting 
in fewer adverse health effects, including 
500 fewer premature deaths per year due to 
ozone in 2090.1 
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Projected Changes in Summer Season Ozone 
 

Figure 13.2: The maps show projected changes in summer averages of the maximum daily 8-hour ozone concentration (as 
compared to the 1995–2005 average). Summertime ozone is projected to change non-uniformly across the United States based 
on multiyear simulations from the Community Multiscale Air Quality (CMAQ) modeling system. Those changes are amplified 
under the higher scenario (RCP8.5) compared with the lower scenario (RCP4.5), as well as at 2090 compared with 2050. Data 
are not available for Alaska, Hawai‘i, U.S.-Affiliated Pacific Islands, and the U.S. Caribbean. Source: adapted from EPA 2017.1 

 
Key Message 2 

 
 

Wildfire smoke degrades air quality, 
increasing the health risks to tens of 
millions of people in the United States. 
More frequent and severe wildfires due 
to climate change would further diminish 
air quality, increase incidences of respi- 
ratory illness from exposure to wildfire 
smoke, impair visibility, and disrupt 
outdoor recreational activities. 

Climatic changes, including warmer springs, 
longer summer dry seasons, and drier soils 
and vegetation, have already lengthened the 
wildfire season79,80,81,98 (Ch. 6: Forests) and 
increased the frequency of large wildfires.82,83 

Human-caused climate change is  estimated 
to have doubled the area of forest burned in 
the western United States from 1984 to 2015.99 

Projections indicate that the wildfire frequency 
and burned area in North America will con- 
tinue to increase over the 21st century due to 
climate change.100,101,102,103,104,105,106 

 
Wildfires and prescribed fires contribute to 
ozone formation44,107 and are major sources of 
PM, together comprising about 40% of directly 
emitted PM2.5 in the United States in 2011.34 

Exposure to wildfire smoke increases the risk 
of respiratory disease and mortality.56,60,62 Lon- 
ger fire seasons and increases in the number of 
large fires would impair both human health108 

and visibility.54,63 Wildfires are projected to 
become the principal driver of summertime 

Increasing Impacts of Wildfires 
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PM2.5 concentrations, offsetting even large 
reductions in emissions of PM2.5 precursors.54,109 

 
Opportunities for outdoor recreational 
activities are also vulnerable to changes in 
the frequency and intensity of wildfires due 
to climate change. Climate change-induced 
increases in wildfire smoke events are likely to 
reduce the amount and quality of time spent 
in outdoor activities (Ch. 22: N. Great Plains, 
KM 3; Ch. 24: Northwest, KM 4). More accurate 
forecasting of smoke events may mitigate some 
of the negative effects through changes in 
timing of outdoor activities. 

 
Forests are actively managed, and the fre- 
quency and severity of wildfire occurrence 
in the future will not be determined solely by 
climate factors. Humans affect fire activity in 
many ways, including increasing ignitions and 
conducting controlled burns and fire suppres- 
sion.110,111 Forest management decisions may 
outweigh the impacts of climate change on 
both forest ecosystems and air quality.112 

Key Message 3 
 

 
The frequency and severity of allergic 
illnesses, including asthma and hay 
fever, are likely to increase as a result 
of a changing climate. Earlier spring 
arrival, warmer temperatures, changes in 
precipitation, and higher carbon dioxide 
concentrations can increase exposure to 
airborne pollen allergens. 

 
Climate change, specifically rising tempera- 
tures and increased CO2 concentrations, can 
influence plant-based allergens, hay fever, 
and asthma in three ways: by increasing the 
duration of the pollen season, by increasing 
the amount of pollen produced by plants, 

and by altering the degree of allergic reac- 
tions to pollen. 

 
Seasonally, airborne allergen (aeroallergen) 
exposure in the United States begins with the 
release of tree pollen in the spring. Between 
the 1950s and the early 2000s, warming 
winters and earlier arrival of springs have 
resulted in earlier flowering of oak trees.113 

Projected increases in CO2 induce earlier and 
greater seasonal pollen production in pine 
trees114 and oak trees.115 For summer pollen 
producers, such as weeds and grasses, the 
effect of warming temperatures on earlier 
flowering is less evident. However, the allergen 
content of timothy grass pollen increases with 
concurrent increases in ozone and CO2.116 For 
common ragweed, the primary fall aeroaller- 
gen, greenhouse studies simulating increased 
temperature and CO2 concentrations resulted 
in earlier flowering, greater floral numbers, 
increased pollen production, and enhanced 
allergen content of the pollen.117,118,119,120 Regional 
and continental studies indicate that ragweed 
growth and pollen production increase with 
urban-induced increases in temperature and 
CO2. Ragweed pollen season exposure varies 
as a function of latitude and delayed autumnal 
frosts in North America.119,121 In addition to 
pollen, aeroallergens are also generated by 
molds. Plants are often affected, since they can 
serve as hosts for fungi. For example, projected 
end-of-century CO2 concentrations would 
substantially increase the number of allergenic 
spores produced from timothy grass.122 

 
Although warming temperatures and rising CO2 

levels clearly increase aeroallergen prevalence, 
the link between exposure and health impacts 
is less well established. However, hay fever 
prevalence has been associated with exposure 
to annual and seasonal extreme heat events.123 

Furthermore, climate-induced changes in oak 
pollen are projected to increase the number of 

Increases in Airborne Allergen 
Exposure 
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asthma-related emergency department visits 
in the Northeast, Southwest, and Midwest.115 

Key Message 4 
 

 
Many emission sources of greenhouse 
gases also emit air pollutants that harm 
human health. Controlling these common 
emission sources would both mitigate 
climate change and have immediate ben- 
efits for air quality and human health. 
Because methane is both a greenhouse 
gas and an ozone precursor, reductions 
of methane emissions have the poten- 
tial to simultaneously mitigate climate 
change and improve air quality. 

 
The energy sector, which includes energy 
production, conversion, and use, accounts for 
84% of greenhouse gas (GHG) emissions124 as 
well as 80% of emissions of NOx and 96% of 
sulfur dioxide, the major precursor of sulfate 
aerosol.125 In addition to reducing future 
warming, reductions in GHG emissions often 
result in  co-benefits  (other  positive  effects, 
such as improved air  quality)  and  possibly 
some negative effects (disbenefits) (Ch. 29: 
Mitigation). Specifically, mitigating GHGs can 
lower emissions of PM, ozone and PM precur- 
sors, and other hazardous pollutants, reducing 
the risks to human health from air pollu- 
tion.97,126,127,128,129,130 However,  the  magnitude  of 
air quality co-benefits depends on a number of 
factors. Areas with higher levels of air pollution 
have more potential for air quality co-benefits 
compared to areas where  emission  controls 
have been enacted and air pollution levels 
have been reduced.131 Different approaches 
to GHG mitigation yield different reductions, 
or in some cases, increases in ozone and PM 
precursors.132 For example, diesel vehicles emit 
less GHGs than gasoline-powered vehicles, but 

without correctly operating pollution-control 
devices, diesel vehicles emit more particles and 
ozone precursors and thus contribute more to 
air quality human health risks.133 

 
In addition to co-benefits from sources that 
emit multiple pollutants, mitigating individual 
GHGs could yield co-benefits. For example, 
methane is both a GHG and a slowly reactive 
ozone precursor that contributes to global 
background surface ozone concentrations. 
Some monitoring stations in remote parts 
of the western United States have recorded 
rising ozone concentrations, resulting in part 
from increased global methane levels.90 The 
magnitude of the human health benefit of 
lowering ozone levels via methane mitigation 
is substantial and is similar in value to the 
climate change benefits.134,135 Additionally, PM 
influences climate on local to global scales by 
affecting the radiation balance of the Earth,23,136 

so controlling emissions of PM and its precur- 
sors would not only yield direct human health 
benefits via reduced exposure but also avoid or 
minimize local meteorological conditions that 
lead to a buildup of pollutants.137 
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Traceable Accounts 
Process Description 
Due to limited resources and requirements imposed by the Federal Advisory Committee Act, the 
decision was made that this chapter would be developed using an all-federal author team. The 
author team was selected based on expertise in climate change impacts on air quality; several of 
the chapter authors were authors of the “Air Quality Impacts” chapter of the U.S. Global Change 
Research Program’s (USGCRP) Climate and Health Assessment.3 This chapter was developed 
through technical discussions of relevant evidence and expert deliberation by the report authors 
via weekly teleconferences and email exchanges. The authors considered inputs and comments 
submitted by the public; the National Academies of Sciences, Engineering, and Medicine; and 
federal agencies. 

Key Message 1 
 

More than 100 million people in the United States live in communities where air pollution 
exceeds health-based air quality standards. Unless counteracting efforts to improve air 
quality are implemented, climate change will worsen existing air pollution levels (likely, high 
confidence). This worsened air pollution would increase the incidence of adverse respiratory 
and cardiovascular health effects, including premature death (high confidence). Increased air 
pollution would also have other environmental consequences, including reduced visibility and 
damage to agricultural crops and forests (likely, very high confidence). 

 
Description of evidence base 
It is well established that air pollutants pose a serious risk to human health and the environment.5,6 

Short- and long-term exposure to pollutants such as ozone or PM2.5 results in premature deaths,8 

hospital and emergency room visits, aggravated asthma,3,9 and shortness of breath.10 Numerous 
air quality modeling studies have assessed the potential impacts of a changing climate on future 
ozone and particulate matter levels in the United States.4,37,38,70,86 These studies examine simu- 
lations conducted with a broad ensemble of global and regional climate models under various 
potential climate scenarios. For ozone, these model assessments consistently project higher future 
levels commensurate with warmer climates, independent of varying individual model assumptions. 
This model consensus strengthens confidence in the projected signal. Additionally, well-estab- 
lished data analyses have shown a strong positive correlation between temperature and ozone 
at many locations in the United States.87,89 Although competing meteorological effects determine 
local ozone levels, temperature is often the single largest meteorological driver. This present-day 
signal also bolsters confidence in the conclusion that warmer climates will be associated with 
higher ozone. There are also modeling and observational studies that demonstrate that ozone 
precursor emissions from natural75 and human sources77 increase with temperature. In aggregate, 
the consistency in the ozone response to past and projected future climate across a large volume 
of analyses provides high confidence that ozone air pollution will likely be worsened in a warmer 
climate. For particulate matter, the model assessments exhibit greater variability in terms of 
future concentration differences projected to result from meteorological changes in a warmer 

Increasing Risks from Air Pollution 
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climate.3,4,43,70  The reduced certainty in the response of PM2.5  concentrations (particulate matter,   
or PM, less than 2.5 micrometers in diameter) to changing meteorological drivers is the result of 
the multiple pathways toward PM2.5 formation and the variable influence of meteorological factors 
on each of those different pathways.5 Most of these model assessments have not considered the 
impact of changes in PM from changes in wildfires or windblown dust because they are difficult 
to quantify. Studies that have included projections of future wildfire incidences have concluded 
that climate-driven increases in wildfire activity are likely, with wildfires becoming an increasingly 
important source of PM 63,108,109 and degrading visibility.54 Finally, there is ample observational 
evidence that decreasing ozone and particulate precursor emissions would reduce pollut- 
ant levels.28,29 

Major uncertainties 

Model simulations of future air quality indicate that climate warming generally increases 
ground-level ozone across the United States (see Figure 13.2), but results differ spatially and in 
the magnitude of the projected signal.90,138,139,140,141 Because meteorological influences on ozone 
formation can vary to some degree by location (for example, wind direction may be paramount in 
locations affected primarily by ozone transport), a few areas may experience lower ozone levels.4 

Future ozone levels over the United States will depend not only on the severity of the climate 
change impacts on meteorology favorable for ozone accumulation but also on any measures to 
reduce ozone precursor emissions, introducing further uncertainty. Even larger uncertainties  
exist with respect to the climate impacts on PM2.5, where the future concentrations will depend on 
changes in a suite of meteorological factors, which in some cases (for example, precipitation) are 
more difficult to quantify. 

Description of confidence and likelihood 

There is high confidence that rising temperatures will likely increase future ozone levels in many 
parts of the United States in response to climate change. There is greater uncertainty that a 
warmer climate will increase future PM2.5 levels over the United States. Ultimately, the actual 
ozone and PM2.5 changes between the present and the future at any given location will depend 
on the local climate impacts on meteorology and pollutant emission controls in that region. 
There is very high confidence that reducing ozone precursor emissions and PM2.5 precursors and/ 
or direct emissions will likely lead to improved air quality in the future, thus mitigating adverse 
climate effects. 

Key Message 2 
 

Wildfire smoke degrades air quality, increasing the health risks to tens of millions of people 
in the United States. More frequent and severe wildfires due to climate change would further 
diminish air quality, increase incidences of respiratory illness from exposure to wildfire smoke, 
impair visibility, and disrupt outdoor recreational activities (very likely, high confidence). 

Increasing Impacts of Wildfires 
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Wildfire smoke worsens air quality through its direct emissions to the atmosphere as well as 
through chemical reactions of those pollutants with sunlight and other pollutants. Exposure 
to wildfire smoke increases the risk of exacerbating respiratory illnesses in tens of millions of 
people in vulnerable population groups across the United States.62 Several studies have indicated 
that climate change has already led to longer wildfire seasons,79 increased frequency of large 
wildfires,82,83 and increased area of forest burned.99 Additional studies project that climate change 
will cause wildfire frequency and burned area in North America to increase over the 21st centu- 
ry.81,100,101,102,103,104,105,106 Increased emissions from wildfires may offset the benefits of large reductions 
in emissions of PM2.5 precursors.54,109 There is a broad and consistent evidence base leading to a 
high confidence conclusion that the increasing impacts of wildfire are very likely. Increases in 
wildfire smoke events due to climate change would reduce opportunities for outdoor recreational 
activities (Ch. 22: N. Great Plains, KM 3; Ch. 24: Northwest, KM 4). 

Major uncertainties 

Humans affect fire activity in many ways, including increasing ignitions as well as conducting 
controlled burns and fire suppression activities.110,111 The frequency and severity of wildfire 
occurrence in the future will be largely determined by forest management practices and climate 
adaptation measures, which are very uncertain. Housing development practices and changes in 
the urban–forest interface are also important factors for future wildfire occurrence and for the 
extent to which associated smoke emissions impair air quality and result in adverse health effects. 
The composition of the pollutants contained in wildfire smoke and their chemical reactions are 
highly dependent on a variety of environmental factors, so projecting and quantifying the effects 
of wildfire smoke on specific pollutants can be particularly challenging. Exposure to wildfire 
smoke may also increase the risk of cardiovascular illness, but additional data are required to 
quantify this risk.62 More accurate forecasting of wildfire smoke events may mitigate health 
impacts and reduced opportunities for outdoor recreational activities through changes in timing 
of those activities. 

Description of confidence and likelihood 

There is high confidence that rising temperatures and earlier spring snowmelt will very likely result 
in lengthening the wildfire season in portions of the United States, leading to an increased fre- 
quency of wildfires and associated smoke. There is very high confidence that increasing exposure   
to wildfire smoke, which contains particulate matter, will increase adverse health impacts. It is 
likely that smoke from wildfires will reduce visibility and disrupt outdoor recreational activities. 

Key Message 3 
 

The frequency and severity of allergic illnesses, including asthma and hay fever, are likely to 
increase as a result of a changing climate. Earlier spring arrival, warmer temperatures, changes in 
precipitation, and higher carbon dioxide concentrations can increase exposure to airborne 
pollen allergens. (Likely, High Confidence) 

Increases in Airborne Allergen Exposure 
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Description of evidence base 

 

 

Considerable evidence supports the conclusion that climate change and rising levels of CO2 affect      
key aspects of aeroallergen biology, including the production, temporal distribution, and potential 
allergenicity of aeroallergens.142,143,144,145,146 This evidence includes historical trends indicating that 
climate change has altered seasonal exposure times for allergenic pollen.113 These changes in expo-   
sure times are associated with rising CO2 levels,  higher  temperatures,  changes  in  precipitation 
(which can extend the start or duration of pollen release times), and the amount of pollen released,    
the allergenicity of the pollen, and the spatial distribution of that pollen.117,118,119,147 

Specific changes in weather patterns or extremes are also likely to contribute to the exacer- 
bation of allergy symptoms. For example, thunderstorms can induce spikes in aeroallergen 
concentrations and increase the incidence and severity of asthma and other allergic disease.148,149 

However, the specific mechanism for intensification of weather and allergic disease is not 
entirely understood. 

Overall, climate change and rising CO2 levels are likely to increase exposure to aeroallergens 
and contribute to the severity and prevalence of allergic disease, including asthma.115 There is 
consistent and compelling evidence that exposure to aeroallergens poses a significant health  
risk in regard to the occurrence of asthma, hay fever, sinusitis, conjunctivitis, hives, and anaphy- 
laxis.150,151,152,153 Finally, there is evidence that synergies between aeroallergens and air pollution, 
especially particulate matter, may increase health risks for individuals who are simultaneously 
exposed.154,155,156 

Major uncertainties 

While specific climate- and/or CO2-induced links to aeroallergen biology are evident, allergic 
diseases develop in response to complex and multiple interactions, including genetic and non- 
genetic factors, a developing immune system, environmental exposures (such as ambient air 
pollution or weather conditions), and socioeconomic and demographic factors. Overall, the role 
of these factors in eliciting a health response has not been entirely elucidated. However, recent 
evidence suggests that climate change and aeroallergens are having a discernible impact on pub- 
lic health.123,157 

There are a number of areas where additional information is needed, including regional variation 
in climate and aeroallergen production; specific links between aeroallergens and related diseases, 
particularly asthma; the need for standardized approaches to determine exposure times and 
pollen concentration; and uncertainty regarding the role of CO2 on allergenicity. 

Description of confidence and likelihood 

The scientific literature shows that there is high confidence that changes in climate, including 
rising temperatures and altered precipitation patterns as well as rising levels of atmospheric 
CO2, will increase the concentration, allergenicity, season length, and spatial distribution of a 
number of aeroallergens. These changes in aeroallergen exposure are, in turn, likely to impact 
allergic disease. 



519 U.S. Global Change Research Program Fourth National Climate Assessment 

13 | Air Quality - Traceable Accounts 
 

 

 

Key Message 4 
 

Many emission sources of greenhouse gases also emit air pollutants that harm human health. 
Controlling these common emission sources would both mitigate climate change and have 
immediate benefits for air quality and human health. Because methane is both a greenhouse gas 
and an ozone precursor, reductions of methane emissions have the potential to simultaneously 
mitigate climate change and improve air quality. (Very Likely, Very High Confidence) 

 
Description of evidence base 
Decades of experience in air quality management have resulted in a detailed accounting of the 
largest emission sources of greenhouse gases (GHGs) and precursors of ozone and PM. The cost 
and effectiveness of emission control technologies for the largest emissions sources are well 
understood. By combining these emission and control technology data with energy system mod- 
eling tools, the potential to achieve benefits to air quality while mitigating GHG emissions under a 
range of scenarios has been quantified in numerous studies. 

Major uncertainties 

A wide range of values have been reported for the magnitude of air quality co-benefits. Much of 
this variability can be attributed to differences in the mix of co-benefits included in the analysis 
and the time period under consideration. The largest sources of uncertainty are the cost paths of 
different energy technologies over time and the extent to which policy choices impact the evolu- 
tion of these costs and the availability of different energy technologies. 

Description of confidence and likelihood 

There is very high confidence that emissions of ozone and PM precursors could be reduced by 
reducing combustion sources of CO2. Reducing emissions of ozone and PM precursors would 
be very likely to reduce ozone and PM pollution, which would very likely result in fewer adverse 
health effects from air pollution. There is very high confidence that controlling methane emissions 
would also reduce ozone formation rates, which would also very likely lead to lower ozone levels. 

Co-Benefits of Greenhouse Gas Mitigation 
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Key Message 1 Algal bloom in Lake Erie in the summer of 2015 
 

 
The health and well-being of Americans are already affected by climate change, with 
the adverse health consequences projected to worsen with additional climate change. 
Climate change affects human health by altering exposures to heat waves, floods, 
droughts, and other extreme events; vector-, food- and waterborne infectious diseases; 
changes in the quality and safety of air, food, and water; and stresses to mental health 
and well-being. 

Key Message 2 
 

People and communities are differentially exposed to hazards and disproportionately 
affected by climate-related health risks. Populations experiencing greater health risks 
include children, older adults, low-income communities, and some communities of color. 

 
Key Message 3 

 

Proactive adaptation policies and programs reduce the risks and impacts from 
climate-sensitive health outcomes and from disruptions in healthcare services. 
Additional benefits to health arise from explicitly accounting for climate change risks in 
infrastructure planning and urban design. 

Climate Change Affects the Health of All Americans 

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 

14 Human Health 

Exposure and Resilience Vary Across Populations and Communities 

Adaptation Reduces Risks and Improves Health 
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Key Message 4 
 

Reducing greenhouse gas emissions would benefit the health of Americans in the near 
and long term. By the end of this century, thousands of American lives could be saved 
and hundreds of billions of dollars in health-related economic benefits gained each year 
under a pathway of lower greenhouse gas emissions. 

 

Executive Summary 

Climate-related changes in weather patterns 
and associated changes in air, water, food, and 
the environment are affecting the health and 
well-being of the American people, causing 
injuries, illnesses, and death. Increasing 
temperatures, increases in the frequency 
and intensity of heat waves (since the 1960s), 
changes in precipitation patterns (especially 
increases in heavy precipitation), and sea level 
rise can affect our health through multiple 
pathways. Changes in weather and climate 
can degrade air and water quality; affect the 
geographic range, seasonality, and intensity 
of transmission of infectious diseases through 
food, water, and disease-carrying vectors (such 
as mosquitoes and ticks); and increase stresses 
that affect mental health and well-being. 

 
Changing weather patterns also interact with 
demographic and socioeconomic factors, as 
well as underlying health trends, to influence 
the extent of the consequences of climate 
change for individuals and communities. 
While all Americans are at risk of experiencing 
adverse climate-related health outcomes, some 
populations are disproportionately vulnerable. 

 
The risks of climate change for human health 
are expected to increase in the future, with the 
extent of the resulting impacts dependent on 
the effectiveness of adaptation efforts and on 
the magnitude and pattern of future climate 
change. Individuals, communities, public health 

 

 
departments, health-related organizations 
and facilities, and others are taking action to 
reduce health vulnerability to current climate 
change and to increase resilience to the risks 
projected in coming decades. 

 
The health benefits of reducing greenhouse gas 
emissions could result in economic benefits 
of hundreds of billions of dollars each year by 
the end of the century. Annual health impacts 
and health-related costs are projected to be 
approximately 50% lower under a lower sce- 
nario (RCP4.5) compared to a higher scenario 
(RCP8.5). These estimates would be even 
larger if they included the benefits of health 
outcomes that are difficult to quantify, such as 
avoided mental health impacts or long-term 
physical health impacts. 

Reducing Greenhouse Gas Emissions Results in Health and Economic Benefits 
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Vulnerable Populations 

Examples of populations at higher risk of exposure to adverse climate-related health threats are shown along with adaptation 
measures that can help address disproportionate impacts. When considering the full range of threats from climate change   
as well as other environmental exposures, these groups are among the most exposed, most sensitive, and have the least 
individual and community resources to prepare for and respond to health threats. White text indicates the risks faced by those 
communities, while dark text indicates actions that can be taken to reduce those risks. From Figure 14.2 (Source: EPA). 
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A comprehensive assessment of the impacts of 
climate change on human health in the United 
States concluded that climate change exacer- 
bates existing climate-sensitive health threats 
and creates new challenges, exposing more 
people in more places to hazardous weather 
and climate conditions.1 This chapter builds 
on that assessment and considers the extent 
to which modifying current, or implementing 
new, health system responses could prepare 
for and manage these risks. Please see Chapter 
13: Air Quality for a discussion of the health 
impacts associated with air quality, including 
ozone, wildfires, and aeroallergens. 

Key Message 1 
 

The health and well-being of Americans 
are already affected by climate change, 
with the adverse health consequences 
projected to worsen with additional climate 
change. Climate change affects human 
health by altering exposures to heat 
waves, floods, droughts, and other extreme 
events; vector-, food- and waterborne 
infectious diseases; changes in the quality 
and safety of air, food, and water; and 
stresses to mental health and well-being. 

 

Climate Change and Health 
 

Figure 14.1: This conceptual diagram illustrates the exposure pathways by which climate change could affect human health. Exposure 
pathways exist within the context of other factors that positively or negatively influence health outcomes (gray side boxes). Key factors 
that influence vulnerability for individuals are shown in the right box and include social determinants of health and behavioral choices. 
Key factors that influence vulnerability at larger scales, such as natural and built environments, governance and management, and 
institutions, are shown in the left box. The extent to which climate change could alter the burden of disease in any location at any point 
in time will depend not just on the magnitude of local climate change but also on individual and population vulnerability, exposure to 
changing weather patterns, and capacity to manage risks, which may also be affected by climate change. Source: Balbus et al. 2016.2 

Climate Change Affects the Health 
of All Americans 
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The first paragraph in each of the following 
sections summarizes findings of the 2016 
U.S. Climate and Health Assessment,1 and the 
remainder of each section assesses findings 
from newly published research. 

 
Extreme Events 
More frequent and/or more intense extreme 
events, including drought, wildfires, heavy 
rainfall, floods, storms, and storm surge, are 
expected to adversely affect population health.3 

These events can exacerbate underlying 
medical conditions, increase stress, and lead 
to adverse mental health effects.4 Further, 
extreme weather and climate events can 
disrupt critical public health, healthcare, and 
related systems in ways that can adversely 
affect health long after the event.3 

 
Recent research improves identification of 
vulnerable population groups during and after 
an extreme event,5 including their geographic 
location and needs (e.g. Bathi and Das 2016, 
Gotanda et al. 2015, Greenstein et al. 20166,7,8). 

For example, the 2017 hurricane season 
highlighted the unique vulnerabilities of popu- 
lations residing in Puerto Rico, the U.S. Virgin 
Islands, and other Caribbean islands (Ch. 20: 
U.S. Caribbean, Box 20.1).9 

 
Temperature Extremes 
High temperatures in the summer are con- 
clusively linked to an increased risk of a range 
of illnesses and death, particularly among 
older adults, pregnant women, and children.18 

People living in urban areas may experience 
higher ambient temperatures because of the 
additional heat associated with urban heat 
islands, exacerbating heat-related risks.19 With 
continued warming, increases in heat-related 
deaths are projected to outweigh reductions in 
cold-related deaths in most regions.18 

 
Analyses of hospital admissions, emergency 
room visits, or emergency medical services 
calls show that hot days are associated with an 
increase in heat-related illnesses,20,21 including 
cardiovascular and respiratory complications,22 

 

Box 14.1: Health Impacts of Drought and Periods of Unusually Dry Months 

In late 2015, California was in the fourth year of its most severe drought since becoming a state in 1850, with 63 
emergency proclamations declared in cities, counties, tribal governments, and special districts.10,11 Households 
in two drought-stricken counties (Tulare and Mariposa) reported a range of drought-related health impacts, 
including increased dust leading to allergies, asthma, and other respiratory issues and acute stress and dimin- 
ished peace of mind.10 These health effects were not evenly distributed, with more negative physical and mental 
health impacts reported when drought negatively affected household property and finances. 

 
Drier conditions can increase reproduction of a fungus found in soils, potentially leading to the disease coc- 
cidioidomycosis, or Valley fever.3,12 Coccidioidomycosis can cause persistent flu-like symptoms, with over 40% 
of cases hospitalized and 75% of patients unable to perform their normal daily activities for weeks, months, or 
longer. Higher numbers of cases in Arizona and California are associated with periods of drier conditions as 
measured by lower soil moisture in the previous winter and spring.13

 

 
Overall, the impacts of drought on hospital admissions and deaths depend on drought severity and the history 
of droughts in a region.14 Complex relationships between drought and its associated economic consequences, 
particularly the interactions among factors that affect vulnerability, protective factors, and coping mechanisms, 
can increase mood disorders, domestic violence, and suicide.15,16,17

 



14 | Human Health 

536 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 

renal failure,23 electrolyte imbalance, kidney 
stones,24 negative impacts on fetal health,25 

and preterm birth.26 Risks vary across regions 
(Ch. 18: Northeast, Box 18.3).27 Health risks 
may be higher earlier in the summer season 
when populations are less accustomed to 
experiencing elevated temperatures, and 
different outcomes are observed at different 
levels of high temperature.28,29 See Chapter 13: 
Air Quality for a discussion of the associations 
between temperature, air quality, and adverse 
health outcomes. 

 
Vector-Borne Diseases 
Climate change is expected to alter the 
geographic range, seasonal distribution, and 
abundance of disease vectors, exposing more 
people in North America to ticks that carry 
Lyme disease or other bacterial and viral 
agents, and to mosquitoes that transmit West 
Nile, chikungunya, dengue, and Zika virus- 
es.30,31,32 Changing weather patterns interact 
with other factors, including how pathogens 
adapt and change, changing ecosystems and 
land use, demographics, human behavior, and 
the status of public health infrastructure and 
management.33,34 

 
El Niño events and other episodes of variable 
weather patterns may indicate the extent to 
which the risk of infectious disease transmis- 
sion could increase with additional climate 
change.33,35,36 

 
Increased temperatures and more frequent 
and intense extreme precipitation events can 
create conditions that favor the movement of 
vector-borne diseases into new geographic 
regions (e.g., Belova et al. 2017, Monaghan 
et al. 2016, Ogden and Lindsay 201631,37,38). At 
the same time, very high temperatures may 
reduce transmission risk for some diseases.39,40 

Economic development also may substantially 
reduce transmission risk by reducing contacts 
with vector populations.41 In the absence of 

adaptation, exposure to the mosquito Aedes 
aegypti, which can transmit dengue, Zika, chi- 
kungunya, and yellow fever viruses, is projected 
to increase by the end of the century due to 
climatic, demographic, and socioeconomic 
changes, with some of the largest increases 
projected to occur in North America.31,32 Sim- 
ilarly, changes in temperature may influence 
the distribution and abundance of tick species 
that transmit common pathogens.38,42,43 

 

 
 

Water-Related Illnesses and Death 
Increasing water temperatures associated 
with climate change are projected to alter the 
seasonality of growth and the geographic range 
of harmful algae and coastal pathogens, and 
runoff from more frequent and intense rainfall 
is projected to increasingly compromise rec- 
reational waters and sources of drinking water 
through increased introductions of pathogens 
and toxic algal blooms.49,50,51,52,53,54 

 
Projected increases in extreme precipitation 
and flooding, combined with inadequate water 
and sewer infrastructure, can contribute 
to viral and bacterial contamination from 

Box 14.2: Transboundary Transmission of 
Infectious Diseases 

Outbreaks occurring in other countries can impact 
U.S. populations and military personnel living abroad 
and can sometimes affect the United States. For ex- 
ample, the 2015–2016 El Niño, one of the strongest 
on record,44 may have contributed to the 2014–2016 
Zika epidemic in the Americas.31,45,46,47,48 Warmer 
conditions may have facilitated expansion of the 
geographic range of mosquito populations and 
increased their capacity to transmit Zika virus.40 Zika 
virus can cause a wide range of symptoms, including 
fever, rash, and headaches, as well as birth defects. 
The outbreak began in South America and spread to 
areas with mosquitoes capable of transmitting the 
virus, including Puerto Rico, the U.S. Virgin Islands, 

Florida, and Texas. 
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combined sewage overflows and a lack of 
access to potable drinking water, increasing 
exposure to pathogens that lead to gastro- 
intestinal illness.55,56,57,58,59 The relationship 
between precipitation and temperature-driven 
transmission of waterborne diseases is 
complex and site-specific, with, for example, 
some areas finding increased numbers  of 
cases associated with excessive rainfall and 
others finding stronger associations with 
drought.60,61,62,63,64,65 Heavy rainfall, flooding, and 
high temperatures have been linked to increas- 
es in diarrheal disease62,64,66,67 and can increase 
other bacterial and parasitic infections such 
as leptospirosis and cryptosporidiosis.65,68 

Increases in air temperatures and heat waves 
are expected to increase temperature-sensitive 
marine pathogens such as Vibrio.60,69,70,71 

 
Food Safety and Nutrition 
Climate change, including rising temperatures 
and changes in weather extremes, is projected 
to adversely affect food security by altering 
exposures to certain pathogens and toxins (for 
example, Salmonella, Campylobacter, Vibrio 
parahaemolyticus in raw oysters, and myco- 
toxigenic fungi).72 

 
Climate change, including changes in some 
extreme weather and climate events, can 
adversely affect global and U.S. food security 
by, for example, threatening food safety,73,74,75 

disrupting food availability, decreasing access to 
food, and increasing food prices.76,77,78,79,80,81,82 Food 
quality also is expected to be affected by rising 
CO2 concentrations that decrease dietary iron,83 

zinc,84 protein,85 and other macro- and micronu- 
trients in crops86,87,88 and seafood.89,90 Projected 
changes in carbon dioxide concentrations and 
climate change could diminish expected gains in 
global nutrition; however, any impact on human 
health will depend on the many other drivers 
of global food security and factors such as food 
chain management, human behavior, and food 
safety governance.91,92,93,94 

Mental Health 
Mental health consequences, ranging from 
minimal stress and distress symptoms to 
clinical disorders, such as anxiety, depression, 
post-traumatic stress, and suicidality, can result 
from exposures to short-lived or prolonged 
climate- or weather-related events and their 
health consequences.4 These mental health 
impacts can interact with other health, social, 
and environmental stressors to diminish an 
individual’s well-being. Some groups are more 
vulnerable than others, including the elderly, 
pregnant women, people with preexisting mental 
illness, the economically disadvantaged, tribal and 
Indigenous communities, and first responders.4 

 
Individuals whose households experienced a 
flood or risk of flood report higher levels of 
depression and anxiety, and these impacts can 
persist several years after the event.95,96,97,98 Disas- 
ters present a heavy burden on the mental health 
of children when there is forced displacement 
from their home or a loss of family and com- 
munity stability.99 Increased use of alcohol and 
tobacco are common following disasters as well 
as droughts.15,16,100,101 Higher temperatures can lead 
to an increase in aggressive behaviors, including 
homicide.102,103 Social cohesion, good coping skills, 
and preemptive disaster planning are examples of 
adaptive measures that can help reduce the risk 
of prolonged psychological impacts.102,104,105 

Key Message 2 
 

People and communities are differen- 
tially exposed to hazards and dispro- 
portionately affected by climate-related 
health risks. Populations experiencing 
greater health risks include children, 
older adults, low-income communities, 
and some communities of color. 

Exposure and Resilience Vary Across 
Populations and Communities 
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The health impacts of climate change are not 
felt equally, and some populations are at higher 
risk than others.106 Low-income communities 
and some communities of color are often 
already overburdened with poor environmental 
conditions and are disproportionately affected 
by, and less resilient to, the health impacts of 
climate change.106,107,108,109,110 The health risks 
of climate change are expected to compound 
existing health issues in Native American and 
Alaska Native communities, in part due to the 
loss of traditional foods and practices, the 
mental stress from permanent community 
displacement, increased injuries from lack of 
permafrost, storm damage and flooding, smoke 
inhalation, damage to water and sanitation 
systems, decreased food security, and new 

infectious diseases (Ch. 15: Tribes; Ch. 26: 
Alaska).111,112 

 
Across all climate risks, children, older adults, 
low-income communities, some communities 
of color, and those experiencing discrimination 
are disproportionately affected by extreme 
weather and climate events, partially because 
they are often excluded in planning process- 
es.113 Other populations might experience 
increased climate risks due to a combination 
of exposure and sensitivity, such as outdoor 
workers, communities disproportionately 
burdened by poor environmental quality, and 
some communities in the rural Southeastern 
United States (Ch. 19: Southeast).114,115,116 

 

Vulnerable Populations 
 

Figure 14.2: Examples of populations at higher risk of exposure to adverse climate-related health threats are shown along with 
adaptation measures that can help address disproportionate impacts. When considering the full range of threats from climate 
change as well as other environmental exposures, these groups are among the most exposed, most sensitive, and have the 
least individual and community resources to prepare for and respond to health threats. White text indicates the risks faced by 
those communities, while dark text indicates actions that can be taken to reduce those risks. Source: EPA. 
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Additional populations with increased health 
and social vulnerability typically have less 
access to information, resources, institutions, 
and other factors to prepare for and avoid  
the health risks of climate change. Some of 
these communities include poor people in 
high-income regions, minority groups, women, 
pregnant women, those experiencing discrim- 
ination, children under five, persons with phys- 
ical and mental illness, persons with physical 
and cognitive disabilities, the homeless, 
those living alone, Indigenous people, people 
displaced because of weather and climate, the 
socially isolated, poorly planned communities, 
the disenfranchised, those with less access to 
healthcare, the uninsured and underinsured, 
those living in inadequate housing, and those 
with limited financial resources to rebound 
from disasters.107,109,117,118 Figure 14.2 depicts 
some of the populations vulnerable to weather, 
climate, and climate change. 

 
Building Resilient Communities 
Projections of climate change-related changes 
in the incidence of adverse health outcomes, 
associated treatment costs, and health 
disparities can promote understanding of 
the ethical and human rights dimensions of 
climate change, including the disproportionate 
share of climate-related risk experienced by 
socially marginalized and poor populations. 
Such projections can also highlight options 
to increase population resilience.119,120,121 The 
ability of a community to anticipate, plan for, 
and reduce impacts is enhanced when these 
efforts build on other environmental and 
social programs directed at sustainably and 
equitably addressing human needs.122 Resilience 
is enhanced by community-driven planning 
processes where residents of vulnerable and 
impacted communities define for themselves 
the complex climate challenges they face and 
the climate solutions most relevant to their 
unique vulnerabilities.110,123,124,125 A flood-related 
disaster in central Appalachia in spring 2013 

highlighted how community-based coping 
strategies related to faith and spirituality, 
cultural values and heritage, and social support 
can enhance resilience post-disaster.126 

 
Communities in Louisiana and New Jersey, 
for example, are already experiencing a host 
of negative environmental exposures coupled 
with extreme coastal and inland flooding. Lan- 
guage-appropriate educational campaigns can 
highlight the effectiveness of ecological pro- 
tective measures (such as restoring marshes 
and dunes to prevent or reduce surge flooding) 
for increasing resilience. Resilience also can be 
built by creating institutional readiness, rec- 
ognizing the importance of resident mobility 
(geographic movements at various scales such 
as commuting, migration, and evacuation), 
acknowledging the importance and support 
of social networks (such as family, church, and 
community), and facilitating adaptation to 
changing conditions.127,128 

Key Message 3 
 

Proactive adaptation policies and pro- 
grams reduce the risks and impacts 
from climate-sensitive health outcomes 
and from disruptions in healthcare ser- 
vices. Additional benefits to health arise 
from explicitly accounting for climate 
change risks in infrastructure planning 
and urban design. 

 
Adapting to the Health Risks of 
Climate Change 
Individuals, communities, public health depart- 
ments, healthcare facilities, organizations, and 
others are taking action to reduce health and 
social vulnerabilities to current climate change 
and to increase resilience to the risks projected 
in coming decades.129 

Adaptation Reduces Risks and 
Improves Health 
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Examples of state-level adaptation actions 
include conducting vulnerability and adapta- 
tion assessments, developing comprehensive 
response plans (for example, extreme heat),110,130 

climate-proofing  healthcare  infrastructure, 
and implementing integrated surveillance of 
climate-sensitive infectious disease (for example, 
Lyme disease). Incorporating short-term to 
seasonal forecasts into public health programs 
and activities can protect population health today 
and under a warming climate.129 Over decades or 
longer, emergency preparedness and disaster risk 
reduction planning can benefit from incorporat- 
ing climate projections to ensure  communities 
are prepared for changing weather patterns.131 

 
Local efforts include altering urban design (for 
example, by using cool roofs, tree shades, and 
green walkways) and improving water manage- 
ment (for example, via desalination plants or 
watershed protection). These can provide health 
and social justice benefits, elicit neighborhood 
participation, and increase resilience for specific 
populations, such as outdoor workers.107,132,133 

 
Adaptation options at multiple scales are 
needed to prepare for and manage health risks 
in a changing climate. For example, options to 
manage heat-related mortality include individual 
acclimatization (the process of adjusting to higher 
temperatures) as well as protective measures, 
such as heat wave early warnings,134 air condi- 
tioning at home, cooling shelters,135 green  space 
in the neighborhood,136,137 and resilient power 

grids to avoid power outages during extreme 
weather events.138 

 
Early warning and response systems can protect 
population health now and provide  a basis for 
more effective adaptation to future climate.139,140,141 

Improvements in forecasting weather and climate 
conditions and in environmental observation 
systems, in combination with social factors, can 
provide information on when and where  chang- 
ing weather patterns could result in increasing 
numbers of cases  of,  for  example,  heat  stress  or 
an infectious disease.31,45,142,143,144 Such early warning 
systems can provide more time to pre-position 
resources and implement  control  programs, 
thereby preventing adverse health outcomes. 
For example, to help communities prepare for 
extreme heat, federal agencies are partnering 
with local entities to bring together stakeholders 
across the fields of public health, meteorology, 
emergency management, and policy to develop 
useful information systems that can prevent 
heat-related illnesses and deaths.145 Adaptation 
efforts outside the health sector can have health 
benefits when, for example, infrastructure 
planning is designed to cool ambient tempera- 
tures and attenuate storm water runoff146,147 and 
when interagency planning initiatives involve 
transportation, ecosystem management, urban 
planning, and water management.148 Adaptation 
measures developed and deployed in other 
sectors can harm population health if they are 
developed and implemented without taking 
health into consideration. 

 

 

Box 14.3: Healthcare 

The U.S. healthcare sector is a significant contributor to climate change, accounting for about 10% of total U.S. 
greenhouse gas emissions.149 Healthcare facilities are also a critical component of communities’ emergen- 
cy response system and resilience to climate change. Measures within healthcare institutions that decrease 
greenhouse gas emissions could significantly reduce U.S. emissions, reduce operating costs, and contribute to 
greater resilience of healthcare infrastructure. For example, U.S. hospitals could save roughly $15 billion over 10 
years by adopting basic energy efficiency and waste-reduction measures (cumulative; no discount rate report- 
ed).150 Combined heat and power systems can enhance hospitals’ resilience in the face of interruptions to the 

power grid while reducing costs and emissions in normal operations.151
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Box 14.3: Healthcare, continued 

Hospitals at Risk from Storm Surge by Hurricanes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.3: These maps show the locations of hospitals in (top) Charleston County, South Carolina, and (bottom) Miami- 
Dade County, Florida, with respect to storm surge inundation for different categories of hurricanes making landfall at high tide. 
Colors indicate the lowest category hurricane affecting a given location, with darker blue shading indicating areas with the 
greatest susceptibility to flooding and darker red dots indicating the most vulnerable hospitals. Four of the 38 (11%) hospitals 
in Miami-Dade County face possible storm surge inundation following a Category 2 hurricane; this could increase to 26 (68%) 
following a Category 5 hurricane. Charleston hospitals are more exposed to inundation risks. Seven of the 11 (64%) hospitals 
in Charleston County face possible storm surge inundation following a Category 2; this could increase to 9 (82%) following    
a Category 4. The impacts of a storm surge will depend on the effectiveness of resilience measures, such as flood walls, 
deployed by the facilities. Data from National Hurricane Center 2018152 and the Department of Homeland Security 2018.153 
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Key Message 4 
 

 
Reducing greenhouse gas emissions 
would benefit the health of Americans 
in the near and long term. By the end 
of this century, thousands of American 
lives could be saved and hundreds 
of billions of dollars in health-related 
economic benefits gained each year 
under a pathway of lower greenhouse 
gas emissions. 

 
Reducing greenhouse gas emissions (Ch. 29: 
Mitigation) would benefit the health of Amer- 
icans in the near and long term.1,155 Adverse 
health effects attributed to climate change 
have many potential economic and social 
costs, including medical expenses, caregiving 
services, or lost productivity, as well as costs 
that are harder to quantify, such as those 
associated with pain, suffering, inconvenience, 
or reduced enjoyment of leisure activities.156 

These health burdens are typically borne by 
the affected individual as well as family, friends, 
employers, communities, and insurance or 
assistance programs. 

 
Under a lower scenario (RCP4.5) by the end 
of this century, thousands of lives could be 

 
saved and hundreds of billions of dollars of 
health-related costs could be avoided com- 
pared to a higher scenario (RCP8.5).157 Annual 
health impacts (including from temperature 
extremes, poor air quality, and vector-borne 
diseases) and health-related costs are pro- 
jected to be approximately 50% less under a 
lower scenario (RCP4.5) than under a higher 
scenario (RCP8.5) (methods are summarized in 
Traceable Accounts) (see also Ch. 13: Air Qual- 
ity).37,157,158,159,160,161,162,163,164,165,166,167 The projected 
lives saved and economic benefits are likely to 
underestimate the true value because they do 
not include benefits of impacts that are diffi- 
cult to quantify, such as mental health or long- 
term health impacts (see the Scenario Products 
Section in App. 3 for more on scenarios). 

 
Temperature-Related Mortality 
The projected increase in the annual number of 
heat wave days is substantially reduced under 
a lower scenario (RCP4.5) compared to a higher 
scenario (RCP8.5), reducing heat wave intensi- 
ties161,168 and resulting in fewer high-mortality heat 
waves162,168 without considering adaptation (Figure 
14.4). In 49 large cities in the United States, chang- 
es in extreme hot and extreme cold temperatures 
are projected to result in more than 9,000 addi- 
tional premature deaths per year under a higher 
scenario by the end of the century, although 
this number would be lower if considering 
acclimatization or other adaptations (for example, 
increased use of air conditioning). Under a lower 

Reducing Greenhouse Gas Emissions 
Results in Health and Economic 
Benefits 

Box 14.3: Healthcare, continued 

In addition, healthcare facilities may benefit from modifications to prepare for potential consequences of 
climate change. For example, Nicklaus Children’s Hospital, formerly Miami Children’s, invested $11.3 million in 
a range of technology retrofits, including a hurricane-resistant shell, to withstand Category 4 hurricanes for unin- 
terrupted, specialized medical care services.151 The hospital was able to operate uninterrupted during Hurricane 
Irma and provided shelter for spouses and families of storm-duty staff and some storm evacuees. Assessment 
of climate change related risks to healthcare facilities and services can inform healthcare sector disaster pre- 
paredness efforts. For example, analyses in Los Angeles County suggest that preparing for increased wildfire 

risk should be a priority for area hospitals.154
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Projected Change in Annual Extreme Temperature Mortality 
 

Figure 14.4: The maps show estimated changes in annual net mortality due to extremely hot and cold days in 49 U.S. cities for 
2080–2099 as compared to 1989–2000. Across these cities, the change in mortality is projected to be an additional 9,300 deaths 
each year under a higher scenario (RCP8.5) and 3,900 deaths each year under a lower scenario (RCP4.5). Assuming a future 
in which the human health response to extreme temperatures in all 49 cities was equal to that of Dallas today (for example, as 
a result of availability of air conditioning or physiological adaptation) results in an approximate 50% reduction in these mortality 
estimates. For example, in Atlanta, an additional 349 people are projected to die from extreme temperatures each year by the 
end of century under RCP8.5. Assuming residents of Atlanta in 2090 have the adaptive capacity of Dallas residents today, this 
number is reduced to 128 additional deaths per year. Cities without circles should not be interpreted as having no extreme 
temperature impact. Data not available for the U.S. Caribbean, Alaska, or Hawai‘i & U.S.-Affiliated Pacific Islands regions. 
Source: adapted from EPA 2017.157 

scenario, more than half of these deaths could be 
avoided each year. Annual damages associated 
with the additional extreme temperature-related 
deaths in 2090 were projected to be $140 billion 
(in 2015 dollars) under a higher scenario (RCP8.5) 
and $60 billion under a lower scenario (RCP4.5).157 

 
Labor Productivity 
Under a higher scenario (RCP8.5), almost 
two billion labor hours are projected to be 
lost annually by 2090 from the impacts of 
temperature extremes, costing an estimated 
$160 billion in lost wages (in 2015 dollars) (Ch.   
1: Overview, Figure 1.21).157,167,169 States within the 
Southeast and Southern  Great  Plains  regions 
are projected to  experience  higher  impacts, 
with labor productivity in jobs with greater 
exposure to heat projected to  decline  by  3% 
(Ch. 19: Southeast).164,170 Some counties in Texas 
and Florida are projected to experience more 
than 6% losses in annual  labor  hours  by  the 
end of the century.157,160 

 
Infectious Diseases 
Annual national cases of West Nile neuroinva- 
sive disease are projected to more than double 

by 2050 due to increasing temperatures,  
among other factors,30,171 resulting in approx- 
imately $1 billion per year in hospitalization 
costs and premature deaths under a higher 
scenario (RCP8.5; in 2015 dollars).37 In this same 
scenario, an additional 3,300 cases and $3.3 
billion in costs (in 2015 dollars) are projected 
each year by the end of the century. Approxi- 
mately half of these cases and costs would be 
avoided under a lower scenario (RCP4.5).37,157 

 
Water Quality 
By the end of the century, warming under 
a higher scenario (RCP8.5) is projected to 
increase the length of time recreational waters 
have concentrations of harmful algal blooms 
(cyanobacteria) above the recommended public 
health threshold by one month annually; these 
bacteria can produce a range of toxins that 
can cause gastrointestinal illness, neurological 
disorders, and other illnesses.157,165 The increase 
in the number of days where recreational 
waters pose this health risk is almost halved 
under a lower scenario (RCP4.5). 
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Traceable Accounts 
Process Description 
The chapter evaluated the scientific evidence of the health risks of climate change, focusing 
primarily on the literature published since the cutoff date (approximately fall 2015) of the U.S. 
Climate and Health Assessment.1 A comprehensive literature search was performed by federal 
contractors in December 2016 for studies published since January 1, 2014, using PubMed, Scopus, 
and Web of Science. An Excel file containing 2,477 peer-reviewed studies was provided to the 
author team for it to consider in this assessment. In addition to the literature review, the authors 
considered recommended studies submitted in comments by the public, the National Academies 
of Sciences, Engineering, and Medicine, and federal agencies. The focus of the literature was on 
health risks in the United States, with limited citations from other countries providing insights 
into risks Americans are or will likely face with climate change. A full description of the search 
strategy can be found at https://www.niehs.nih.gov/CCHH_Search_Strategy_NCA4_508.pdf. 
The chapter authors were chosen based on their expertise in the health risks of climate change. 
Teleconferences were held with interested researchers and practitioners in climate change and 
health and with authors in other chapters of this Fourth National Climate Assessment (NCA4). 

The U.S. Climate and Health Assessment1 did not consider adaptation or mitigation, including 
economic costs and benefits, so the literature cited includes research from earlier years where 
additional information was relevant to this assessment. 

For NCA4, Air Quality was added as a report chapter. Therefore, while Key Messages in this Health 
chapter include consideration of threats to human health from worsened air quality, the assess- 
ment of these risks and impacts are covered in Chapter 13: Air Quality. Similarly, co-benefits of 
reducing greenhouse gas emissions are covered in the Air Quality chapter. 

Key Message 1 
 

The health and well-being of Americans are already affected by climate change (very high 
confidence), with the adverse health consequences projected to worsen with additional climate 
change (likely, high confidence). Climate change affects human health by altering exposures to 
heat waves, floods, droughts, and other extreme events; vector-, food- and waterborne infectious 
diseases; changes in the quality and safety of air, food, and water; and stresses to mental health 
and well-being. 

 
Description of evidence base 
Multiple lines of evidence demonstrate statistically significant associations between temperature, 
precipitation, and other variables and adverse climate-sensitive health outcomes, indicating 
sensitivity to weather patterns.1 These lines of evidence also demonstrate that vulnerability varies 
across sub-populations and geographic areas; populations with higher vulnerability include poor 
people in high-income regions, minority groups, women, children, the disabled, those living alone, 
those with poor health status, Indigenous people, older adults, outdoor workers, people displaced 
because of weather and climate, low-income residents that lack a social network, poorly planned 

Climate Change Affects the Health of All Americans 

http://www.niehs.nih.gov/CCHH_Search_Strategy_NCA4_508.pdf
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communities, communities disproportionately burdened by poor environmental quality, the 
disenfranchised, those with less access to healthcare, and those with limited financial resources to 
rebound from disasters.108,109,110,111,118,172 Recent research confirms projections that the magnitude and 
pattern of risks are expected to increase as climate change continues across the century.173 

Major uncertainties 

The role of non-climate factors, including socioeconomic conditions, population characteristics, 
and human behavior, as well as health sector policies and practices, will continue to make it chal- 
lenging to attribute injuries, illnesses, and deaths to climate change. Inadequate consideration of 
these factors creates uncertainties in projections of the magnitude and pattern of health risks over 
coming decades. Certainty is higher in near-term projections where there is greater understand- 
ing of future trends. 

Description of confidence and likelihood 

There is very high confidence that climate change is affecting the health of Americans. There is 
high confidence that climate-related health risks, without additional adaptation and mitigation, will 
likely increase with additional climate change. 

Key Message 2 
 

People and communities are differentially exposed to hazards and disproportionately affected by 
climate-related health risks (high confidence). Populations experiencing greater health risks 
include children, older adults, low-income communities, and some communities of color (high 
confidence). 

 
Description of evidence base 
Multiple lines of evidence demonstrate that low-income communities and some communities of 
color are experiencing higher rates of exposure to adverse environmental conditions and social 
conditions that can reduce their resilience to the impacts of climate change.106,107,108,109,110 Popu- 
lations with increased health and social vulnerability typically have less access to information, 
resources, institutions, and other factors to prepare for and avoid the health risks of climate 
change.107,132,133 Across all climate-related health risks, children, older adults, low-income commu- 
nities, and some communities of color are disproportionately impacted. There is high agreement 
among experts but fewer analyses demonstrating that other populations with increased vulnera- 
bility include outdoor workers, communities disproportionately burdened by poor environmental 
quality, communities in the rural southeastern United States, women, pregnant women, those 
experiencing gender discrimination, persons with chronic physical and mental illness, persons 
with various disabilities (such as those affecting mobility, long-term health, sensory perception, 
cognition), the homeless, those living alone, Indigenous people, people displaced because of 
weather and climate, low-income residents who lack a social network, poorly planned communi- 
ties, the disenfranchised, those with less access to healthcare, the uninsured and underinsured, 

Exposure and Resilience Vary Across Populations and Communities 
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those living in inadequate housing, and those with limited financial resources to rebound from 
disasters.106,107,108,110,118 

Adaptation can increase the climate resilience of populations when the process of developing and 
implementing policies and measures includes understanding the ethical and human rights dimen- 
sions of climate change, meeting human needs in a sustainable and equitable way, and engaging 
with representatives of the most impacted communities to assess the challenges they face and to 
define the climate solutions.124,125 

Major uncertainties 

The role of non-climate factors, including socioeconomic conditions, discrimination (racial and 
ethnic, gender, persons with disabilities), psychosocial stressors, and the continued challenge to 
measure the cumulative effects of past, present, and future environmental exposures on certain 
people and communities will continue to make it challenging to attribute injuries, illnesses, and 
deaths to climate change. While there is no universal framework for building more resilient 
communities that can address the unique situations across the United States, factors integral to 
community resilience include the importance of social networks, the value of including communi- 
ty voice in the planning and execution of solutions, and the co-benefits of institutional readiness 
to address the physical, health, and social needs of impacted communities. These remain hard to 
quantify.127,128 

Description of confidence and likelihood 

There is high confidence that climate change is disproportionately affecting the health of children, 
older adults, low-income communities, communities of color, tribal and Indigenous communities, 
and many other distinct populations. And there is high confidence that some of the most vulner- 
able populations experience greater barriers to accessing resources, information, and tools to 
build resilience. 

Key Message 3 
 

Proactive adaptation policies and programs reduce the risks and impacts from climate-sensitive 
health outcomes and from disruptions in healthcare services (medium confidence). Additional 
benefits to health arise from explicitly accounting for climate change risks in infrastructure 
planning and urban design (low confidence). 

 
Description of evidence base 
Health adaptation is taking place from local to national scales.129,148,174 Because most of the health 
risks of climate change are also current public health problems, strengthening standard health 
system policies and programs, such as monitoring and surveillance, are expected to be effective in 
the short term in addressing the additional health risks of climate change. Modifications to explic- 
itly incorporate climate change are important to ensure effectiveness as the climate continues to 
change. Incorporating environmentally friendly practices into healthcare and infrastructure can 
promote resilience.151 

Adaptation Reduces Risks and Improves Health 
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Major uncertainties 

Overall, while there is considerable evidence of the effectiveness of public health programs,110,129,130 

the effectiveness of policies and programs to reduce future burdens of climate-sensitive health 
outcomes in a changing climate can only be determined over coming decades. The relatively 
short time period of implementing health adaptation programs means uncertainties remain  
about how to best incorporate climate change into existing policies and programs to manage 
climate-sensitive health outcomes and about which interventions will likely be most effective as 
the climate continues to change.174,175 For example, heat wave early warning and response systems 
save lives, but it is not clear which components most effectively contribute to morbidity and 
mortality reduction. 

Description of confidence and likelihood 

There is medium confidence that with sufficient human and financial resources, adaptation policies 
and programs can reduce the current burden of climate-sensitive health outcomes.110,151,176,177 There 
is low confidence that the incorporation of health risks into infrastructure and urban planning and 
design will likely decrease climate-sensitive health impacts. 

Key Message 4 
 

Reducing greenhouse gas emissions would benefit the health of Americans in the near and long 
term (high confidence). By the end of this century, thousands of American lives could be saved and 
hundreds of billions of dollars in health-related economic benefits gained each year under a 
pathway of lower greenhouse gas emissions (likely, medium confidence). 

 
Description of evidence base 
Benefits of mitigation associated with air quality, including co-benefits of reducing greenhouse 
gas emissions, can be found in Chapter 13: Air Quality. This Key Message is consistent with and 
inclusive of those findings. 

Multiple individual lines of evidence across several health topic areas demonstrate significant ben- 
efits of greenhouse gas emission reductions, with health impacts and health-related costs reduced 
by approximately half under RCP4.5 compared to RCP8.5 by the end of the century, based on 
comprehensive multisector quantitative analyses of economic impacts projected under consistent 
scenarios (Ch. 13: Air Quality).37,157,158,159,160,161,162,163,164,165,166,167 The economic benefits of greenhouse gas 
emissions reductions to the health sector could be on the order of hundreds of billions of dollars 
annually by the end of the century. 

Heat: Greenhouse gas emission reductions under RCP4.5 could substantially reduce the annual 
number of heat wave days (for example, by 21 in the Northwest and by 43 in the Southeast by the 
end of the century);161 the number of high-mortality heat waves;162,168 and heat wave intensities.161,168 

The EPA (2017)157 estimated city-specific relationships between daily deaths (from all causes) and 
extreme temperatures based on historical observations that were combined with the projections 
of extremely hot and cold days (average of three years centered on 2050 and 2090) using city- 
specific extreme temperature thresholds to project future deaths from extreme heat and cold 

Reducing Greenhouse Gas Emissions Results in Health and Economic Benefits 
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under RCP8.5 and RCP4.5 in five global climate models (GCMs). In 49 large U.S. cities, changes 
in extreme temperatures are projected to result in over 9,000 premature deaths per year under 
RCP8.5 by the end of the century without adaptation ($140 billion each year); under RCP4.5, more 
than half these deaths could be avoided annually ($60 billion each year).157 

Labor productivity: Hsiang et al. (2017)167 and the EPA (2017)157 estimated the number of labor 
hours from changes in extreme temperatures using dose–response functions for the relationship 
between temperature and labor from Graff Zivin and Neidell (2014).169 Under RCP8.5, almost 2 
billion labor hours are projected to be lost annually by 2090 from the impacts of extreme heat 
and cold, costing an estimated $160 billion in lost wages. The Southeast164,170 and Southern Plains 
are projected to experience high impacts, with labor productivity in high-risk sectors projected  
to decline by 3%. Some counties in Texas and Florida are projected to experience more than 6% 
losses in annual labor hours by the end of the century.157,160 

Vector-borne disease: Belova et al. (2017)37 and the EPA (2017)157 define health impact functions  
from regional associations between temperatures and the probability of above-average West Nile 
neuroinvasive disease (WNND) incidence to estimate county-level expected WNND incidence 
rates for a 1995 reference period (1986–2005) and two future years (2050: 2040–2059 and 2090: 
2080–2099) using temperature data from five GCMs. Annual national cases of WNND are project- 
ed to more than double by 2050 due to increasing temperatures, resulting in approximately $1 
billion per year in hospitalization costs and premature deaths. In 2090, an additional 3,300 annual 
cases are projected under RCP8.5, with $3.3 billion per year in costs. Greenhouse gas emission 
reductions under RCP4.5 could avoid approximately half these cases and costs. 

Water quality: Chapra et al. (2017)165 and the EPA (2017)157 evaluate the biophysical impacts of cli- 
mate change on the occurrence of cyanobacterial harmful algal blooms in the contiguous United 
States using models that project rainfall runoff, water demand, water resources systems, water 
quality, and algal growth. In 2090, warming under RCP8.5 is projected to increase the length of 
time that recreational waters have concentrations of harmful algal blooms (cyanobacteria) above 
the recommended public health threshold by one month annually; greenhouse gas emissions 
under RCP4.5 could reduce this by two weeks. 

Food safety and nutrition: There is limited evidence quantifying specific health outcomes or eco- 
nomic impacts of reduced food safety and nutrition. 

Major uncertainties 

While projections consistently indicate that changes in climate are expected to have negative 
health consequences, quantifying specific health outcomes (for example, number of cases, number 
of premature deaths) remains challenging, as noted in Key Message 1. Economic estimates only 
partially capture and monetize impacts across each health topic area, which means that damage 
costs are likely to be an undervaluation of the actual health impacts that would occur under any 
given scenario. Economic estimates in this chapter do not include costs to the healthcare system. 

Description of confidence and likelihood 

There is a high confidence that a reduction in greenhouse gas emissions would benefit the health 
of Americans. There is medium confidence that reduced greenhouse gas emissions under RCP4.5 
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compared to RCP8.5 will likely reduce lost labor hours by almost half and avoid thousands of 
premature deaths and illnesses projected each year from climate impacts on extreme heat, ozone 
and aeroallergen levels (Ch. 13: Air Quality), and West Nile neuroinvasive disease. There is medium 
confidence that the economic benefits of greenhouse gas emissions reductions in the health sector 
could likely be on the order of hundreds of billions of dollars each year by the end of the century. 
Including avoided or reduced benefits of risks that are difficult to quantify, such as mental health 
or long-term health consequences, would increase these estimates. 
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Key Message 1 Wind River Indian Reservation students collect seeds for a land restoration project. 
 

 
Climate change threatens Indigenous peoples’ livelihoods and economies, including agriculture, 
hunting and gathering, fishing, forestry, energy, recreation, and tourism enterprises. Indigenous peoples’ 
economies rely on, but face institutional barriers to, their self-determined management of water, land, 
other natural resources, and infrastructure that will be impacted increasingly by changes in climate. 

Key Message 2 
 

Indigenous health is based on interconnected social and ecological systems that are being disrupted 
by a changing climate. As these changes continue, the health of individuals and communities will be 
uniquely challenged by climate impacts to lands, waters, foods, and other plant and animal species. 
These impacts threaten sites, practices, and relationships with cultural, spiritual, or ceremonial 
importance that are foundational to Indigenous peoples’ cultural heritages, identities, and physical and 
mental health. 

Key Message 3 
 

Many Indigenous peoples have been proactively identifying and addressing climate impacts; 
however, institutional barriers exist in the United States that severely limit their adaptive capacities. 
These barriers include limited access to traditional territory and resources and the limitations of 
existing policies, programs, and funding mechanisms in accounting for the unique conditions of 
Indigenous communities. Successful adaptation in Indigenous contexts relies on use of Indigenous 
knowledge, resilient and robust social systems and protocols, a commitment to principles of self- 
determination, and proactive efforts on the part of federal, state, and local governments to alleviate 
institutional barriers. 

Indigenous Livelihoods and Economies at Risk 

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 

15 Tribes and Indigenous Peoples 

Physical, Mental, and Indigenous Values-Based Health at Risk 

Adaptation, Disaster Management, Displacement, and Community-Led Relocations 
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Executive Summary 
 

Indigenous peoples in the United States are 
diverse and distinct political and cultural 
groups and populations. Though they may be 
affected by climate change in ways that are 
similar to others in the United States, Indige- 
nous peoples can also be affected uniquely and 
disproportionately. Many Indigenous peoples 
have lived in particular areas for hundreds if 
not thousands of years. Indigenous peoples’ 
histories and shared experience engender 
distinct knowledge about climate change 
impacts and strategies for adaptation. Indig- 
enous peoples’ traditional knowledge systems 
can play a role in advancing understanding of 
climate change and in developing more com- 
prehensive climate adaptation strategies. 

 
Observed and projected changes of increased 
wildfire, diminished snowpack, pervasive drought, 
flooding, ocean acidification, and sea level rise 
threaten the viability of Indigenous peoples’ 
traditional subsistence and commercial activities 
that include agriculture, hunting and gathering, 
fisheries, forestry, energy, recreation, and tourism 
enterprises. Despite institutional barriers to 
tribal self-determination stemming from federal 
trust authority over tribal trust lands, a number 
of tribes have adaptation plans that include a 
focus on subsistence and commercial economic 

activities. Some tribes are also pursuing climate 
mitigation actions through the development of 
renewable energy on tribal lands. 

 
Climate impacts to lands, waters, foods, and 
other plant and animal species threaten 
cultural heritage sites and practices that sus- 
tain intra- and intergenerational relationships 
built on sharing traditional knowledges, food, 
and ceremonial or cultural objects. This weak- 
ens place-based cultural identities, may wors- 
en historical trauma still experienced by many 
Indigenous peoples in the United States, and 
adversely affects mental health and Indigenous 
values-based understandings of health. 

 
Throughout the United States, climate-related 
disasters are causing Indigenous communities 
to consider or actively pursue relocation as an 
adaptation strategy. Challenges to Indigenous 
actions to address disaster management and 
recovery, displacement, and relocation in the 
face of climate change include economic, 
social, political, and legal considerations that 
severely constrain their abilities to respond to 
rapid ecological shifts and complicate action 
toward safe and self-determined futures for 
these communities. 
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Indigenous Peoples’ Climate Initiatives and Plans 
 

Many Indigenous peoples are taking steps to adapt to climate change impacts. Search the online version of this map by activity 
type, region, and sector to find more information and links to each project: https://biamaps.doi.gov/nca/. To provide feedback 
and add new projects for inclusion in the database, see: https://www.bia.gov/bia/ots/tribal-resilience-program/nca/. Thus far, 
tribal entities in the Northwest have the highest concentration of climate activities (Ch. 24: Northwest). For other case studies of 
selected tribal adaptation activities, see both the Institute for Tribal Environmental Professionals’ Tribal Profiles,1 and Tribal Case 
Studies within the U.S. Climate Resilience Toolkit.2,3 From Figure 15.1 (Source: Bureau of Indian Affairs). 
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State of the Sector 

Indigenous peoples in the United States are 
diverse and distinct political and cultural 
groups and populations. Though they may be 
affected by climate change in ways that are 
similar to others in the United States, Indige- 
nous peoples can also be affected uniquely and 
disproportionately. Many Indigenous peoples 
have lived in particular areas for hundreds if 
not thousands of years, and their cultures, 
spiritual practices, and economies have evolved 
to be adaptive to local seasonal and interannual 
environmental changes.4 Thus, Indigenous 
knowledge systems differ from those of 
non-Indigenous peoples who colonized and 
settled the United States, and they engender 
distinct knowledge about climate change 
impacts and strategies for adaptation.4,5,6 Indig- 
enous knowledges, accumulated over gener- 
ations through direct contact with the envi- 
ronment, broadly refer to Indigenous peoples’ 
systems of observing, monitoring, researching, 
recording, communicating, and learning and 
their social adaptive capacity to adjust to or 
prepare for changes. One of these knowledge 
systems that is often referred to in the context 
of climate change is traditional ecological 
knowledge, which primarily focuses on the 
relationships between humans, plants, animals, 
natural phenomena, and the landscape. 

 
A growing number of tribal governments and 
intertribal organizations are developing climate 
adaptation plans, with some in the early stages 
of implementation. Many Indigenous peoples 
support their own technical staff who study 
and manage broad sectoral programs and 
issues, which now include climate change 
adaptation planning and implementation. To 
this end, Indigenous peoples regularly collab- 
orate with climate scientists and other pro- 
fessionals working in academic, governmental, 
and nongovernmental organizations, especially 
in the use of downscaled (local-scale) climate 

information and tools that have become more 
available in recent years. While not compre- 
hensive, Figure 15.1 identifies over 800 activ- 
ities across all regions featured in this report 
that Indigenous peoples and their partners 
have undertaken in the last decade. This map 
catalogues several broad types of adaptation 
projects: planning and assessment, adaptation 
and implementation, monitoring and research, 
governance and capacity building, and youth 
engagement and cultural continuity. Col- 
lectively, these activities span many sectors 
and all regions of the country. Projects are 
primarily planning related and include adapta- 
tion planning, vulnerability assessments, and 
professional development to increase the skills 
and capacity of tribal staff and management. 

 
These actions in response to climate change 
occur in a broader context in which Indigenous 
peoples today, including federally and non- 
federally recognized tribes, are continuing to 
seek and exercise self-determination to define 
their own political status and to freely pursue 
economic, social, and cultural development. 
Limits to Indigenous self-determined action 
can intensify vulnerability to climate change 
in many cases. In the 19th century, the United 
States established a trust responsibility to 
federally recognized tribes, which is a legal 
and fiduciary obligation to honor their treaty 
rights and support tribal self-determination. 
The trust responsibility is meant to include 
financial support and the provision of 
essential services, such as education, health, 
public safety, and environmental protection. 
However, trust responsibility also authorizes 
the U.S. Government to manage tribal lands 
and the revenues generated from these lands. 
This can limit self-determination in cases 
where the U.S. Government’s management 
of tribes’ trust assets lacks accountability or 
does not adequately fulfill the federal policy 
requirement of consultation with tribes on a 
sovereign government-to-government basis. 
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Indigenous Peoples’ Climate Initiatives and Plans 
 

Figure 15.1: Many Indigenous peoples are taking steps to adapt to climate change impacts. Search the online version of this 
map by activity type, region, and sector to find more information and links to each project: https://biamaps.doi.gov/nca/. To 
provide feedback and add new projects for inclusion in the database, see: https://www.bia.gov/bia/ots/tribal-resilience-program/ 
nca/. Thus far, tribal entities in the Northwest have the highest concentration of climate activities (Ch. 24: Northwest). For other 
case studies of tribal adaptation activities, see both the Institute for Tribal Environmental Professionals’ Tribal Profiles,1 and Tribal 
Case Studies within the U.S. Climate Resilience Toolkit.2,3 Source: Bureau of Indian Affairs. 

 

Non-federally recognized tribes, Native Hawai- 
ians, and other Indigenous peoples also have 
rights to self-determination to protect their 
traditional knowledges, cultures, and ancestral 
lands, while developing their economies and 
providing community services; but they do so 
without reservation lands, treaty rights, and 
federal provision of essential services, among 
other rights, authorities, and capacities to 
which federally recognized tribes can appeal. 

 
This chapter expands on the Indigenous Peoples 
chapter from the Third National Climate Assess- 
ment7 and on Indigenous contributions to earlier 

assessments, with a focus on three major themes 
as expressed in the Key Messages that were not 
discussed in previous assessments in as much 
detail. This chapter recognizes that Indigenous 
communities of the United States represent 
diverse cultures, histories, governments, and 
environments and that their individual experienc- 
es with climate change will differ. In addition, this 
chapter attempts to provide more information 
than previous assessments about Indigenous 
issues in the Pacific Islands and the Caribbean 
regions, although in some cases, especially for 
the Caribbean, the literature is sparse. Thus, 
uniform, national-scale quantitative metrics of 
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risk across this broad spectrum of conditions are 
not available. Nevertheless, Indigenous peoples 
and their partners are building comprehensive 
understandings of local climate change risks and 
taking steps to adapt to these threats. 

Key Message 1 
 

 
Climate change threatens Indigenous 
peoples’ livelihoods and economies, 
including agriculture, hunting and gath- 
ering, fishing, forestry, energy, recreation, 
and tourism enterprises. Indigenous 
peoples’ economies rely on, but face 
institutional barriers to, their self-deter- 
mined management of water, land, other 
natural resources, and infrastructure 
that will be impacted increasingly by 
changes in climate. 

 
While the lands, waters, and other natural 
resources of Indigenous peoples hold sacred 
cultural significance, they also play a principal 
role in ensuring the viability of these commu- 
nities’ economies and livelihoods.5,8 Tribal trust 
lands provide habitat for more than 525 species 
listed under the Endangered Species Act, and 
more than 13,000 miles of rivers and 997,000 
lakes are located on federally recognized tribal 
lands.9 For many tribes, despite this endow- 
ment of natural resources, median household 
income is only 69% of the national average 
median income.10 Challenges to economic 
development for federally recognized tribes are 
in part related to institutional barriers to tribal 
self-determination stemming from  federal 
trust authority over tribal trust lands.8,11 Due 
to past federal polices, including the Dawes 
Act (1887) and Indian Reorganization Act (1934), 
most reservation lands today constitute a 
checkerboard pattern of trust and fee-simple 
(private) land ownership, highly fractionated 

government trust lands with many owners, and 
trust lands subject to ongoing federal oversight 
in resource management decisions.12,13,14,15 These 
issues are complicated further when multiple 
or overlapping federal, state, or local govern- 
ment jurisdictions are involved.16 

 
Historical and ongoing federal oversight of 
natural resource management on tribal lands 
can, in some cases, hinder growth in tribal and 
individual natural resource-based business 
enterprises, because tribes lack the autonomy 
to determine their own property rights and 
related institutions.17,18 Similar critiques of 
historic and contemporary U.S. policy have 
been identified in studies of Indigenous 
climate change adaptation.19,20 Non-federally 
recognized tribes lack legal status to qualify  
for federal funding and economic develop- 
ment support, though some are eligible for 
state support.21 Funding limitations are often 
identified as a barrier to the planning or imple- 
mentation of climate adaptation or mitigation 
actions,22 which suggests that increased eco- 
nomic revenues could create opportunities for 
tribes to choose to pursue climate actions. 

 
Many Indigenous peoples continue to express 
their cultural relationships with ancestral lands 
through traditional subsistence economies. 
Such economies rely on local natural resources 
for personal use (such as food, shelter, fuel, 
clothing, tools, transportation, and arts 
and crafts) and for trade, barter, or sharing. 
Climate change threatens these delicately 
balanced subsistence networks by, for example, 
changing the patterns of seasonal timing and 
availability of culturally important species in 
traditional hunting, gathering, and fishing 
areas4,5,7,22,23,24,25,26,27,28,29,30,31,32 Each of the Fourth 
National Climate Assessment’s regional chap- 
ters includes at least one example of climate 
impacts or adaptation related to Indigenous 
subsistence species or practices. 

Indigenous Livelihoods and 
Economies at Risk 
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Most Indigenous peoples across all regions of 
the United States pursue a mix of traditional 
subsistence and commercial sector activities 
that include agriculture, hunting and gathering, 
fisheries, forestry, energy, recreation, and 
tourism enterprises.5,22,33,34,35 Observed and pro- 
jected changes of increased wildfire, diminished 
snowpack, pervasive drought, flooding, ocean 
acidification, and sea level rise (Ch. 2: Climate) 
threaten the viability of each of these enter- 
prises.22,29,33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 Tribal 
casino properties, for example, often include 
water-dependent recreational amenities that, due 
to pervasive drought, are impacted by changes to 
local water regimes,53 and some tribes account for 
this in their adaptation plans, such as the Con- 
federated Salish and Kootenai Tribes54 and the 
Lummi Nation.55 In addition, Indigenous agricul- 
ture is already being adversely affected by chang- 
ing patterns of flooding, drought, dust storms, 
and rising temperatures, with future projections 
varying by region but indicating increased 
soil erosion and irrigation water demand and 
decreased crop quality and animal herd sizes 
(Ch. 25: Southwest, KM 4 and 6).22,41,52,56,57,58 Some 
tribes include consideration of subsistence and 
commercial economic resources in their adapta- 
tion plans. For example, the 1854 Treaty Authority 
Adaptation Plan,59 which includes the Bois Forte, 
Fond du Lac, and Grand Portage Tribes, provides 
detailed adaptation strategies customized to 
protect and sustain walleye, sturgeon, moose, and 
wild rice, among others (Ch. 21: Midwest). Similar- 
ly, the Confederated Tribes of the Umatilla Indian 
Reservation60 have identified climate risks to 
salmon, elk, deer, roots, and huckleberry habitat 
(Ch. 24: Northwest, KM 2). 

 
Federal and state legal frameworks and regulatory 
actions can compound physical climate change 
stressors on Indigenous peoples’ subsistence 
economies and act as a barrier to climate change 
adaptation. For example, federal and state fish and 
wildlife regulations, such as endangered species 
listings, are meant to respond to species 

 

 
Members of the Oglala Lakota Nation plant climate-resilient tree 
species on the Pine Ridge Indian Reservation in South Dakota. 
Photo credit: © Alex Basaraba (www.alexbasaraba.com). 

 

population declines that can be exacerbated  
by climate change (Ch. 7: Ecosystems), but 
they can further stress Indigenous subsistence 
economies that have traditionally relied on those 
species.61,62,63 Such regulatory actions taken 
without the input of Indigenous peoples can limit 
traditional sources of income, such as arts and 
crafts that are part of Indigenous economies. For 
example, some Alaska Natives utilize skins, furs, 
and walrus tusks to support local subsistence 
economies and to produce clothing and crafts 
that support local tourism.64,65 

 
Another recognized barrier to economic 
self-determination and climate adaptation 
for federally recognized tribes with resource 
constraints is the costly and lengthy process to 
quantify, secure, and use appropriated water 
rights.7,41,53,66,67,68 This is particularly the case 
in the arid western United States, where the 
majority of reservation land acreage is located 
and where prior appropriation doctrine is the 
primary mechanism for allocating scarce water 
resources.66 As water becomes more scarce and 
regional demands increase, the quantification 
of water rights is viewed by many as necessary 
to design and plan adaptation strategies that 
secure water for various uses: cultural, munic- 
ipal, recreational, agricultural, fisheries, and 
aquatic resources, among others.4,19,58,66,67,69,70,71 

To date, approximately 30 reservations have 

http://www.alexbasaraba.com/
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engaged in water rights settlements,72 and 
while research shows that water rights quanti- 
fication can positively affect tribal economies, 
additional analysis is necessary to better 
understand these effects.66 

 
Infrastructure and linked systems that support 
Indigenous economies and livelihoods are at risk 
from more frequent or intense heavy downpours, 
floods, heat waves, wildfires, and droughts, as 
well as higher sea levels and storm surges.19,49,73 

As shown in Figure 15.2, Indigenous peoples are 
vulnerable to infrastructure disruptions that can 
occur at the level of an individual household (for 

example, housing and sanitary water supply); 
within larger regional, integrated systems (such  
as for power, transportation, and telecommunica- 
tion) (Ch. 17: Complex Systems); or within human 
systems that rely on such infrastructure to pro- 
vide other essential services (such as emergency 
medical response). This vulnerability is partly due 
to long-standing, unmet infrastructure needs and 
deferred maintenance challenges.74 For example, 
many Indigenous communities lack sufficient 
water delivery and treatment facilities and the 
operating capital needed to maintain and/or 
improve those facilities.41,75,76 

Infrastructure and Economic Vulnerabilities 
Household and Community 

Infrastructure 
Many Indigenous communities struggle 
with poor economic conditions that limit 

their ability to provide adequate 
household and local infrastructure. For 

example, an estimated 12% of 
households lack a safe water supply or 

wastewater disposal. 

Regional Systems 
Infrastructure 

Many Indigenous communities are located 
in areas that lack robust and redundant 

regional systems for transportation, 
communication, water, and power, 

increasing their vulnerability to system 
damages and outages that disrupt 

businesses and incur high costs to repair. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Essential Services 
Many Indigenous communities currently lack 

adequate public services like disaster response, 
policing, and health services that rely on 

infrastructure and support local businesses and 
economies. Climate disruptions to community 
and regional infrastructure act as additional 

strains on these services. 

Figure 15.2: Communities’ economic potential and livelihoods rely on infrastructure and the essential services it delivers, and 
many tribes and Indigenous communities already face acute infrastructure challenges that make them highly vulnerable to 
climate impacts.22 Indigenous peoples along the coasts and in the islands, the Southwest, and Alaska have experienced the 
most extensive infrastructure-related impacts thus far (Ch. 8: Coastal; Ch. 20: U.S. Caribbean; Ch. 25: Southwest; Ch. 26: 
Alaska; Ch. 27: Hawai‘i & Pacific Islands). Source: USGCRP. 
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Indigenous peoples also have unmet needs and 
challenges in the energy sector. The evolution 
of the federal trust doctrine, and its associated 
timely and costly regulatory oversight of 
resource use on tribal trust lands, challenges 
federally recognized tribes’ ability to secure 
outside investments in energy and related 
infrastructure development (Ch. 4: Energy, KM 
3; Ch. 29: Mitigation).77,78 In addition, non-tribal 
entities operate the majority of energy devel- 
opment on tribal land, reducing opportunities 
for tribal workforce development and capacity 
building for self-directing future energy proj- 
ects.79 Still, energy development, particularly 
renewable energy, that is implemented in 
accordance with Indigenous values holds 
promise as a source of revenue, employment, 
and economic self-determination.22,80 While not 
all Indigenous communities support energy 
development due to concerns about cultural 
and environmental impacts, there are a number 
of examples of growing interest in renewable 
energy.79 The Pueblo of Jemez, for example, has 
developed the Nation’s first utility-scale solar 
project on tribal lands, and other tribes view 
renewable energy as a key strategy for climate 
mitigation.22 Tribes have also identified small- 
scale distributed electricity generation systems 
and energy efficiency as supporting their 
climate adaptation goals through increased 
energy independence.22,79 

Key Message 2 
 

Indigenous health is based on intercon- 
nected social and ecological systems 
that are being disrupted by a changing 
climate. As these changes continue, the 
health of individuals and communities 
will be uniquely challenged by climate 
impacts to lands, waters, foods, and 
other plant and animal species. These 
impacts threaten sites, practices, and 
relationships with cultural, spiritual, or 
ceremonial importance that are foun- 
dational to Indigenous peoples’ cultural 
heritages, identities, and physical 
and mental health. 

Physical health risks and impacts to Indigenous 
peoples are the same as those faced by the  
general U.S. population (Ch. 14: Human Health); 
however, certain factors, known as the social 
determinants of health, are unique and contribute 
to the increased vulnerability of Indigenous 
peoples to adverse and potentially severe or fatal 
health outcomes (Box 15.1). Conventional Western 
science approaches to measuring and analyzing 
Indigenous health, adaptive capacity, health 
disparities, and environmental justice issues 
typically do not capture many of the key elements 
of health and resilience that are important to 
Indigenous populations.81,82,83,84,85,86 These elements 
emphasize non-physiological aspects of health, 
which include concepts related to community 
connection, natural resources security, cultural 
use, education and knowledge, self-determination 
and autonomy,  and resilience.83,84  For example, 
the Swinomish Indian Tribal Community has 
used shellfish beds and shoreline armoring as 
indicators to evaluate health in the context of a 
changing climate.81 

Physical, Mental, and Indigenous 
Values-Based Health at Risk 
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Indigenous peoples have a unique and 
interconnected relationship with the natural 
environment that is integral to their place- 
based social, cultural, and spiritual identity; 
intangible cultural heritage (traditions or living 
expressions transmitted and inherited through 
generations); and subsistence practices and 
livelihoods.61,82,87,99,100 Climate change impacts 
to ecosystems (Ch. 7: Ecosystems) alter the 
relationships between humans and animals, 
between individuals, and within and between 
communities; these relationships are central 
to Indigenous physical, mental, and spiritual 
health.82,86,101,102 This alteration in relationships 
occurs when individuals, families, and com- 
munities (within and between generations) 
are less able or not able to share traditional 
knowledges about the natural environment 
(such as where and when to harvest or hunt), 
food, and ceremonial or cultural objects, 
among other things, because the knowledge 
is no longer accurate or traditional foodstuffs 
and species are less available due to climate 
change. For many Indigenous peoples, the act 
of sharing is fundamental to these intra- and 
intergenerational relationships, sustains 
cultural practices and shared identity, and 
underpins subsistence practices.44,103 A pro- 
jected health-related consequence of reduced 

or lost access to the knowledge, experiences, 
and relationships built on sharing is increased 
food insecurity for households reliant on 
subsistence practices.61 For example, in Alaska, 
changes in sea ice coverage and thickness and 
the timing of ice formation (Ch. 9: Oceans; 
Ch. 26: Alaska) can lead to decreased access  
to hunting and fishing areas, which can mean 
people are unable to access food sources (that 
is, loss of cultural use.81 This can then result in 
lost opportunity for the social components of 
these activities, including reduced community 
connection (e.g., Donatuto et al. 201481),less 
food and knowledge sharing, and diminished 
relationship building.44,61 

 
Communities that rely on the natural envi- 
ronment for sustenance and livelihoods are 
at increased risk for adverse mental health 
outcomes related to climate change.104 Many 
Indigenous communities share a focus on 
relationships between people and wildlife 
and on a respect for natural resources.29,81,105 

Climate impacts to lands, waters, foods, and 
other plant and animal species undermine 
these relationships, affect place-based cultural 
heritages and identities, and may worsen the 
historical trauma still experienced by many 
Indigenous peoples.86,101,102 For example, in 

Box 15.1: Social Determinants of Indigenous Health 

A number of health risks are higher among Indigenous populations due in part to historic and contemporary so- 
cial, political, and economic factors that can affect conditions of daily life and limit resources and opportunities 
for leading a healthy life.87 Many Indigenous peoples still experience historical trauma associated with coloni- 
zation, removal from their homelands, and loss of their traditional ways of life, and this has been identified as a 
contributor to contemporary physical and mental health impacts.88,89 Other factors include institutional racism, 
living and working circumstances that increase exposure to health threats, and limited access to healthcare ser- 
vices.87,89 Though local trends may differ across the country, in general, Indigenous peoples have disproportion- 
ately higher rates of asthma,90 cardiovascular disease,91,92,93,94 Alzheimer’s disease or dementia,95,96 diabetes,97  and 
obesity.93 These health disparities have direct linkages to increased vulnerability to climate change impacts, 
including changes in the pollen season and allergenicity, air quality, and extreme weather events (Ch. 14: Human 
Health).98 For example, diabetes prevalence within federally recognized tribes is about twice that of the general 
U.S. population.97 People with diabetes are more sensitive to extreme heat and air pollution, and physical health 

impacts can also influence mental health.9
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Arctic Indigenous communities, changing 
wildlife and vegetation patterns are disrupting 
traditional and subsistence practices and 
have been associated with increased rates 
of mood and anxiety disorders; strong emo- 
tional responses; and loss of connections to 
homeland, social networks, and self-worth.82,101 

Additionally, climate impacts that degrade 
water quality can adversely affect sacred water 
sources and aquatic species on which subsis- 
tence livelihoods and associated relationships 
are based, increasing the risk of mental health 
impacts in addition to the well-studied phys- 
ical health concerns.53,71 Damage to cultural 
heritage sites from climate change can affect 
mental health through impacts to cultural, 
economic, and social relationships.106 Media 
imagery and reports or stories of climate risks 
and vulnerability also lead to psychological 
trauma or increased anger, anxiety, depression, 
fear, and stress.107 These impacts can intensify 
existing social stressors, such as loss of jobs 
and social connections, loss of social support, 
and family distress.101,104 

 
Climate change adaptation measures can 
reduce physiological vulnerability to health 
risks; to date, most observational evidence 
comes from behavioral and public health 
responses to extreme heat.108,109,110,111 Organi- 
zations including the National Indian Health 
Board and the Alaska Native Tribal Health 
Consortium have ongoing efforts to increase 
Indigenous adaptive capacity specifically for 
health. Some tribes have climate vulnerability 
assessments that acknowledge the role of 
traditional subsistence species, or First Foods, 
as an essential aspect of health and tribal resil- 
ience; for example, the Yurok Tribe assesses 
the role of salmon in community health,112 and 
the Confederated Tribes of the Umatilla Indian 
Reservation60 discuss climate risks to salmon, 
elk, deer, roots, and huckleberry habitat (Ch. 
24: Northwest, KM 2). In the Republic of the 
Marshall Islands, a community-led planning 

process known as Reimaanlok incorporates 
traditional knowledge and facilitates local 
self-determination to support shared goals of 
climate adaptation, natural resource manage- 
ment, and community health.85 

Key Message 3 
 

Many Indigenous peoples have been 
proactively identifying and addressing 
climate impacts; however, institutional 
barriers exist in the United States that 
severely limit their adaptive capacities. 
These barriers include limited  access 
to traditional territory and resources 
and the limitations of existing policies, 
programs, and funding mechanisms in 
accounting for the unique conditions of 
Indigenous communities. Successful 
adaptation in Indigenous contexts relies 
on use of Indigenous knowledge, resilient 
and robust social systems and protocols, 
a commitment to principles of self- 
determination, and proactive efforts 
on the part of federal, state, and local 
governments to alleviate institu- 
tional barriers. 

 
Indigenous peoples have a long and rich histo- 
ry of adaptation to climate variability1,71,113,114 that 
is rooted in their dynamic relationships to the 
natural environment.115 However, the ability of 
Indigenous peoples to anticipate and respond 
to climate change is affected by economic, 
social, political, and legal considerations that 
severely constrain their abilities to consider 
and respond to rapid ecological shifts. Despite 
the many examples of Indigenous peoples 
undertaking climate vulnerability assessments 
and adaptation planning (see Figure 15.1 for 

Adaptation, Disaster Management, 
Displacement, and Community-Led 
Relocations 
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links to information on current adaptation 
efforts), as the pace of ecological changes 
increases with climate change, and sociopo- 
litical obstacles to implementing responses 
continue to exist, there are challenges and 
barriers to adaptation.116,117 

 
Incorporating Indigenous Knowledges in 
Adaptation 
Indigenous knowledge systems can play a role 
in advancing understanding of climate change 
and in developing more comprehensive climate 
adaptation strategies,6,7,118 in part because 
they focus on understanding relationships of 
interdependency and involve multigenerational 
knowledge of ecosystem phenology (the study 
of cyclic and seasonal natural phenomena)6,119,120 

and ecological shifts.25,121 For example, Inupiat 
residents in Alaska have identified cyclical 
patterns of coastal erosion, and their under- 
standing of how quickly and in which direction 
wind and wave energy reaches the coast 
can help communities prone to flooding.122 

Indigenous adaptation planning, including 
considerations of issues such as flooding and 
water rights,  benefits  from  a  greater  focus 
on participatory planning in natural resource 
management.19,22,123,124,125,126 This planning 
incorporates local knowledge and values from 
conception through implementation127,128,129 in 
ways that ensure the protection of Indigenous 
knowledges and Indigenous peoples’ rights not 
to share sensitive information.22 In this way, 
traditional ways of knowing are contributing to 
sustainable land management practices under 
changing  environmental  conditions.130,131,132,133 

For example, the Wabanaki Nations of Maine 
work closely with local researchers, foresters, 
and landowners as part of the Cooperative 
Emerald Ash Borer Project to precisely cata- 
logue and map the decline of the native black  
ash deciduous trees on which these commu- 
nities rely for economic, cultural, and spiritual 
practices. The cooperative leverages  Indige- 
nous knowledge of environmental history as 

it relates to the invasive emerald ash borer 
beetle.131 Additionally, the Nez Perce Tribe 
employs Indigenous knowledges as part of an 
initiative to enhance local salmon populations 
that have been in decline (Ch. 24: Northwest, 
KM 2). For more on Indigenous knowledges, 
see the regional chapters in this assessment. 

 
Limited Access to Traditional Territory and 
Decision-Making 
Historically in North America, Indigenous 
peoples occupied vast amounts of land and had 
access to a wide range of natural resources. 
Under these conditions, high mobility provided 
a robust response to changing environmental 
conditions,122 but such options today are 
limited or nonexistent. Multiple considerations, 
such as whether tribes have corporate status, 
federal recognition, reservation lands, off- 
reservation resource rights, specified water 
rights, access to Ceded Territories and 
traditional resources, among many others, 
affect how Indigenous communities develop 
and implement climate adaptation efforts.22 

Specifically, limitations on the abilities of tribal 
individuals, communities, businesses, and 
governing bodies to manage land, participate in 
policymaking, and access various resources can 
act as barriers to climate adaptation efforts. 
Federally recognized tribes have access to a 
distinct array of resources, programs, and legal 
authorities, yet they still face numerous lim- 
itations in their abilities to implement adaptive 
strategies. For example, when ecosystems or 
species’ habitats or migration routes shift due 
to changes in climate, tribes’ rights to gather, 
hunt, trap, and fish within recognized areas 
are constrained by reservation or other legally 
defined borders, making adaptation more 
challenging.22,40,48,134 This is also the case when 
federal or state regulations fail to prioritize 
Indigenous peoples’ access to traditional 
resources. Tribes with noncontiguous reser- 
vation lands can be negatively impacted by 
non-tribal landowners who do not support 
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climate adaptation efforts, and many Indige- 
nous peoples lacking federal recognition often 
lack the autonomy, funding, and governmental 
support to address climate change.31,48,135,136 

Because of these and other considerations, 
decisions regarding natural resource use 
are often made without appropriate con- 
sultation and collaboration with Indigenous 
peoples,19 a process that further inhibits local 
adaptive capacity. 

 
Disaster Management 
As in many communities, Indigenous peoples 
are experiencing climate change impacts from 
more frequent and severe weather events, 
including drought, heat waves, hurricanes, 
torrential downpours, and flooding (Ch. 2: 
Climate).137 In recent years, the Federal Gov- 
ernment has made amendments to disaster 
recovery laws that provide more autonomy to 
tribes in managing disaster recovery, including 
the Sandy Recovery Improvement Act of 2013, 
which grants tribes the authority to request a 
disaster declaration and assistance from the 
President, instead of relying on state authori- 
ties.138 However, many tribes continue to face 
hurdles to disaster management and disaster 
risk reduction planning. A study of tribes’ par- 
ticipation in the federally run and subsidized 
National Flood Insurance Program finds that, 
as of 2012, only 7% of tribal communities were 
participating in the program due to lack of 
information, limited local government capacity, 
and limited land jurisdiction.139 

 
Risk management and feasible adaptation 
options are also limited by fundamental issues 
with federal disaster funding that can be espe- 
cially prohibitive for tribes. Federal programs 
are designed to offer extensive emergency 
relief after disasters have occurred, but they 
have only limited funding for hazard mitigation 
or preparation for long-term environmental 
change.140 Most slow-onset disasters, such 
as erosion, are absent from the Federal 

Government’s primary disaster recovery 
legislation, the Stafford Act, making it par- 
ticularly challenging to prepare for changing 
coastlines.141,142 Additionally, the low population 
and rural contexts of many Indigenous com- 
munities limit the score they can receive in 
state and federal cost–benefit analyses, which 
also severely limits funding for disaster risk 
reduction.140,143,144 

 
Displacement and Relocation 
Many Indigenous peoples are now facing relo- 
cation due to climate-related disasters, more 
frequent coastal and riverine flooding, loss of 
land due to erosion, permafrost thawing, or 
compromised livelihoods caused by ecological 
shifts linked to climate change.7,122,145,146,147 

Throughout the 18th, 19th, and 20th centuries, 
Indigenous peoples were removed in large 
numbers from their homelands by settler 
colonial governments, leading, in many cases, 
to death, diaspora, and socioeconomic strug- 
gles. The historical context of forced reloca- 
tions of Indigenous peoples emphasizes the 
need for relocation frameworks that protect 
self-determination.120,144,146,148 

 
In various regions of the United States, com- 
munities of Indigenous peoples are considering 
relocation or actively pursuing relocation as 
an adaptation strategy, including communities 
in Alaska, the Southeast, the Pacific Islands, 
and the Pacific Northwest (Figure 15.3) (Ch. 
19: Southeast; Ch. 24: Northwest; Ch. 26: 
Alaska; Ch. 27: Hawai‘i & Pacific Islands). The 
complex barriers to adapting to these extreme 
circumstances continue to be the lack of 
statutes and regulations, legal authority, and 
governance structures that enable federal, 
state, and local actors to coordinate funding 
priorities and regulations.7 For example, 
many tribal communities facing slow-onset 
disasters, as described above, fail to qualify for 
relocation funds because they have not been 
declared federal disaster areas. Also, because 
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Isle de Jean Charles, LA, and Kivalina, AK 
Figure 15.3: These photos show aerial views of (left) Isle de Jean Charles, Louisiana, and (right) Kivalina, Alaska. As projections 
of sea level rise and coastal inundation are realized, many impacted communities are confronting political, ecological, and 
existential questions about how to adapt. Photo credits: (left) Ronald Stine; (right) ShoreZone (CC BY 3.0). 

 

there is no single, comprehensive federal 
program to assist tribes with relocation efforts, 
tribes must rely on project-specific funding 
streams that are not designed for relocation 
initiatives and that often have conflicting 
requirements and priorities.147 These barriers 
are even more challenging when tribes lack 
federal recognition.146,149 Additionally, there is 
no clear platform through which communities 
can connect non-Indigenous scientific infor- 
mation with their own knowledge systems to 
inform local decision-making processes as to 
whether adaptation is best achieved through 
relocation or by protecting in place through 
capital investments such as flood management 
infrastructure.150,151 Finally, even if relocation is 
agreed on and logistically feasible, the chal- 
lenges associated with maintaining community 
and cultural continuity often undermine 
the objective of the adaptation strategy, and 
models for mitigating the impacts of relocation 
on cultural institutions are rare and difficult 
to replicate.152 

 
In the past few years, solutions have emerged to 
better address the need for community- 
driven relocations, but even these have proven 
more complex for tribal communities than origi- 
nally expected. The state-recognized Isle de Jean 
Charles Band of Biloxi-Chitimacha- 

Community Planning 
Figure 15.4: Some tribal communities at risk of displacement 
from climate change are actively planning whole-community 
relocation strategies. As part of the resettlement of the tribal 
community of Isle de Jean Charles, residents are working 
with the Lowlander Center (a local, nongovernmental 
organization), the State of Louisiana, and others to finalize   
a plan that reflects the physical, sociocultural, and economic 
needs of the community. Photo credit: Louisiana Office of 
Community Development. 

 
Choctaw of Louisiana, in partnership with the 
Lowlander Center (Figure 15.4), developed a 
community resettlement plan that was select- 
ed in 2016, in conjunction with the State of 
Louisiana’s application to the National Disaster 
Resilience Competition, to receive funding 
from the U.S. Department of Housing and 
Urban Development. Due to restrictions on the 
funding included within the legislation and the 
tribe’s lack of federal recognition, the state is 

https://creativecommons.org/licenses/by/3.0/
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managing the resettlement of the entire island 
community, which limits tribal authority over 
relocation plans. This arrangement exemplifies 
one way in which tribes are limited in deploying 
adaptation strategies when using funds that are 
not specifically designed to meet the unique 
needs of tribal communities (Ch. 19: Southeast). 
Though promising, this solution, to date, is a pilot 
program through a one-time competitive funding 
opportunity, and there is no planned ongoing 
support for other community-led resettlements. 
Outside of this pilot program, the most promising 
funding options for facilitating relocations away 
from changing coastlines are voluntary buyout 
programs offered by some local, state, and federal 
entities, but new research suggests that these are 
particularly ill-suited to tribes because of their 
focus on individual households, instead of com- 
munity-wide relocations.153 Central organizing 
institutions, such as the Denali Commission that 
is assessing relocation challenges for communi- 
ties in rural Alaska, may help provide structure 
for joint state, federal, and tribal partnerships for 
pursuing safe, timely, and culturally appropriate 
relocation. More research would be required 
to properly assess whether these and other 
solutions would facilitate action toward safe and 
self-determined futures for these communities. 
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Traceable Accounts 
Process Description 
The report authors developed this chapter through technical discussions of relevant evidence and 
expert deliberation via several meetings, teleconferences, and email exchanges between the spring 
of 2016 and June 2017. The authors considered inputs and comments submitted by the public in 
response to the U.S. Global Change Research Program’s (USGCRP) Federal Register Notices, as well 
as public input provided through regional engagement workshops and engagement webinars. The 
author team also considered comments provided by experts within federal agencies through a 
formal interagency review process. 

Additional efforts to solicit input for the chapter were undertaken in 2016–2017. The Bureau 
of Indian Affairs (BIA) worked with partners, the College of Menominee Nation, and the Salish 
Kootenai College to develop and execute an outreach plan for the chapter. This included awarding 
mini-grants for community meetings in the fall of 2016 and attending and presenting at tribally 
focused meetings such as the American Indian Higher Education Consortium 2016 Student Con- 
ference (March 2016), the Annual National Conference of the Native American Fish and Wildlife 
Society (May 2016), the National Tribal Forum on Air Quality (May 2016), the workshops of Rising 
Voices (2016, 2017), the Native Waters on Arid Lands Tribal Summit (November 2017), the BIA Tribal 
Providers Conference in Alaska (November 2017), and the Tribes & First Nations Summit (Decem- 
ber 2017), among others. Additionally, through these tribal partners, the BIA provided 28 travel 
scholarships to interested tribal partners to attend and comment on the initial draft content of all 
regional chapters at the USGCRP’s regional engagement workshops. Additional avenues to com- 
municate during these formal open-comment periods included multiple webinars, website notices 
on the BIA Tribal Resilience Program page, and email notices through BIA and partner email lists. 
In particular, the BIA solicited comments from multiple tribal partners on the completeness of 
the online interactive version of the map in Figure 15.1. Chapter authors and collaborators also 
presented at interactive forums with tribal representatives, such as the National Adaptation Forum 
(2017), and in various webinars to extend awareness of formal requests for comment opportunities 
through the USGCRP and partners, such as the Pacific Northwest Tribal Climate Change Network. 
The feedback and reports from these activities were used to ensure that the Key Messages and 
supporting text included the most prominent topics and themes. 

Key Message 1 
 

Climate change threatens Indigenous peoples’ livelihoods and economies, including agriculture, 
hunting and gathering, fishing, forestry, energy, recreation, and tourism enterprises (very high 
confidence). Indigenous peoples’ economies rely on, but face institutional barriers to, their self- 
determined management of water, land, other natural resources, and infrastructure (high confidence) 
that will be impacted increasingly by changes in climate (likely, high confidence). 

Indigenous Livelihoods and Economies at Risk 
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Description of evidence base 
Multiple studies of Indigenous peoples in the United States provide consistent and high-quality 
evidence that climate change is both a current and future threat to Indigenous livelihoods and 
economies. The climate impacts on traditional subsistence economies and hunting and gathering 
activities have been extensively documented and consistently provide qualitative observational 
evidence of impacts.4,5,7,22,23,24,25,26,27,28,29,31,32,44 There is also very robust documentation of observed 
adverse climate change related impacts to Indigenous commercial sector activities in agriculture, 
fishing, forestry, and energy,22,29,33,36,37,39,40,41,42,43,44,45,46,47,48,49,73,154 as well as recreation, tourism, and 
gaming.5,50,51,52,53 These sectors form the basis of most Indigenous economies in the United States. 

Multiple studies also consistently identify funding constraints as barriers to the economic devel- 
opment of federally and non-federally recognized tribes,21,22 as well as barriers that limit self- 
determination stemming from historical and ongoing federal oversight of natural resources on 
tribal trust lands,8,11,17,18 including energy resources.77,78 Multiple qualitative studies provide consis- 
tent and high-quality evidence of current vulnerabilities and challenges related to infrastructure 
and linked systems that support Indigenous economies and livelihoods.19,22,49,73,74,76 Despite these 
challenges, there is consistent and high-quality evidence supporting the finding that energy 
development, particularly renewable energy, that is implemented in accordance with Indigenous 
values holds promise as a source of revenue, employment, economic self-determination, and 
climate mitigation and adaptation for Indigenous communities.22,79,80 

The studies cited above consistently conclude that these impacts on livelihoods and economies 
will increase under future projections of climate change. However, methods for making these 
determinations vary, and quantitative or modeling results that are specific to Indigenous peoples 
in the United States are limited. 

Major uncertainties 

As with all prospective studies, there is some uncertainty inherent in modeled projections of 
future changes, including both global climate system models and economic sector models. In 
addition, none of the cited studies explicitly modeled the effects of climate adaptation actions 
in the relevant economic sectors and the extent to which such actions may reduce Indigenous 
vulnerabilities. 

The literature currently lacks studies that attempt to quantify and/or monetize climate impacts on 
Indigenous economies or economic activities. Instead, the studies cited above in the “Descrip- tion 
of evidence base” section are qualitative analyses. The chapter references Chapter 29: Mitiga- tion 
for some quantitative studies about climate impacts to U.S. economic sectors, but these are not 
specifically about Indigenous economies. Quantitative national studies of climate impacts may 
have general applicability to Indigenous peoples, but their overall utility in quantifying impacts to 
Indigenous peoples may be limited, because there is uncertainty regarding the extent to which 
appropriate extrapolations can be made between Indigenous and non-Indigenous contexts. 

Other uncertainties include characterizing future impacts and vulnerabilities in a shifting policy 
landscape, when vulnerabilities can be either exacerbated or alleviated in part by policy changes, 
such as the quantification and adjudication of federal reserved water rights and the development 
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of policies that promote or inhibit the development of adaptation and mitigation strategies (for 
example, the development of water rights for instream flow purposes).19 

Description of confidence and likelihood 

Given the amount of robust and consistent studies in the literature, the authors have very high 
confidence that Indigenous peoples’ subsistence and commercial livelihoods and economies, 
including agriculture, hunting and gathering, fishing, forestry, recreation, tourism, and energy, 
face current threats from climate impacts to water, land, and other natural resources, as well 
as infrastructure and related human systems and services. The authors have high confidence in 
the available evidence indicating that it is likely that future climate change will increase impacts 
to water, land, other natural resources, and infrastructure that support Indigenous people’s 
livelihoods and economies. The authors have high confidence that Indigenous peoples’ economies 
depend on, but face institutional barriers to, their self-determined management of water, land, 
other natural resources, and infrastructure, stemming from funding constraints and the complexi- 
ties of federal oversight of trust resources. 

Key Message 2 
 

Indigenous health is based on interconnected social and ecological systems that are being disrupted 
by a changing climate (high confidence). As these changes continue, the health of individuals and 
communities will be uniquely challenged by climate impacts to lands, waters, foods, and other 
plant and animal species (likely, high confidence). These impacts threaten sites, practices, and 
relationships with cultural, spiritual, or ceremonial importance that are foundational to Indigenous 
peoples’ cultural heritages, identities, and physical and mental health (high confidence). 

 
Description of evidence base 
Multiple epidemiological studies provide consistent and high-quality evidence that Indigenous 
peoples face health disparities according to conventional Western science approaches to assess- 
ing health risk; in general, Indigenous peoples have disproportionately higher rates of asthma,90 

cardiovascular disease,91,92,93,94 Alzheimer’s disease or dementia,95,96 diabetes,97 and obesity.93 There 
is also robust qualitative evidence that various social determinants of health affect Indigenous 
health disparities, including historical trauma,88,89 institutional racism, living and working circum- 
stances that increase exposure to health threats, and limited access to healthcare services.87,89 A 
recent peer-reviewed scientific assessment of health concluded that these health disparities have 
direct linkages to increased vulnerability to climate change impacts from changes in the pollen 
season and allergenicity, air quality, and extreme weather events.98 

Additionally, a number of qualitative studies consistently find that Indigenous health, adaptive 
capacity, and health disparities/environmental justice issues typically do not capture many of the 
key elements of health and resilience that are important to Indigenous populations, which include 
concepts related to community connection, natural resources security, cultural use, education  
and knowledge, self-determination, and autonomy.81,82,83,84,85,86 Available qualitative evidence 
consistently identifies Indigenous peoples as having a unique and interconnected relationship 

Physical, Mental, and Indigenous Values-Based Health at Risk 
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with the natural environment and wildlife that is integral to their place-based social, cultural, and 
spiritual identity; intangible cultural heritage (traditions or living expressions transmitted and 
inherited through generations); and subsistence practices and livelihoods that foster intra- and 
intergenerational knowledge sharing and relationships.29,44,61,81,82,86,87,99,100,101,102,103,105 Climate impacts 
to lands, waters, foods, and other plant and animal species undermine these relationships, affect 
place-based cultural heritages and identities (including through damage to cultural heritage sites), 
may worsen historical trauma still experienced by many Indigenous peoples, and ultimately result 
in adverse mental health impacts.86,101,102,106 There is robust documentation of observed adverse 
climate change related impacts on culture and food security,44,61,99,103 physical health,98 and mental 
health.71,101,102,104,107 

The studies consistently conclude that these adverse impacts to culture,61,155 food security,61,99 and 
overall human health98,99,101,102 will continue under future projections of climate change, though 
methods for making these determinations vary, and there are limited quantitative or modeling 
results that are specific to Indigenous peoples in the United States. 

There is consistent evidence from behavioral and public health research showing that responses 
to extreme heat serve as examples of climate change adaptation.108,109,110,111 There are also multiple 
examples of tribal health vulnerability assessments that acknowledge the role of traditional 
subsistence species, or First Foods, as an essential aspect of health and tribal resilience.60,112 One 
example from the Republic of the Marshall Islands illustrates a community-led planning process 
that incorporates traditional knowledge, facilitates local self-determination, and supports climate 
adaptation, natural resource management, and community health goals.85 

Major uncertainties 

The literature currently lacks national-scale studies that quantify and/or monetize climate 
impacts on Indigenous health, either through traditional Western science health metrics or Indig- 
enous values-based metrics and indicators of health. There are quantitative studies of specific 
health-relevant topics, such as climate impacts to air quality (Ch. 13: Air Quality) or extreme heat 
(Ch. 29: Mitigation), but health impact models have not to date been used to model Indigenous 
population-specific climate impacts. Quantitative national studies of climate impacts may have 
general applicability to Indigenous peoples, but their overall utility in quantifying impacts to 
Indigenous peoples may be limited, because there is uncertainty regarding the extent to which 
appropriate extrapolations can be made between Indigenous and non-Indigenous contexts. In 
addition, none of the studies explicitly modeled the effects of climate adaptation actions and the 
extent to which such actions may reduce Indigenous vulnerabilities or projected future impacts. 

Other uncertainties include characterizing future impacts and vulnerabilities in a shifting policy 
landscape, in which vulnerabilities can be either exacerbated or alleviated in part by policy or pro- 
grammatic changes, such as a recognition of the non-physiological aspects of Indigenous health. 

Description of confidence and likelihood 

Based on available evidence, the authors have high confidence that Indigenous health is based on 
interconnected social and ecological systems that are being disrupted by a changing climate. The 
authors have high confidence in the available evidence indicating that it is likely that future climate 
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change will increase impacts to lands, waters, foods, and other plant and animal species and that 
Indigenous health will be uniquely challenged by these impacts. The authors have high confidence, 
based on the quality of available evidence, that the lands, waters, foods, and other natural resourc- 
es and species are foundational to Indigenous peoples’ cultural heritages, identities, and physical 
and mental health due to their essential role in maintaining Indigenous peoples’ sites, practices, 
and relationships with cultural, spiritual, or ceremonial importance. 

Key Message 3 
 

Many Indigenous peoples have been proactively identifying and addressing climate impacts; 
however, institutional barriers exist in the United States that severely limit their adaptive capacities 
(very high confidence). These barriers include limited access to traditional territory and resources 
and the limitations of existing policies, programs, and funding mechanisms in accounting for the 
unique conditions of Indigenous communities. Successful adaptation in Indigenous contexts relies 
on use of Indigenous knowledge, resilient and robust social systems and protocols, a commitment 
to principles of self-determination, and proactive efforts on the part of federal, state, and local 
governments to alleviate institutional barriers (high confidence). 

 
Description of evidence base 
There is robust documentation of ongoing Indigenous adaptation to climate variability and 
change.1,71,113,114,116,117 There is also a very strong evidence base with multiple sources, consistent 
results, and high consensus that Indigenous peoples face obstacles to adaptation, including: 

• a limited capacity to implement adaptation strategies,19,139,150,151 

• limited access to traditional territory and resources,6,22,31,48,134,135,136,139,146,149 and 

• limitations of existing policies, programs, and funding mechanisms.6,7,31,135,136,139,140,142,143,144,146,147,149,150,151 

There are many studies that provide evidence with medium consensus that effective participatory 
planning processes for environmental decision-making  (such  as  for  sustainable  land  management 
or climate adaptation) are guided by Indigenous knowledge and resilient and robust social systems 
and protocols).6,7,118,119,120,127,128,129,131,132,133 In addition, some studies draw conclusions regarding the prin- 
ciples of self-determination in adaptation or relocation planning and decision processes.144,146,148 

Major uncertainties 

Adaptation is still in its infancy in most Indigenous (and non-Indigenous) communities in the 
United States, so there have not been enough projects implemented all the way to completion to  
be able to observe results and draw conclusions regarding the efficacy of any particular adaptation 
process or approach. Extrapolations can be made, however, from other relevant and closely relat- 
ed environmental decision-making processes, such as for land or water resource management. 

Adaptation, Disaster Management, Displacement, and Community-Led 
Relocations 
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Description of confidence and likelihood 

Based on the quality of available evidence, the authors have very high confidence that Indigenous 
peoples are proactively identifying and addressing climate impacts but that many face various 
obstacles limiting their implementation of adaptation practices. There is high confidence that suc- 
cessful adaptation in Indigenous contexts leverages Indigenous knowledge, robust social systems 
and protocols, and a commitment to Indigenous self-determination. 
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Key Message 1 Container ship bringing goods to port 
 

 
The impacts of climate change, variability, and extreme events outside the United States 
are affecting and are virtually certain to increasingly affect U.S. trade and economy, 
including import and export prices and businesses with overseas operations and 
supply chains. 

Key Message 2 
 

The impacts of climate change, variability, and extreme events can slow or reverse 
social and economic progress in developing countries, thus undermining international 
aid and investments made by the United States and increasing the need for 
humanitarian assistance and disaster relief. The United States provides technical and 
financial support to help developing countries better anticipate and address the impacts 
of climate change, variability, and extreme events. 

Key Message 3 
 

Climate change, variability, and extreme events, in conjunction with other factors, can 
exacerbate conflict, which has implications for U.S. national security. Climate impacts 
already affect U.S. military infrastructure, and the U.S. military is incorporating climate 
risks in its planning. 

Economics and Trade 
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Key Message 4 
 

Shared resources along U.S. land and maritime borders provide direct benefits to 
Americans and are vulnerable to impacts from a changing climate, variability, and 
extremes. Multinational frameworks that manage shared resources are increasingly 
incorporating climate risk in their transboundary decision-making processes. 

 
Executive Summary 
U.S. international interests, such as economics 
and trade, international development and 
humanitarian assistance, national security, 
and transboundary resources, are affected 
by impacts from climate change, variability, 
and extreme events. Long-term changes in 
climate could lead to large-scale shifts in the 
global availability and prices of a wide array 
of agricultural, energy, and other goods, with 
corresponding impacts on the U.S. economy. 
Some U.S.-led businesses are already working 
to reduce their exposure to risks posed by a 
changing climate. 

 
U.S. investments in international development 
are sensitive to climate-related impacts and 
will likely be undermined by more frequent 
and intense extreme events, such as droughts, 
floods, and tropical cyclones. These events 
can impede development efforts and result in 
greater demand for U.S. humanitarian assis- 
tance and disaster relief. In response, the U.S. 
government has funded adaptation programs 
that seek to reduce vulnerability to climate 
impacts in critical sectors. 

 
Climate change, variability, and extreme events 
increase risks to national security through 
direct impacts on U.S. military infrastructure 
and, more broadly, through the relationship 

between climate-related stress on  societies 
and conflict. Direct linkages between climate 
and conflict are unclear, but climate variability 
has been shown to affect conflict through 
intermediate processes, including resource 
competition, commodity price shocks, and 
food insecurity. The U.S. military is working 
to fully understand these threats and to 
incorporate projected climate changes into 
long-term planning. 

 
The impacts of changing weather and climate 
patterns across U.S. international borders 
affect those living in the United States. The 
changes pose new challenges for the manage- 
ment of shared and transboundary resources. 
Many bilateral agreements and public–private 
partnerships are incorporating climate risk 
and adaptive management into their near- and 
long-term strategies. 

 
U.S. cooperation with international and other 
national scientific organizations improves 
access to global information and strategic 
partnerships, which better positions the Nation 
to observe, understand, assess, and respond 
to the impacts associated with climate change, 
variability, and extremes on national interests 
both within and outside of U.S. borders. 

Transboundary Resources 
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Transboundary Climate-Related Impacts 
 

Shown here are examples of climate-related impacts spanning U.S. national borders. (left) The North American Drought 
Monitor map for June 2011 shows drought conditions along the U.S.–Mexico border. Darker colors indicate greater intensity of 
drought (the letters A and H indicate agricultural and hydrological drought, respectively). (right) Smoke from Canadian wildfires 
in 2017 was detected by satellite sensors built to detect aerosols in the atmosphere. The darker orange areas indicate higher 
concentrations of smoke and hazy conditions moving south from British Columbia to the United States. From Figure 16.4 
(Sources: [left] adapted from NOAA 2018,114 [right] adapted from NOAA 2018115). 
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Introduction 

The global impacts of climate (climate change, 
variability, and extreme events) are already 
having important implications for societies and 
ecosystems around the world and are pro- 
jected to continue to do so into the future.1,2,3 

There are specific U.S. interests that can be 
affected by climate-related impacts outside 
of U.S. borders, such as climate variability (for 
example, El Niño/La Niña events), climate 
extremes (for example, floods resulting from 
extreme precipitation), and long-term changes 
(for example, sea level rise). These interests 
include economics and trade (Key Message 1), 
international development and humanitarian 
assistance (Key Message 2), national security 
(Key Message 3), and transboundary resources 
(Key Message 4). While these four topics are 
addressed separately, they can also affect each 
other. For example, climate-related disasters in 
developing countries not only have significant 
local and regional socioeconomic impacts, 
but they can also set back U.S. development 
investments, increase the need for U.S. human- 
itarian assistance, and affect U.S. trade and 
national security. U.S. citizens have long been 
concerned about the welfare of those living 
beyond U.S. borders and their vulnerability to 
the global impacts of climate.4,5 

Key Message 1 
 

The impacts of climate change, vari- 
ability, and extreme events outside the 
United States are affecting and are vir- 
tually certain to increasingly affect U.S. 
trade and economy, including import and 
export prices and businesses with over- 
seas operations and supply chains. 

 
The impacts of climate change, variability, and 
extremes that occur outside the United States 

can directly affect the U.S. economy and trade 
through impacts on U.S.-owned, provided, or 
consumed services, infrastructure, and resources 
in other countries.6,7,8,9 Additionally, impacts on 
foreign-owned infrastructure, services, and 
resources can have indirect impacts on U.S. trade 
and businesses that rely on those assets and 
services, such as impacts on overseas energy and 
water utilities in places where U.S. international 
businesses are located. These foreign impacts are 
in addition to the impacts that climate change, 
variability, and extreme events within U.S. bor- 
ders have on the U.S. economy and trade,10,11 as 
described elsewhere in the report (for example, 
Ch. 7: Ecosystems, KM 3). 

 
In addition to local impacts on U.S.-owned assets 
abroad, climate change is expected to lead to 
large-scale shifts in the availability and prices 
of a wide array of agricultural,12,13 energy,14,15 and 
other goods, with corresponding impacts on 
the U.S. economy. These impacts occur on a 
wide range of timescales, ranging from months 
to multiple decades. For example, the prices 
of agricultural and mining commodities and 
manufactured goods are affected by year-to-year 
and decadal climate variations in the availability 
of irrigation water for agriculture or hydroelectric 
power.16,17,18,19 International price changes affect 
U.S. businesses abroad, as well as U.S. exports and 
imports. An example is the damaging effect that 
a series of short-term climate extremes in 2010 
and 2011 had on global wheat production. These 
extremes included drought in Russia, Ukraine, 
and the United States and damaging precipitation 
in Australia. A corresponding reduction in wheat 
production, in combination with high demand, 
low stocks, trade policies, and other factors, con- 
tributed to a spike in global wheat prices.20 This 
benefitted U.S. wheat exports while increasing 
the cost of flour and bread in the United States.21 

This example highlights the complex interactions 
that often arise through major impacts of over- 
seas climate change, variability, or extremes on 
U.S. interests (see Key Message 3 for a discussion 

Economics and Trade 
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of some of the security implications from the 
2010–2011 drought).22 Where these impacts 
increase global market prices, U.S. purchasers 
and consumers tend to be harmed, whereas U.S. 
producers tend to benefit. The opposite is gener- 
ally true for impacts that drive prices down. 

 
Overseas climate variability, extremes, and 
change can disrupt U.S. economic interests 
through impacts to overseas supply chains via 
impacts to international manufacturing, storage, 
and transportation infrastructure (road, rail, 
shipping, and air; Figure 16.1).23,24,25 At the same 
time, climate change is creating new transport 
opportunities, such as the potential summertime 
availability of trans-Arctic commercial shipping 
in the next few decades due to a reduction in 
ice cover caused by warmer temperatures,26,27,28 

though the infrastructure to support this trans- 
portation pathway and its safety has not yet been 
developed (Ch. 26: Alaska, KM 5). 

 
Climate risks are being increasingly recognized 
and reported by businesses. The Financial Stabili- 
ty Board’s Task Force on Climate-related Financial 
Disclosures (TCFD 201729) has encouraged 
businesses to report those risks, with hundreds 
of businesses currently enlisted as partners in the 
TCFD effort. Some U.S.-led businesses are work- 
ing to reduce their climate risks abroad. One way 
they are doing this is through partnerships with 
environmental groups. For example, Starbucks 
and Conservation International30 have partnered 
to strengthen the capacity of coffee farmers and 
supply chains to manage climate risks,31 while 
Coca-Cola and the World Wildlife Fund are 
working together to protect foreign watersheds 
that Coca-Cola uses for water supply.32 Coca-Cola 
increased its company-wide water  efficiency 
from 2004 to 2012 by 21.4%, which avoided 
approximately $600 million in costs and tended to 
increase resilience in the face of water shortag- 
es.33 As noted in the next section (Key Message 2), 
U.S. government actions are helping to promote 
climate resilience of infrastructure services34,35 

and other factors that have the potential to create 
more stable conditions for American businesses 
operating in developing countries, as well as 
promoting the welfare of those countries. 

 
Global trade can promote resilience to climate 
change by shifting production of goods and 
services to areas with more favorable climates 
and away from those with less favorable cli- 
mates.36,37,38 However, these shifts will generally 
have associated costs and may have a harmful 
effect on communities where production 
is decreased. 

 
Few studies exist that quantify the impact of 
climate change on U.S. corporations and the 
effectiveness of adaptation actions to reduce 
those impacts.39 

Impact of 2011 Thailand Flooding 
on U.S. Business Interests 

 

Figure 16.1: Severe flooding in Thailand in 2011 created 
significant disruptions of local business operations and global 
supply chains, resulting in a range of impacts to U.S. business 
interests. Source: ICF. 
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Key Message 2 
 

The impacts of climate change, vari- 
ability, and extreme events can slow or 
reverse social and economic progress in 
developing countries, thus undermining 
international aid and investments made 
by the United States and increasing the 
need for humanitarian assistance and 
disaster relief. The United States pro- 
vides technical and financial support to 
help developing countries better antici- 
pate and address the impacts of climate 
change, variability, and extreme events. 

U.S. development assistance helps save lives, 
reduce poverty, and strengthen democratic 
governance; it also helps societies emerge from 
humanitarian crises.40,41 Given their structures 
and levels of development, the economies and 
societies of developing countries are generally 
at greater relative risk from the impacts of 
climate variability, change, and extremes than 
are those of developed countries.1 In addition 
to causing suffering in developing countries, 
these impacts threaten to undermine U.S. 
investments in development and may neces- 
sitate additional humanitarian assistance (and 
possibly military assistance or intervention; see 
Key Message 3) in response to more frequent 
and severe natural disasters (such as flooding). 

 
U.S. international development assistance 
programs, implemented either directly by U.S. 
government agencies (such as the U.S. Agency 
for International Development [USAID] and 
the Millennium Challenge Corporation [MCC]) 
or indirectly through multilateral institutions 
(such as the World Bank and United Nations 
agencies), invest in critical sectors such as 
agriculture, water and sanitation, health, and 
infrastructure. These sectors, and the U.S. 

investments in them, are sensitive to natural 
variations in climate and extremes and are 
vulnerable to adverse impacts of climate 
change.1,34,42 

 
The U.S. government systematically iden- 
tifies climate risks and seeks to reduce the 
vulnerability of its international development 
investments. For example, the MCC amended 
its Environmental Guidelines in June 2012 
to formally adopt the International Finance 
Corporation’s Performance Standards on 
Environmental and Social Sustainability, 
which includes provisions on climate risk 
management.43,44 In addition, USAID has its 
own climate risk management guidelines.45 For 
more than a decade, the U.S. government has 
also funded adaptation programs that seek to 
reduce vulnerability to climate impacts in these 
critical sectors. 

 
Developing countries are often highly vulner- 
able to climate extremes, which can set back 
development and increase the need for disaster 
response and recovery assistance. For example, 
in 1998, Hurricane Mitch devastated Honduras 
and Nicaragua, killing thousands of people and 
causing widespread damage to property and 
infrastructure.46 USAID and the U.S. Depart- 
ment of Defense (DoD) jointly responded 
with an immediate relief effort. USAID also 
reoriented many of its programs to focus on 
longer-term recovery.47 Climate change is likely 
to increase the demand for U.S. humanitarian 
assistance of this kind, given the expected 
increase in the severity of extreme events like 
tropical cyclones and droughts.1,48,49 

 
Many developing countries depend heavily on 
agriculture as a major source of jobs and a large 
percentage of their gross domestic product 
(GDP). Drought can have impacts on food 
production and security at multiple scales. At 
the national level, the loss of food and income 
and the need to help farmers through bad 

International Development and 
Humanitarian Assistance 
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years can set back development. At the house- 
hold level, drought can wipe out crops and 
financial assets and leave families vulnerable 
to starvation. 

 
The United States works at several levels 
to help countries anticipate drought and to 
provide farmers with tools to manage risks 
to their crops and finances. For example, the 
United States invests in early warning systems 
in developing countries such as the Famine 
Early Warning Systems Network (FEWS NET), 
a joint effort by multiple U.S. agencies created 
after a devastating drought in Ethiopia in 1984. 
Currently, FEWS NET works with governments 
and international partners in 34 countries 
(Figure 16.2).50 In 2015, FEWS NET warned that 
Ethiopia was facing its worst drought in 60 
years and projected that as many as 15 million 
people would face acute food insecurity. Before 
the drought and food crisis materialized, 
USAID mobilized an emergency aid program 
and provided 680,000 metric tons of food to 
more than 4 million people.51 

 
U.S. investments in making Ethiopian agri- 
culture more climate resilient also helped 
individual farmers cope with the 2015 drought. 
A financial risk management program enables 
farmers to buy “weather index” insurance, 
which links payouts to certain indicators of 
extreme weather, such as drought. The insur- 
ance program uses information from FEWS 
NET and coordinates with Ethiopian partners 
as well as global reinsurance companies. More 
than 25,000 Ethiopian farmers who purchased 
this type of insurance received payouts during 
the drought, helping them to pay off debts, 
feed their families, and care for livestock.52,53 

Similar index insurance products are being 
developed through public–private partnerships 
across Africa, Asia, and Latin America. 

 
Investments by the United States towards 
enhancing national capacity to produce and 
use climate information in decision-making, 
also known as climate services, help 
countries manage their own risks and build 
resilience. For instance, the United States 
collaborated with Jamaica’s meteorological 
service and agriculture ministry to develop a 
seasonal drought forecast tailored to the needs 
of Jamaican farmers. Jamaican agriculture was 
severely affected by drought in 2014.54 Crop 
production losses were 57% nationally and 
close to 75% among farmers identifying climate 
risks as a major concern. However, farmers 
who used the drought forecast fully were 
able to cut their losses nearly in half that year 
compared to farmers who did not use or did 
not have access to the forecast.55 

 
Climate-resilience investments are being 
made to assist other key economic sectors in 
developing countries, including some that are 
expected to have benefits over longer time 
frames. For instance, in the Philippines, the 
United States has supported six cities and 
provinces to consider climate impacts in the 
provision of water supply and wastewater 
treatment services. The project is improving 
the design, management, and maintenance of 
long-lived infrastructure, as well as local plan- 
ning and governance.56 It assisted one water- 
scarce city, Zamboanga City, in developing 
the country’s first-ever urban water demand 
management plan.57 
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Famine Early Warning Systems Network 
 

Figure 16.2: The Famine Early Warning Systems Network involves a collaboration between U.S. government agencies, other 
national government ministries, and international partners to collect data and produce analyses of conditions in food-insecure 
regions and countries. The analyses integrate information on climate, agricultural production, prices, trade, nutrition, and other 
societal factors to develop scenarios of food security around the world 6 to 12 months in advance. This map shows projections 
of peak populations in need of emergency food assistance in 2018. Source: adapted from USAID 2018.58 

 

Key Message 3 
 

Climate change, variability, and extreme 
events, in conjunction with other factors, 
can exacerbate conflict, which has impli- 
cations for U.S. national security. Climate 
impacts already affect U.S. military 
infrastructure, and the U.S. military is in- 
corporating climate risks in its planning. 

Climate change and extremes increase risks  
to national security through direct impacts on 
U.S. military infrastructure and by affecting 
factors, including food and water availability, 
that can exacerbate conflict outside U.S. bor- 
ders.59,60 Droughts, floods, storm surges, wild- 
fires, and other extreme events stress nations 
and people through loss of life, displacement 
of populations, and impacts on livelihoods.61,62 

Increases in the frequency and severity of  
such events, as well as other aspects of climate 
change, may require a larger military mission 

Climate and National Security 
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focus on climate-sensitive areas such as coasts, 
drought-prone areas, and the Arctic.60 

 
Climate change is already affecting U.S. 
Department of Defense (DoD) assets by, among 
other impacts, damaging roads, runways, and 
waterfront infrastructure.63 DoD is working to 
both fully understand these threats and incor- 
porate projected climate changes into long- 
term planning to reduce risks and minimize 
impacts. There are many examples of DoD’s 
planning and action for risks to its assets from 
climate change. DoD has performed a compre- 
hensive scenario-driven examination of climate 
risks from sea level rise to all of its coastal 
military sites,64 including atolls in the Pacific 
Ocean.65 In the Arctic, the U.S. Coast Guard and 
Navy are pursuing strategies to respond to the 
changing geopolitical significance resulting 
from the projected absence of summer sea ice 
in the next few decades (Ch. 2: Climate, KM 
7).66,67,68,69 

 
The risks climate change may hold for national 
security more broadly are connected to the 
relationships between climate-related stresses 
on societies and conflict. Direct linkages 
between climate-related stress  and  conflict 
are unclear,70 but climate variability has been 
shown to affect conflict through intermediate 
processes, including resource competition, 
commodity price shocks, and food insecuri- 
ty.71,72 The potential for conflict increases where 
there is a history of civil violence, conflict 
elsewhere in the region, low GDP or economic 
growth, economic shocks, weak governance, 
and lack of access to basic needs.61 For exam- 
ple, droughts around the world in 2010 con- 
tributed to a doubling of global wheat prices in 
2011 and a tripling of bread prices in Egypt.73 

This and other factors, including national 
trade policy and poverty, contributed to the 
civil unrest that ultimately resulted in the 2011 

Egyptian revolution.73 While the 2010 droughts 
were not the sole cause of the revolution, they 
contributed to destabilization of an already 
unstable region. Likewise, drought in Somalia 
has forced herders to sell livestock they could 
not provide for, reducing their incomes and 
leading some to join armed groups.74 Water 
scarcity and climate-related variations in 
water availability can increase tensions and 
conflict between countries.75 In these  and 
other instances, conflict was related to stress 
from climate-related events, but non-climatic 
factors also had an important role.76,77,78,79,80,81,82,83 

However, in some cases, water scarcity and 
variability can result in cooperation rather 
than conflict.61,84 

 
Human migration is another potential national 
security issue. Extreme weather events can 
in some cases result in population displace- 
ment. For example, in 1999 the United States 
granted Temporary Protected Status to 57,000 
Honduran and 2,550 Nicaraguan nationals in 
response to Hurricane Mitch.85 In 2013, more 
than 4 million people were internally displaced 
by Typhoon Haiyan in the Philippines,86 and 
the United States committed 13,400 military 
personnel to the relief effort (Figure 16.3).87 

Six months after Typhoon Haiyan, more than 
200,000 people remained without adequate 
shelter.88 While neither Hurricane Mitch 
nor Typhoon Haiyan was solely attributable 
to climate change,89 tropical cyclones are 
projected to increase in intensity, which would 
increase the risk of forced migration.2,49 Slower 
changes, including sea level rise and reduced 
agricultural productivity related to changes 
in temperature and precipitation patterns, 
could also affect migration patterns.61 However, 
whether migration in response to climate 
change will generally cause or exacerbate 
violent conflict is still uncertain (Ch. 27: Hawai‘i 
& Pacific Islands, KM 6).90,91 
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U.S. Military Relief Efforts in Response to Typhoon Haiyan 
Figure 16.3: The U.S. military conducted humanitarian and disaster relief efforts in the aftermath of Typhoon Haiyan in the 
Philippines in 2013. (upper left) An officer aboard an MH-60R Seahawk helicopter prepares to drop off humanitarian supplies. 
(upper right) A sailor assists a Philippine nurse in treating a patient’s head wound at the Immaculate Conception School refugee 
camp. (lower left) Residents displaced by the storm fill the cargo hold of a C-17 Globemaster aircraft. (lower right) Sailors aboard 
the aircraft carrier USS George Washington move a pallet of drinking water across the flight deck. Photo credit: U.S. Department 
of Defense. 

 

Key Message 4 
 

Shared resources along U.S. land and 
maritime borders provide direct ben- 
efits to Americans and are vulnerable 
to impacts from a changing climate, 
variability, and extremes. Multinational 
frameworks that manage shared re- 
sources are increasingly incorporating 
climate risk in their transboundary deci- 
sion-making processes. 

 
The shared borders of the United States are 
extensive. Land borders with Canada (13 states) 
and Mexico (4 states) include shared rivers 
and lakes. Maritime borders are shared with 
21 countries by Hawai‘i and other island areas, 
including the U.S. Caribbean, the U.S.-Affiliated 
Pacific Islands, and the Arctic region.92,93 

 
Climate variability and change, as well as 
related extreme events across shared U.S. 
borders, can have direct and indirect impacts 
on those living in the United States. For 
example, increased temperatures coupled with 
decreased precipitation in northern Mexico 
can lead to an increase in the intensity of 
dust storms and wildfires, which can cross 

Transboundary Resources 
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the border into the United States.94,95,96,97,98,99 

Similarly, transport of smoke from wildfires 
across the Canadian borders can lead to air 
quality and health concerns in the United 
States (Figure 16.4) (see also Ch. 24: Northwest, 
Box 24.7). Movement of fish species is affected 
by changes in water temperature (Ch. 9: 
Oceans, KM 2; Ch. 20: U.S. Caribbean, KM 2) 
as illustrated by the migration of Pacific hake, 
an economically important fish species that 
migrated northward from the United States to 
Canadian waters due to warmer ocean tem- 
peratures during the 2015 El Niño.100 Addition- 
ally, climate impacts are likely to exacerbate 
cross-border issues related to water, wildlife, 
trade, transportation, health (Box 16.1) (see also 
Ch. 14: Human Health), infrastructure, energy, 

natural resources (such as biodiversity and 
forests), food security, human migration, and 
cultural resources. Shared water resources 
such as rivers and lakes are particularly 
sensitive to changes in precipitation (Figure 
16.4). In the U.S.–Mexico drylands region, large 
areas are projected to become drier (Ch. 23: S. 
Great Plains),101,102 which is expected to present 
increasing demands for water resources on top 
of existing stresses associated with population 
growth.103,104 Along the U.S.–Canada border, 
changing weather patterns along the Columbia 
River, which originates in Canada, affect the 
amount of water available for irrigation, drink- 
ing water supplies, and hydroelectric power 
generation.105 

 

Transboundary Climate-Related Impacts 
 

Figure 16.4: Shown here are examples of climate-related impacts spanning U.S. national borders. (left) The North American 
Drought Monitor map for June 2011 shows drought conditions along the US–Mexico border. Darker colors indicate greater 
intensity of drought (the letters A and H indicate agricultural and hydrological drought, respectively). (right) Smoke from Canadian 
wildfires in 2017 was detected by satellite sensors built to detect aerosols in the atmosphere. The darker orange areas indicate 
higher concentrations of smoke and hazy conditions moving south from British Columbia to the United States. Sources: (left) 
adapted from NOAA 2018,114 (right) adapted from NOAA 2018.115 
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The management process of shared water 
resources is increasingly incorporating climate 
information into the decision-making process. 
Several agreements between countries have 
recently been restructured to consider chang- 
ing weather patterns and related management 
challenges to include climate risk and adaptive 
management into their near- and long-term 
strategies. Along the Mexican border, the 
International Boundary and Water Commis- 
sion, which implements water treaties between 
the United States and Mexico, is exploring an 
array of adaptive water management strategies 
(Ch. 25: Southwest, Box 25.1)106 and utilizes an 
adaptive approach that can help with managing 
climate-related impacts on Colorado River 
water.107 An example of this adaptive manage- 
ment approach is the design of flexible surface 
water and groundwater storage facilities, 
coupled with governance mechanisms that 
continuously account for changing climate 
conditions and water demand. 

 
The International Joint Commission is also 
using adaptive management to address climate 
risks to U.S.–Canadian waters.108 At the subna- 
tional level, the U.S.–Canada Great Lakes Water 
Quality Agreement incorporated a new annex 
in 2012 to identify, quantify, understand, and 
predict the impacts of climate change on Great 
Lakes water quality,109 which has helped foster 
the binational development of new climate 

products for the Great Lakes (Ch. 21: Midwest, 
KM 3). Researchers are incorporating climate 
information into computer models of stream- 
flow and reservoirs along the U.S.–Canada 
border to help decision-makers  understand 
the long-term potential impacts to flood risk 
management, hydropower generation, and 
water availability in the Columbia River Basin.110 

This work is led by U.S. and Canadian agencies 
in partnerships with academic institutions and 
regional entities and can be utilized to inform 
management over long periods of time. These 
examples of including climate risk into the 
management of shared river and lake resources 
can be a model for improving resilience of 
other shared resources, such as fisheries. 

 
In addition to government-to-government 
management of transboundary resources, 
public–private partnerships are increasingly 
helping to manage climate risks associated 
with these resources. For example, numerous 
efforts exist of transboundary collaboration  
in the Rio Grande–Rio Bravo Basin (Ch. 23: S. 
Great Plains, Case Study “Rio Grande Valley 
and Transboundary Issues”), including a bilat- 
eral public–private partnership that has imple- 
mented collaborative science, restoration, and 
monitoring actions to restore the river, with 
climate adaptation as one of the objectives. The 
partnership consists of businesses, nongovern- 
mental conservation organizations, federal and 

Box 16.1: Implications of Global Health Risks for the United States 

Climate effects outside the United States can impact human health within the Nation as well as U.S. interests 
abroad, such as deployed military personnel.116,117 For example, the past two decades have seen the introduction or 
reintroduction into the United States of several vector-borne diseases, including West Nile virus, dengue, chikungun- 
ya, and, most recently, Zika (Ch. 14: Human Health, Box 14.2).118,119,120 While climate is only one factor influencing the 
spread of these diseases, warmer conditions and precipitation changes projected to occur outside and inside the 
United States could influence disease transmission across and within U.S. borders as well as habitat suitability for 
disease-carrying insects and pests.121,122,123 Warmer temperatures provide the opportunity for mosquitoes and other 
disease-carrying pests to increase their geographic range. These changes, in combination with international travel 
patterns, could facilitate establishment of these diseases, especially in South Florida, the Texas–Mexico border area, 

and the U.S. Caribbean Territories.124,125
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state agencies, academic institutions, private 
foundations, and the public from both Mexico 
and the United States.104,111,112,113 The U.S. Carib- 
bean (Ch. 20: U.S. Caribbean, KM 6) and Hawai‘i 
and the Pacific Islands (Ch. 27: Hawai‘i & Pacific 
Islands) are actively engaged with international 

partners to build adaptive capacity and reduce 
risks associated with climate change uncer- 
tainty at the regional level. Such international 
engagement may be more in demand in the 
future to address increasing vulnerabilities of 
transboundary resources. 

 
Box 16.2: Benefits of International Scientific Cooperation on Climate Research 

Cooperation with international science efforts significantly enhances understanding of the impacts of climate 
variability and climate change here in the United States. As described in the Executive Summary of the recently 
published Climate Science Special Report: Fourth National Climate Assessment, Volume I, changes in the Earth’s atmo- 
sphere, oceans, land surface, and ice sheets can have major effects on U.S. climate and interests.3 For example, 
projected sea level changes in the United States are driven in part by changes that occur outside of our borders in 
ice sheets, glaciers, and water temperatures.64,126,127 While localized phenomena, such as coastal subsidence (sink- 
ing of land) and regional variance in sea levels, contribute to global sea level rise, understanding the contribution of 
global-scale changes is critical. Rainfall and temperature patterns in parts of the United States are affected by the 
El Niño–Southern Oscillation (ENSO), a climatic phenomenon that occurs in the tropical Pacific Ocean. Understand- 
ing such global-scale phenomena exceeds the capabilities of any one country alone.3,128 Furthermore, international 
collaboration can enhance institutional adaptive capacity as noted in the U.S. Caribbean chapter (Ch. 20) of this 
report. Through the Global Change Research Act of 1990, Congress recognizes and mandates the importance of U.S. 
engagement and leadership in international scientific research.129 Cooperation with other international and national 
scientific organizations enables the United States to better observe, understand, assess, and manage the impacts of 
climate processes on U.S. interests within and outside of national borders. Examples of benefits to the United States 
of international scientific cooperation include 

• access to observations, data, and knowledge that can shed light on how distant processes affect U.S. climate;130,131,132
 

• opportunities to leverage funding and equipment in the development and maintenance of climate observing systems, 
spreading the cost among countries that participate, including the United States;133,134,135,136

 

• knowledge of climate impacts in regions and sectors of interest to the United States, which can be used to inform 
decisions about humanitarian and development assistance, national security, and transboundary resource 
management;51,137

 

• the ability to shape the priorities of an increasingly global and interdisciplinary research community, which can 
help focus attention and resources on issues relevant to the United States through participation in joint research 
efforts138,139 and assessments;140,141,142 and 

• mechanisms to share technical expertise and experiences with other countries, regions, and communities with respect 
to climate services, adaptation, resilience building, and sustainable development in order to apply lessons learned in 
other regions to U.S. risk management challenges.143,144,145,146
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Box 16.3: How Well Are Climate Risks to U.S. International Interests Understood and Addressed? 

There is high confidence that climate change, variability, and extreme events can result in profound conse- 
quences for U.S. international interests relating to economy and trade (Key Message 1), development and 
humanitarian assistance (Key Message 2), national security (Key Message 3), and managing shared resources 
across our borders (Key Message 4). Projections of climate change indicate that these impacts will continue 
throughout the century and will likely accelerate in the future.3

 

 
Despite this level of confidence, the mechanisms by which climate impacts beyond American borders can 
affect U.S. interests are not uniformly well understood. Some of this uncertainty arises because these impacts 
are part of complex systems, and understanding how climate change, variability, and extremes affect such 
systems can be challenging (Ch. 17: Complex Systems). For example, as noted in Key Message 3, the connec- 
tions between climate and national security are complex because national security can be affected through 
intermediate processes such as resource competition. Such processes are challenging to model and forecast 
because they can be affected by such difficult-to-predict factors as policy decisions, human behavior, and cli- 
mate surprises.147

 

 
In addition, the literature on climate impacts on U.S. international interests is at an early stage of development. 
For example, while there is a relatively well-developed literature on the potential global economic impacts of 
climate change (e.g., IPCC 2014, Mani et al. 20181,148), there is a much more limited literature on the implications 
of such impacts for U.S. businesses, their supply lines, economics, and trade (see Key Message 1). Research on 
the potential consequences of international climate change on U.S. economics and trade, coupled with analyses 
of the impacts of climate change within U.S. borders, could provide key insights to better understand impacts 
and inform actions that promote the well-being of the U.S. economy. 

 
Efforts are underway to adapt to climate change, variability, and extreme events in all four of the Key Message 
topics addressed in this chapter. However, our understanding about the effectiveness of these particular ad- 
aptations and their potential to offset adverse impacts (or take advantage of positive impacts) is quite limited 
(Ch. 28: Adaptation, Figure 28.1). One explanation is that many of these international-related adaptations have 
not been in place long (such as the incorporation of climate change projections into transboundary water 
management efforts; Key Message 4), and there have been relatively few attempts to assess and evaluate their 
effectiveness. In addition, multiple stakeholders (such as other development organizations, host country gov- 
ernments, nongovernmental organizations, and the private sector) and other factors (such as condition of infra- 
structure, governance) may have a role in adaptation beyond our borders, thus making it challenging to assess 
the efficacy of international adaptation actions. Nonetheless, it appears to be highly unlikely that the measures 
implemented so far will fully avoid or offset the adverse impacts of climate change, variability, and extremes on 
U.S. international interests. 
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Traceable Accounts 
Process Description 
The Fourth National Climate Assessment (NCA4) is the first U.S. National Climate Assessment 
(NCA) to include a chapter that addresses the impacts of climate change beyond the borders of the 
United States. This chapter was included in NCA4 in response to comments received during public 
review of the Third National Climate Assessment (NCA3) that proposed that future NCAs include 
an analysis of international impacts of climate change as they relate to U.S. interests. 

This chapter focuses on the implications of international impacts of climate change on U.S. inter- 
ests. It does not address or summarize all international impacts of climate change; that very broad 
topic is covered by Working Group II of the Intergovernmental Panel on Climate Change (IPCC; 
e.g., IPCC 20141). The U.S. government supports and participates in the IPCC process. The more 
focused topic of how U.S. interests can be affected by climate impacts outside of the United States 
is not specifically addressed by the IPCC. 

The topics in the chapter—economics and trade, international development and humanitarian 
assistance, national security, and transboundary resources—were selected because they illustrate 
ways in which U.S. interests can be affected by international climate impacts. These topics cut 
across the world, so the chapter does not focus on impacts in specific regions. 

The transboundary section was added to address climate-related impacts across U.S. borders. 
While the regional chapters address local and regional transboundary impacts, they do not 
address impacts that exist in multiple regions or agreements between the United States and its 
neighbors that create mechanisms for addressing such impacts. 

The science section is part of the chapter because of the importance of international scientific 
cooperation to our understanding of climate science. That topic is not treated as a separate 
section because it is not a risk-based issue and therefore not an appropriate candidate to have 
as a Key Message. 

The U.S. Global Change Research Program (USGCRP) put out a call for authors for the Internation- 
al chapter both inside and outside the Federal Government. The USGCRP asked for nominations 
of and by individuals with experience and knowledge on international climate change impacts and 
implications for the United States as well as experience in assessments such as the NCA. 

All of the authors selected for the chapter have extensive experience in international climate 
change, and several had been authors on past NCAs. Section lead assignments were made based 
on the expertise of the individuals and, for those authors who are current federal employees, 
based on the expertise of the agencies. The author team of ten individuals is evenly divided 
between federal and non-federal personnel. 

The coordinating lead author (CLA) and USGCRP organized two public outreach meetings. The   
first meeting was held at the Wilson Center in Washington, DC, on September 15, 2016, as part of   
the U.S. Agency for International Development’s (USAID) Adaptation Community Meetings and 
solicited input on the outline of the chapter and asked for volunteers to become chapter authors       
or otherwise contribute to the chapter. A public review meeting regarding the International 
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chapter was held on April 6, 2017, at Chemonics in Washington, DC, also as part of USAID’s Adapta- 
tion Community Meetings series. The USGCRP and chapter authors shared information about the 
progress to date of the International chapter and sought input from stakeholders to help inform 
further development of the chapter, as well as to raise general awareness of the process and 
timeline for NCA4. 

The chapter was revised in response to comments from the public and from the National Academy 
of Sciences. The comments were reviewed and discussed by the entire author team and the review 
editor, Dr. Diana Liverman of the University of Arizona. Individual authors drafted responses 
to comments on their sections, while the CLA and the chapter lead (CL) drafted responses to 
comments that pertained to the entire chapter. All comments were reviewed by the CLA and CL. 
The review editor reviewed responses to comments and revisions to the chapter to ensure that all 
comments had been considered by the authors. 

Key Message 1 
 

The impacts of climate change, variability, and extreme events outside the United States are 
affecting and are virtually certain to increasingly affect U.S. trade and economy, including import 
and export prices and businesses with overseas operations and supply chains (very likely, 
medium confidence). 

 
Description of evidence base 
Major U.S. firms are concerned about potential climate change impacts to their business (e.g., 
Peace et al. 2013, Peace and Maher 201510,11 and illustrative examples of SEC filings describing cli- 
mate risks to U.S. companies operating abroad6,7,8,9). Examples include the 2011 food price spike20,21 

and the 2011 Bangkok flooding; corresponding prolonged and cascading impacts to transportation 
and supply chains are documented in the citations related to those issues.23,24,25 Future changes 
in precipitation, temperature, and sea level (among other factors) are very likely, as described 
in USGCRP,3 and are very likely to exacerbate impacts on the U.S. economy and trade, relative 
to past impacts. 

Major uncertainties 

The literature base on the impacts of climate change outside U.S. borders to the U.S. economy and 
trade is significantly smaller than that on climate change impacts within U.S. borders. In particu- 
lar, few studies have attempted to quantify the magnitude of the past impacts of climate variability 
and change that occur outside the United States on U.S. economics and trade. Since there is 
limited literature, it is unclear how climate-driven regional shifts in economic activity will affect 
U.S. economics and trade. Nonetheless, the general nature of the main types of impacts described 
in this section are relatively well known. 

Description of confidence and likelihood 

The portion of the main message pertaining to the future is very likely due to the likelihood of 
future climate change3 and persistence of the sensitivity of the U.S. economy and its trade to 
climate conditions. There is medium confidence that climate change and extremes outside the 
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United States are impacting and will increasingly impact our trade and economy because there 
is insufficient empirical analysis on the causal relationships between past international climate 
variations outside the United States and U.S. economics and trade to provide higher confidence 
at this time. No attempt was made in this chapter to define the net impact of international climate 
change on the U.S. economy and trade; such a statement would have had very low confidence due 
to the current paucity of quantitative analyses. 

Key Message 2 
 

The impacts of climate change, variability, and extreme events can slow or reverse social and 
economic progress in developing countries, thus undermining international aid and investments 
made by the United States and increasing the need for humanitarian assistance and disaster 
relief (likely, high confidence). The United States provides technical and financial support to help 
developing countries better anticipate and address the impacts of climate change, variability, 
and extreme events. 

 
Description of evidence base 
The link between climate variability, natural disasters, and socioeconomic development is fairly 
well established (e.g., UNISDR 2015, Hallegatte et al. 2017149,150), though some uncertainties about 
this relationship remain.151 Humanitarian disasters driven by climate impacts have led to specific 
changes in U.S. development assistance. For instance, the Famine Early Warning Systems Network 
(FEWS NET) was created after the droughts that contributed to mass starvation in Ethiopia in the 
mid-1980s. More recent crises in the Horn of Africa prompted major investments in resilience 
at the USAID.152 

The relationship between climate change and socioeconomic development has been assessed 
extensively by the Intergovernmental Panel on Climate Change through its assessment reports 
(e.g., IPCC 20141). There is some research on the economic costs and benefits from climate change 
(e.g., Nordhaus 1994, Stern et al. 2006, Estrada et al. 2017, Tol 2018153,154,155,156). However, it can be 
difficult to separate climate impacts on a sector from the role of other impacts, such as weak 
governance (Ch. 17: Complex Systems). 

The United States has long invested in socioeconomic development in poorer countries with the 
intention of reducing poverty and encouraging stability. Additionally, stable and prosperous coun- 
tries make for potential trading partners and a reduced risk of conflict. These ideas are presented 
in numerous U.S. development, diplomacy, and security strategies (e.g., U.S. Department of State 
and USAID 2018, 201540,41). There is ample evidence that the United States has invested in measures 
to reduce climate risks and build resilience in developing countries (e.g., USAID 2016157). However, 
this chapter does not assess the efficacy of these efforts. 

Major uncertainties 

Climate change adaptation is an emerging field, and most adaptation work is being carried 
out by governments, local communities, and development practitioners through support from 
development agencies and multilateral institutions. Evaluations of the effectiveness of adaptation 
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interventions are generally conducted at the project level for its funder, and results may not be 
publicized. Some research is emerging on the economic benefits of adaptation interventions (e.g., 
Hallegatte et al. 2016, Chambwera et al. 2014158,159). Over time, it is likely that more activities will be 
implemented, more evaluations will be conducted, and the evidence base will grow. 

Description of confidence and likelihood 

There is high confidence in the Key Message. There is ample evidence that the impacts of climate 
variability and change negatively affect the economies and societies of developing countries and 
set back development efforts. There is also evidence of these impacts leading to additional U.S. 
interventions, whether through humanitarian or other means, in some places. 

Key Message 3 
 

Climate change, variability, and extreme events, in conjunction with other factors, can 
exacerbate conflict, which has implications for U.S. national security (medium confidence). 
Climate impacts already affect U.S. military infrastructure, and the U.S. military is incorporating 
climate risks in its planning (high confidence). 

 
Description of evidence base 
Based on an assessment of a wide range of scientific literature on climate and security, 
multiple national security reports have framed climate change as a stressor on national secu- 
rity.59,60,62,160,161,162,163 A large body of research has examined how stress due to adverse climatic con- 
ditions may affect human and national security in relation to conflict. While a few studies clearly    
link climatic stress to insecurity conflict,164,165 more often studies do not find a measurable direct 
response.70,77,82,166,167,168,169,170 Instead, the  relationship  between  climate  and  conflict  is  often  framed 
as climate stress affecting conflict through intermediate processes,  including  commodity  price 
shocks and food and water security, which are themselves documented stressors on conflict.61,71,72 

Many studies focus on Africa, but evidence exists throughout the world.76,77,78,80,81,82,83 Additional 
complexity arises from evidence of a range of societal responses to resource scarcity such as that 
brought on by climate change and natural variability.61 

The U.S. military is observing climate change impacts to its infrastructure and is taking a scenario- 
driven, risk-based approach to address resultant challenges. Exceedance probability plots of the 
type used to support engineering siting and design analysis were used but modified to include 
responses to time-specific tidal phases and historical trends to create an estimate of the “present 
day” exceedance probability. The hindcast projections kept pace with an Intermediate-Low sea 
level rise scenario of approximately 5 mm/year (about 0.2 inches/year).171 The focus for Depart- 
ment of Defense (DoD) infrastructure management, however, is the resultant increased trend for 
exceedances that would challenge infrastructure functional integrity (such as negative impacts 
to critical roadways and airfields).171 In an effort to understand risks to the integrity of coastal 
facilities more broadly, the DoD uses a scenario-driven risk management approach to support 
decision-making regarding its coastal installations and facilities. The scenario approaches provide 
a framework for the inherent uncertainties of future events while providing decision support. 
Scenarios are not simply predictions about the future but rather plausible futures bounded by 
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observations and the constraints of physics. Using scenarios, decision-makers can then examine 
risks through the lens of event impacts, costs of additional analysis, and the results of inaction. In 
this way, inaction is recognized as an important decision in its own right.64 

Major uncertainties 

The impact and risk of conflict related to climate change is difficult to separate from other 
drivers of environmental vulnerability, including economic activity, education, health, and food 
security.61,70 There is currently a lack of robust theories that fully explain causality and associations 
between climate change and conflict. 

Datasets on climate change, conflict, and security are often limited in length and pose statistical 
difficulties.70 However, recent advances in statistical analysis have begun to allow the quantifica- 
tion of indirect effects of multiple variables connecting climatic pressures and violence.172 These 
results are preliminary, mostly due to a lack of necessary data and the difficulty of quantifying 
relevant social variables, such as identity politics or grievances. There is a widespread pattern of 
examining instances of conflict for drivers, precluding the possibility of finding that climate- 
related stressors did not result in conflict. There is a need to analyze situations where no  
conflict occurred despite existing climate risks. Intercomparison of quantitative studies of the 
link between conflict and adverse climate conditions is complicated because the wide range of 
climatic and social indicators differ in spatial and temporal coverage, often due to a lack of data 
availability. Prehistoric and premodern evidence of the impact of climate change on conflict is not 
necessarily relevant to modern societies,167 and some of the climate shifts currently being faced  
are unprecedented over centuries to millennia.170 Therefore, the possible existence of a relation- 
ship is better understood than its particulars and is best expressed in the formulation that climate 
extremes and change can exacerbate conflict. 

The ongoing Syrian conflict is often framed in terms of climate change. However, it is not possible 
to draw conclusions on the role of climate in the outcome of an ongoing conflict. Moreover, the 
role of climate variability (such as drought), the contribution of climate change to such variability, 
and the contribution of climate variability to the subsequent conflict is a matter of active debate in 
the assessed literature.173,174,175,176 

The documented impacts of climate on national security largely occur through processes associ- 
ated with natural climate variability, such as drought, El Niño, and tropical storms. While observed 
and projected increases in extreme weather and climate events have been attributed to climate 
change, uncertainty remains.48,177,178,179 

Similarly, additional studies are underway to determine the potential impacts of climate change on 
DoD resources and mission capabilities. Many of these efforts seek to assess the vulnerability of 
infrastructure to climate change across a wide variety of ecosystems.180,181,182 

Description of confidence and likelihood 

There is consensus on framing climate as a stressor on other factors contributing to national 
security. Given the knowledge of factors that increase the risk of civil wars, and evidence that 
some of these factors are sensitive to climate change, the IPCC found justifiable concern that 
“climate change or changes in climate variability [could] increase the risk of armed conflict in 
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certain circumstances.”61 However, the literature examining specific causality does not result in 
a high confidence conclusion to link climate and conflict, which is reflected in the Key Message 
medium confidence assignment. Multiple schools of thought exist on the mechanisms and degree   
of linkages, and models are incomplete. Data are improving and evidence continues to emerge, but 
the inconsistent evidence limits our ability to assign a probability to this Key Message. 

Nonetheless, with regard to climate impacts on physical infrastructure, the DoD observes changes 
in the infrastructure at its installations that are consistent with climate change. In keeping with 
sound stewardship and prudence, it uses scenario-driven approaches to identify areas of risk 
while continuing to research and provide resilient responses to the observed changes. 

Key Message 4 
 

Shared resources along U.S. land and maritime borders provide direct benefits to Americans 
and are vulnerable to impacts from a changing climate, variability, and extremes (very likely, 
high confidence). Multinational frameworks that manage shared resources are increasingly 
incorporating climate risk in their transboundary decision-making processes. 

 
Description of evidence base 
In the U.S.–Mexico drylands region, large areas are projected to become drier,102 which will 
present increasing demands for water resources on top of existing stresses related to population 
growth.103,104  There is high confidence that resources critical to livelihoods at borders between     
the United States and neighboring nations are becoming increasingly vulnerable to impacts 
of climate change and that the multinational frameworks that manage these resources are 
increasingly incorporating research-based understanding of the climate risks that these resourc- 
es face. The literature supporting the Key Message is substantial, increasing in quantity and 
robustness.96,97,98,99,100,105 The current impacts are well documented, and the projections of future 
impacts are aligned with the robust projections of future climate variability.94,95 The literature  
also provides examples of bilateral agreements and management frameworks in place to manage 
these resources. Examples of the impacts include the migration northward into Canadian waters 
of Pacific hake, a migratory species sensitive to water temperature, during periods of warmer 
water temperature.100 One example of a bilateral management framework is the inclusion in 2012 
of a climate change impacts annex to the U.S.–Canada Great Lakes Water Quality Agreement to 
identify, quantify, understand, and predict climate change impacts on the water quality of the 
Great Lakes.109 

Major uncertainties 

Impacts on shared resources along U.S. international borders are already being experienced. 
Uncertainties about the impacts are aligned with the uncertainties associated with projections of 
future climate variability. As elaborated upon in multiple regional chapters of this report (Ch. 18: 
Northeast; Ch. 20: U.S. Caribbean; Ch. 21: Midwest; Ch. 24: Northwest; Ch. 25: Southwest; Ch. 26: 
Alaska; Ch. 27: Hawai‘i & Pacific Islands), weather patterns in these border regions are projected to 
continue to change with varying degrees of likelihood and confidence. 

Transboundary Resources 
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Description of confidence and likelihood 

There is high confidence in the main message. There is sufficient empirical analysis on the rela- 
tionships between past climate variations along U.S. international borders. The statement about 
the likelihood that impacts on shared resources will affect the bilateral frameworks established to 
manage these resources is based on expert understanding of the integration of climate risk into 
existing and future frameworks. 



617 U.S. Global Change Research Program Fourth National Climate Assessment 

16 | Climate Effects on U.S. International Interests - References 
 

 

 

References 
1. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, 

and Vulnerability. Part A: Global and Sectoral 
Aspects. Contribution of Working Group II to the 
Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change. Field, C.B., V.R. Barros, 
D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, 
M.  Chatterjee,  K.L.  Ebi,  Y.O.   Estrada,  R.C.   Genova, 
B.  Girma,  E.S.  Kissel,  A.N.  Levy,  S.   MacCracken, 
P.R. Mastrandrea, and L.L. White, Eds. Cambridge 
University Press, Cambridge, UK and New York, NY, 
1132 pp. http://www.ipcc.ch/report/ar5/wg2/ 

 
2. IPCC, 2012: Managing the Risks of Extreme Events 

and Disasters to Advance Climate Change Adaptation. 
A Special Report of Working Groups I and II of the 
Intergovernmental Panel on Climate Change. Field, 
C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. 
Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. 
Allen, M. Tignor, and P.M. Midgley, Eds. Cambridge 
University Press, Cambridge, UK and New York, NY, 
582  pp.  https://www.ipcc.ch/pdf/special-reports/ 
srex/SREX_Full_Report.pdf 

 
3. USGCRP, 2017: Climate Science Special Report: Fourth 

National Climate Assessment, Volume I. Wuebbles, 
D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. 
Stewart, and T.K. Maycock, Eds. U.S. Global Change 
Research Program, Washington, DC, 470 pp. http:// 
dx.doi.org/10.7930/J0J964J6 

 
4. Lough, B.J., 2013: International Volunteering from 

the United States Between 2004 and 2012. CSD 
Publication No. 13-14. Center for Social Development, 
St.     Louis,     MO,     7     pp.     https://csd.wustl.edu/ 
Publications/Documents/RB13-14.pdf 

 
5. Philanthropy Roundtable, 2018: Percentage of U.S. 

Donations Going to Various Causes [Graph 2 on web 
page]. Philanthropy Roundtable, Washington, DC. 
https://www.philanthropyroundtable.org/almanac/ 
statistics/u.s.-generosity 

 
6. SEC, 2014: Filing Form 10-K: Coca Cola Bottling 

Co. Consolidated. U.S. Securities and Exchange 
Commission  (SEC).  https://www.sec.gov/Archives/ 
edga r/da t a/317540/ 00 01193125141 00068/ 
d642117d10k.htm 

 
7. SEC, 2014: Filing Form 20-F:  Marine  Harvest  

ASA. U.S. Securities and Exchange Commission 
(SEC). https://www.sec.gov/Archives/edgar/ 
da ta /1578526 / 0 00 1 10 46 5 91 4 032214  / a14- 
11076_120f.htm 

 

 
8. SEC, 2016: Filing Form 10-K: PepsiCo, Inc. 

U.S. Securities and Exchange Commission (SEC).
 https://www.sec.gov/Archives/ 
ed g a r/d a t a/774 7 6/ 000007 747 61 60 00 06 6/ 
pepsico201510-k.htm 

 
9. SEC, 2016: Filing Form 10-K: The Kraft Heinz 

Company. U.S. Securities and Exchange Commission 
(SEC). https://www.sec.gov/Archives/edgar/ 
data/1637459/000163745916000100/khc10k1316.htm 

 
10. Peace, J., M. Crawford, and S. Seidel, 2013: Weathering 

the Storm: Building Business Resilience to Climate 
Change. Center for Climate and Energy Solutions 
(C2ES),   Arlington,   VA,   94   pp.   https://www.c2es. 
org/document/weathering-the-storm-building- 
business-resilience-to-climate-change-2/ 

 
11. Peace, J. and K. Maher, 2015: Weathering the Next 

Storm: A Closer Look at Business Resilience. Center 
for Climate and Energy Solutions (C2ES), Arlington,     
VA,     58     pp.     https://www.c2es.org/ 
publications/weathering-next-storm-closer-look- 
business-resilience 

 
12. Leclère, D., P. Havlík, S. Fuss, E. Schmid, A. Mosnier, 

B. Walsh, H. Valin, M.  Herrero,  N.  Khabarov, 
and M. Obersteiner, 2014: Climate change 
induced transformations of agricultural systems: 
insights from a global model. Environmental 
Research    Letters,    9    (12),    124018.    http://dx.doi. 
org/10.1088/1748-9326/9/12/124018 

 
13. Costinot, A., D. Donaldson, and C. Smith, 2016: 

Evolving comparative advantage and the impact of 
climate change in agricultural markets: Evidence 
from 1.7 million fields around the world. Journal of 
Political   Economy,   124   (1),   205-248.   http://dx.doi. 
org/10.1086/684719 

 
14. ACIA, 2005: Arctic Climate Impact Assessment. ACIA 

Secretariat and Cooperative Institute for Arctic 
Research.  Press,  C.U.,  1042  pp.  http://www.acia.uaf. 
edu/pages/scientific.html 

 
15. Cruz, A.M. and E. Krausmann, 2013: Vulnerability of 

the oil and gas sector to climate change and extreme 
weather events. Climatic Change, 121 (1), 41-53. http:// 
dx.doi.org/10.1007/s10584-013-0891-4 

http://www.ipcc.ch/report/ar5/wg2/
https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf
https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf
http://dx.doi.org/10.7930/J0J964J6
http://dx.doi.org/10.7930/J0J964J6
https://csd.wustl.edu/Publications/Documents/RB13-14.pdf
https://csd.wustl.edu/Publications/Documents/RB13-14.pdf
https://www.philanthropyroundtable.org/almanac/statistics/u.s.-generosity
https://www.philanthropyroundtable.org/almanac/statistics/u.s.-generosity
https://www.philanthropyroundtable.org/almanac/statistics/u.s.-generosity
https://www.sec.gov/Archives/edgar/data/317540/000119312514100068/d642117d10k.htm
https://www.sec.gov/Archives/edgar/data/317540/000119312514100068/d642117d10k.htm
https://www.sec.gov/Archives/edgar/data/317540/000119312514100068/d642117d10k.htm
https://www.sec.gov/Archives/edgar/data/1578526/000110465914032214/a14-11076_120f.htm
https://www.sec.gov/Archives/edgar/data/1578526/000110465914032214/a14-11076_120f.htm
https://www.sec.gov/Archives/edgar/data/1578526/000110465914032214/a14-11076_120f.htm
https://www.sec.gov/Archives/edgar/data/1578526/000110465914032214/a14-11076_120f.htm
https://www.sec.gov/Archives/edgar/data/77476/000007747616000066/pepsico201510-k.htm
https://www.sec.gov/Archives/edgar/data/77476/000007747616000066/pepsico201510-k.htm
https://www.sec.gov/Archives/edgar/data/77476/000007747616000066/pepsico201510-k.htm
https://www.sec.gov/Archives/edgar/data/1637459/000163745916000100/khc10k1316.htm
https://www.sec.gov/Archives/edgar/data/1637459/000163745916000100/khc10k1316.htm
https://www.c2es.org/document/weathering-the-storm-building-business-resilience-to-climate-change-2/
https://www.c2es.org/document/weathering-the-storm-building-business-resilience-to-climate-change-2/
https://www.c2es.org/document/weathering-the-storm-building-business-resilience-to-climate-change-2/
https://www.c2es.org/publications/weathering-next-storm-closer-look-business-resilience
https://www.c2es.org/publications/weathering-next-storm-closer-look-business-resilience
https://www.c2es.org/publications/weathering-next-storm-closer-look-business-resilience
http://dx.doi.org/10.1088/1748-9326/9/12/124018
http://dx.doi.org/10.1088/1748-9326/9/12/124018
http://dx.doi.org/10.1086/684719
http://dx.doi.org/10.1086/684719
http://www.acia.uaf.edu/pages/scientific.html
http://www.acia.uaf.edu/pages/scientific.html
http://dx.doi.org/10.1007/s10584-013-0891-4
http://dx.doi.org/10.1007/s10584-013-0891-4


618 U.S. Global Change Research Program Fourth National Climate Assessment 

16 | Climate Effects on U.S. International Interests - References 
 

 

 
16. von Braun, J. and G. Tadesse, 2012: Global Food 

Price Volatility and Spikes: An Overview of Costs, 
Causes, and Solutions. ZEF-Discussion Papers on 
Development Policy No. 161. University of Bonn, 
Center for Development Research (ZEF), Bonn, 
Germany, 42 pp. http://ssrn.com/abstract=1992470 

 
17. Ubilava, D., 2016: The Role of El Niño Southern 

Oscillation in Commodity Price Movement and 
Predictability. Working Paper 2016-10. University  
of Sydney, School of Economics, Syndey, Australia, 
36,        vii        pp.        https://EconPapers.repec.org/ 
RePEc:syd:wpaper:2016-10 

 
18. Cai, X., X. Zhang, P.H. Noël, and M. Shafiee-Jood, 

2015: Impacts of climate change on agricultural 
water management: A review. Wiley Interdisciplinary 
Reviews:    Water,    2    (5),    439-455.    http://dx.doi. 
org/10.1002/wat2.1089 

 
19. Dombrowski, U. and S. Ernst, 2014: Effects of climate 

change on factory life cycle. Procedia CIRP, 15, 337- 
342. http://dx.doi.org/10.1016/j.procir.2014.06.012 

 
20. Trostle, R., D. Marti, S. Rosen, and P. Westcott, 2011: 

Why Have Food Commodity Prices Risen Again? 
OutlookNo.WRS-1103.U.S.DepartmentofAgriculture, 
Economic  Research  Service,  29  pp.  https://www. 
ers.usda.gov/webdocs/publications/40481/7392_ 
wrs1103.pdf?v=0 

 
21. Vocke, G., 2015: U.S. 2013/14 Wheat Year in Review: 

Smaller Supplies and Higher Exports Lower Ending 
Stocks. WHS-2015-1. USDA Economic Research 
Service,  Washington,  DC,  21  pp.  https://www.ers. 
usda.gov/publications/pub-details/?pubid=40302 

 
22. Zhang, Y.-q., Y.-x. Cai, R.H. Beach, and B.A. McCarl, 

2014: Modeling climate change impacts on the US 
agricultural exports. Journal of Integrative Agriculture, 
13        (4),        666-676.        http://dx.doi.org/10.1016/ 
S2095-3119(13)60699-1 

 
23. Pappis, C.P., 2010: Climate Change, Supply Chain 

Management and Enterprise  Adaptation:  Implications  
of Global Warming on the Economy. IGI Global, 
Hershey, PA, 354 pp. 

 
24. Jira, C. and M.W. Toffel, 2013: Engaging supply 

chains in climate change. Manufacturing & Service 
Operations   Management,   15   (4),   559-577.   http:// 
dx.doi.org/10.1287/msom.1120.0420 

25. Abe, M. and L. Ye, 2013: Building resilient supply 
chains against natural disasters: The cases of Japan 
and Thailand. Global Business Review, 14 (4), 567-586. 
http://dx.doi.org/10.1177/0972150913501606 

 
26. Smith, L.C. and S.R. Stephenson, 2013: New Trans- 

Arctic shipping routes navigable by midcentury. 
Proceedings of the National Academy of Sciences of the 
United States of America, 110 (13), E1191–E1195. http:// 
dx.doi.org/10.1073/pnas.1214212110 

 
27. Ørts Hansen, C., P. Grønsedt, C. Lindstrøm Graversen, 

and C. Hendriksen, 2016: Arctic Shipping – Commercial 
Opportunities and Challenges. Copenhagen Business 
School, CBS Maritime, Copenhagen, Denmark, 
93    pp.    https://services-webdav.cbs.dk/doc/CBS. 
dk/Arctic%20Shipping%20-%20Commercial%20 
Opportunities%20and%20Challenges.pdf 

 
28. Khon, V.C., I.I. Mokhov, and V.A. Semenov, 2017: 

Transit navigation through Northern Sea Route from 
satellite data and CMIP5 simulations. Environmental 
Research    Letters,    12    (2),    024010.    http://dx.doi. 
org/10.1088/1748-9326/aa5841 

 
29. TCFD, 2017: Final Report:  Recommendations  of 

the Task Force on Climate-Related Financial 
Disclosures. Task Force on Climate-Related 
Financial Disclosures (TCFD), Basel, Switzerland, 
66      pp.      https://www.fsb-tcfd.org/publications/ 
final-recommendations-report/ 

 
30. Killeen, T.J. and G. Harper,  2016:  Coffee  in  the 

21st Century: Will Climate Change and Increased 
Demand Lead to New Deforestation? Conservation 
International,   Arlington,   VA,   37   pp.   https://www. 
conservation.org/publications/Documents/CI- 
Coffee-Report.pdf 

 
31. Thorpe, J. and S. Fennell, 2012: Climate Change Risks 

and Supply Chain Responsibility. Oxfam Discussion 
Papers Oxfam International, Oxford, United Kingdom, 
23   pp.   https://www.oxfam.org/sites/www.oxfam. 
org/files/dp-climate-change-risks-supply-chain- 
responsibility-27062012-en.pdf 

 
32. World Wildlife Federation, 2013: The Coca-Cola 

Company and World Wildlife Fund Expand Global 
Partnership, Announce New Environmental Goals. 
World Wildlife Federation, Washington, DC. 
https://www.worldwildlife.org/press-releases/ 
the-coca-cola-company-and-world-wildlife- 
fund-expand-global-partnership-announce-new- 
environmental-goals 

http://ssrn.com/abstract%3D1992470
http://dx.doi.org/10.1002/wat2.1089
http://dx.doi.org/10.1002/wat2.1089
http://dx.doi.org/10.1016/j.procir.2014.06.012
https://www.ers.usda.gov/webdocs/publications/40481/7392_wrs1103.pdf?v=0
https://www.ers.usda.gov/webdocs/publications/40481/7392_wrs1103.pdf?v=0
https://www.ers.usda.gov/webdocs/publications/40481/7392_wrs1103.pdf?v=0
https://www.ers.usda.gov/publications/pub-details/?pubid=40302
https://www.ers.usda.gov/publications/pub-details/?pubid=40302
http://dx.doi.org/10.1016/S2095-3119(13)60699-1
http://dx.doi.org/10.1016/S2095-3119(13)60699-1
http://dx.doi.org/10.1287/msom.1120.0420
http://dx.doi.org/10.1287/msom.1120.0420
http://dx.doi.org/10.1177/0972150913501606
http://dx.doi.org/10.1177/0972150913501606
http://dx.doi.org/10.1073/pnas.1214212110
http://dx.doi.org/10.1073/pnas.1214212110
https://services-webdav.cbs.dk/doc/CBS.dk/Arctic%20Shipping%20-%20Commercial%20Opportunities%20and%20Challenges.pdf
https://services-webdav.cbs.dk/doc/CBS.dk/Arctic%20Shipping%20-%20Commercial%20Opportunities%20and%20Challenges.pdf
https://services-webdav.cbs.dk/doc/CBS.dk/Arctic%20Shipping%20-%20Commercial%20Opportunities%20and%20Challenges.pdf
https://services-webdav.cbs.dk/doc/CBS.dk/Arctic%20Shipping%20-%20Commercial%20Opportunities%20and%20Challenges.pdf
http://dx.doi.org/10.1088/1748-9326/aa5841
http://dx.doi.org/10.1088/1748-9326/aa5841
https://www.fsb-tcfd.org/publications/final-recommendations-report/
https://www.fsb-tcfd.org/publications/final-recommendations-report/
https://www.conservation.org/publications/Documents/CI-Coffee-Report.pdf
https://www.conservation.org/publications/Documents/CI-Coffee-Report.pdf
https://www.conservation.org/publications/Documents/CI-Coffee-Report.pdf
https://www.oxfam.org/sites/www.oxfam.org/files/dp-climate-change-risks-supply-chain-responsibility-27062012-en.pdf
https://www.oxfam.org/sites/www.oxfam.org/files/dp-climate-change-risks-supply-chain-responsibility-27062012-en.pdf
https://www.oxfam.org/sites/www.oxfam.org/files/dp-climate-change-risks-supply-chain-responsibility-27062012-en.pdf
https://www.worldwildlife.org/press-releases/the-coca-cola-company-and-world-wildlife-fund-expand-global-partnership-announce-new-environmental-goals
https://www.worldwildlife.org/press-releases/the-coca-cola-company-and-world-wildlife-fund-expand-global-partnership-announce-new-environmental-goals
https://www.worldwildlife.org/press-releases/the-coca-cola-company-and-world-wildlife-fund-expand-global-partnership-announce-new-environmental-goals
https://www.worldwildlife.org/press-releases/the-coca-cola-company-and-world-wildlife-fund-expand-global-partnership-announce-new-environmental-goals
https://www.worldwildlife.org/press-releases/the-coca-cola-company-and-world-wildlife-fund-expand-global-partnership-announce-new-environmental-goals
https://www.worldwildlife.org/press-releases/the-coca-cola-company-and-world-wildlife-fund-expand-global-partnership-announce-new-environmental-goals
https://www.worldwildlife.org/press-releases/the-coca-cola-company-and-world-wildlife-fund-expand-global-partnership-announce-new-environmental-goals


619 U.S. Global Change Research Program Fourth National Climate Assessment 

16 | Climate Effects on U.S. International Interests - References 
 

 

 
33. UN Global Compact, 2015: The Business Case for 

Responsible Corporate Adaptation: Strengthening 
Private Sector and Community Resilience. A Caring 
for Climate Report. United Nations Global Compact, 
94          pp.          https://www.unglobalcompact.org/ 
library/3701 

 
34. USAID, 2012: Addressing Climate  Change  Impacts  

on Infrastructure: Preparing for Change—Overview. 
U.S. Agency for International Development (USAID), 
Washington,   DC,   7   pp.   https://www.climatelinks. 
org/resources/addressing-climate-change-  
impacts-infrastructure-preparing-change-overview 

 
35. Reiling, K., C. Brady, J. Furlow, and M. Ackley, 2015: 

Climate Change and Conflict: An Annex to the 
USAID Climate-Resilient Development Framework 
U.S. Agency for International Development (USAID),    
Washington,    DC,    41    pp.    https://www. 
usaid.gov/sites/default/files/documents/1866/ 
ClimateChangeConf lictAnnex_2015%2002%20 
25% 2C% 20Final% 20with% 20date% 20for% 20 
Web.pdf 

 
36. Brown, M.E., E.R. Carr, K.L. Grace, K. Wiebe, C.C. 

Funk, W. Attavanich, P. Backlund, and L. Buja, 2017: 
Do markets and trade help or hurt the global food 
system adapt to climate change? Food Policy, 68, 154- 
159. http://dx.doi.org/10.1016/j.foodpol.2017.02.004 

 
37. Tamiotti, L., R. Teh, V. Kulaçoğlu, A. Olhoff, B. Simmons, 

and H. Abaza, 2009: Trade and Climate Change. WTO- 
UNEP Report. World Trade Organization Secretariat, 
Switzerland,  166  pp.  https://www.wto.org/english/ 
res_e/booksp_e/trade_climate_change_e.pdf 

 
38. Freeman, J. and A. Guzman, 2011: Climate change and 

U.S. interests.EnvironmentalLawReview,41 (8), 10695- 
10711.          https://elr.info/news-analysis/41/10695/ 
climate-change-and-us-interests 

 
39. Averchenkova, A., F. Crick, A. Kocornik-Mina, H. 

Leck, and S. Surminski, 2016: Multinational and large 
national corporations and climate adaptation: Are 
we asking the right questions? A review of current 
knowledge and a new research perspective. Wiley 
Interdisciplinary Reviews: Climate Change, 7 (4), 517- 
536. http://dx.doi.org/10.1002/wcc.402 

 
40. U.S. Department of State and USAID, 2018: FY 2018- 

2022 Department of State and USAID Joint Strategic 
Plan. Washington, DC, 61 pp. https://www.state.gov/ 
s/d/rm/rls/dosstrat/2018/index.htm 

41. U.S. Department of State and USAID, 2015: Enduring 
Leadership in a Dynamic World. Quadrennial 
Diplomacy and Development Review. U.S. State 
Department and U.S. Agency for International 
Development (USAID), Washington, DC, 88 pp. 
https://www.hsdl.org/?abstract&did=767554 

 
42. FAO, 2016: 2016 The State of Food and Agriculture: 

Climate Change, Agriculture and Food Security. Food 
and Agriculture Organization (FAO) of the United 
Nations,  Rome,  Italy,  xvii,  173  pp.  http://www.fao. 
org/3/a-i6030e.pdf 

 
43. MCC, 2010: Environmental Guidelines. DCO-2012- 

1.2. Millennium Challenge Corporation (MCC), 
Washington,    DC,    17    pp.    https://www.mcc.gov/ 
resources/doc/environmental-guidelines 

 
44. International Finance Corporation, n.d.: Performance 

Standards on Environmental and Social Sustainability 
[web  site].  World  Bank,  Washington,  DC.  https:// 
www.ifc.org/performancestandards 

 
45. USAID, 2017: Climate Risk Management for USAID 

Projects and Activities:  A  Mandatory  Reference 
for ADS Chapter 201. U.S. Agency for International 
Development (USAID), Washington, DC, 25 pp. 
https: //w w w.usaid.gov/sites/default/files/ 
documents/1868/201mal_042817.pdf 

 
46. ECLAC, 1999: Honduras: Assessment of the Damage 

Caused by Hurricane Mitch, 1998: Implications 
for Economic and Social Development and  for 
the Environment. LC/MEX/L.367. United Nations 
Economic Commission for Latin America and the 
Caribbean (ECLAC), Vitacura, Santiago de Chile, 20 pp. 
https://repositorio.cepal.org/handle/11362/25506 

 
47. Lichtenstein, J., 2001: After Hurricane Mitch: United 

States Agency for International Development 
Reconstruction and the Stockholm Principles. 
Briefing Paper 01, issue #1. Oxfam American, 
Boston,  MA,  47  pp.  http://pdf.usaid.gov/pdf_docs/ 
PCAAB248.pdf 

 
48. Wehner, M.F., J.R. Arnold, T. Knutson, K.E. Kunkel, and 

A.N. LeGrande, 2017: Droughts, floods, and wildfires. 
Climate Science Special Report: Fourth National 
Climate Assessment, Volume I. Wuebbles, D.J., D.W. 
Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and 
T.K. Maycock, Eds. U.S. Global Change Research 
Program,   Washington,   DC,   USA,   231-256.   http:// 
dx.doi.org/10.7930/J0CJ8BNN 

https://www.unglobalcompact.org/library/3701
https://www.unglobalcompact.org/library/3701
https://www.climatelinks.org/resources/addressing-climate-change-impacts-infrastructure-preparing-change-overview
https://www.climatelinks.org/resources/addressing-climate-change-impacts-infrastructure-preparing-change-overview
https://www.climatelinks.org/resources/addressing-climate-change-impacts-infrastructure-preparing-change-overview
https://www.usaid.gov/sites/default/files/documents/1866/ClimateChangeConflictAnnex_2015%2002%2025%2C%20Final%20with%20date%20for%20Web.pdf
https://www.usaid.gov/sites/default/files/documents/1866/ClimateChangeConflictAnnex_2015%2002%2025%2C%20Final%20with%20date%20for%20Web.pdf
https://www.usaid.gov/sites/default/files/documents/1866/ClimateChangeConflictAnnex_2015%2002%2025%2C%20Final%20with%20date%20for%20Web.pdf
https://www.usaid.gov/sites/default/files/documents/1866/ClimateChangeConflictAnnex_2015%2002%2025%2C%20Final%20with%20date%20for%20Web.pdf
https://www.usaid.gov/sites/default/files/documents/1866/ClimateChangeConflictAnnex_2015%2002%2025%2C%20Final%20with%20date%20for%20Web.pdf
https://www.usaid.gov/sites/default/files/documents/1866/ClimateChangeConflictAnnex_2015%2002%2025%2C%20Final%20with%20date%20for%20Web.pdf
https://www.usaid.gov/sites/default/files/documents/1866/ClimateChangeConflictAnnex_2015%2002%2025%2C%20Final%20with%20date%20for%20Web.pdf
http://dx.doi.org/10.1016/j.foodpol.2017.02.004
https://www.wto.org/english/res_e/booksp_e/trade_climate_change_e.pdf
https://www.wto.org/english/res_e/booksp_e/trade_climate_change_e.pdf
https://elr.info/news-analysis/41/10695/climate-change-and-us-interests
https://elr.info/news-analysis/41/10695/climate-change-and-us-interests
http://dx.doi.org/10.1002/wcc.402
https://www.state.gov/s/d/rm/rls/dosstrat/2018/index.htm
https://www.state.gov/s/d/rm/rls/dosstrat/2018/index.htm
https://www.hsdl.org/?abstract&amp;did=767554
https://www.hsdl.org/?abstract&amp;did=767554
http://www.fao.org/3/a-i6030e.pdf
http://www.fao.org/3/a-i6030e.pdf
https://www.mcc.gov/resources/doc/environmental-guidelines
https://www.mcc.gov/resources/doc/environmental-guidelines
https://www.ifc.org/performancestandards
https://www.ifc.org/performancestandards
https://www.usaid.gov/sites/default/files/documents/1868/201mal_042817.pdf
https://www.usaid.gov/sites/default/files/documents/1868/201mal_042817.pdf
https://repositorio.cepal.org/handle/11362/25506
https://repositorio.cepal.org/handle/11362/25506
http://pdf.usaid.gov/pdf_docs/PCAAB248.pdf
http://pdf.usaid.gov/pdf_docs/PCAAB248.pdf
http://dx.doi.org/10.7930/J0CJ8BNN
http://dx.doi.org/10.7930/J0CJ8BNN


16 | Climate Effects on U.S. International Interests - References 

620 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 
 

49. Kossin, J.P., T. Hall, T. Knutson, K.E. Kunkel, R.J. Trapp, 58. FEWS NET, 2018: Large Assistance Needs and Famine 
 D.E. Waliser, and M.F. Wehner, 2017: Extreme storms. 

Climate   Science   Special   Report:   Fourth   National 
Climate  Assessment,  Volume  I.  Wuebbles,  D.J., D.W. 

 Risk Continue in 2018 [Infographic]. Famine Early 
Warning  System  Network  (FEWS  NET)  and  U.S. 
Agency for International Development. https://fews. 

 Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and  net/sites/default/files/Food_assistance_needs_ 
 T.K. Maycock, Eds. U.S. Global Change Research  Peak_Needs_2018-Final.pdf 
 Program,   Washington,   DC,   USA,   257-276.   http:// 

dx.doi.org/10.7930/J07S7KXX 
 

59. 
 
Hearing on the 2014 Quadrennial Defense Review, 

   2014: United States Congress, One Hundred 
50. FEWS NET, 2017: Famine Early Warning Systems  Thirteenth,    Second    Sess.    https://www.gpo.gov/ 

 Network (FEWS NET) web site. USAID, FEWS NET,  fdsys/pkg/CHRG-113hhrg87865/html/CHRG- 
 [Washington, DC]. http://www.fews.net/  113hhrg87865.htm 

51. Verdin, J.P., 2016: How Ethiopia averted widespread 60. National Intelligence Council, 2016: Implications for 
 famine: Resilience in the face of El Niño and a 

historic drought. In USDA–USAID 2016 International 
Food  Assistance  and  Food  Security  Conference, Des 

 US National Security of Anticipated Climate Change. 
NIC   WP   2016-01.   National   Intelligence  Council, 
[Washington,    DC],    13    pp.    https://www.dni.gov/ 

 Moines, IA.  files/documents/Newsroom/Reports%20and%20 
   Pubs/Implications_for_US_National_Security_of_ 
52. WFP and Oxfam America, 2016: R4: Rural Resilience  Anticipated_Climate_Change.pdf 

 Initiative. Annual Report. World Food Programme   
 (WFP) and Oxfam America, Boston, MA, 40 pp. 61. Adger, W.N., J.M. Pulhin, J. Barnett, G.D. Dabelko, G.K. 
 
 
 
53. 

https://www.oxfamamerica.org/static/media/ 
files/R4_AR_2015_WEB.pdf 

 
Osgood, D., 2016: 25,000 Insured Ethiopian Farmers 

 Hovelsrud, M. Levy, S. Ú. Oswald, and C.H. Vogel, 
2014: Human security. Climate Change 2014: Impacts, 
Adaptation,   and   Vulnerability.   Part   A:   Global  and 
Sectoral Aspects. Contribution of Working Group II  to 

 Receive Payments for El Niño Droughts. International 
Research Institute for Climate and Society (IRI): News, 

 the Fifth Assessment Report of the Intergovernmental 
Panel  of  Climate  Change.  Field,  C.B.,  V.R.  Barros, 

 July 1. Columbia University, IRI, New York. https://iri.  D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, 
 columbia.edu/news/ethiopiar4drought/  M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, 
   B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, 
54. Pickersgill, R., 2014: Joint Ministerial Statement on  P.R. Mastrandrea, and L.L. White, Eds. Cambridge 

 the Effects of Drought on Schools and Agriculture.  University Press, Cambridge, United Kingdom and 
 Jamaica Information Service, Kingston, Jamaica,  New York, NY, USA, 755-791. 
 accessed  July  13.  http://jis.gov.jm/joint-ministerial- 

statement-effects-drought-schools-agriculture/ 
 

62. 
 

Council, N.R., 2013: Climate and Social Stress: 
   Implications for Security Analysis. Steinbruner, J.D., 
55. Rahman, T., J. Buizer, and Z. Guido, 2016: The Economic  P.C. Stern, and J.L. Husbands, Eds. The National 

 Impact of Seasonal Drought Forecast Information  Academies  Press,  Washington,  DC,  252  pp.  http:// 
 Service in Jamaica, 2014-15. United States Agency for  dx.doi.org/10.17226/14682 
 International Development (USAID), Washington, DC,   
 59 pp. http://pdf.usaid.gov/pdf_docs/PBAAF107.pdf 63. U.S. GAO, 2014: Climate Change Adaptation: DOD 
   Can Improve Infrastructure Planning and Processes 
56. USAID, 2016: Water Security for Resilient Economic  to Better Account for Potential Impacts GAO-14- 

 Growth and Stability (Be Secure) Project. U.S. Agency  446. U. S. Government Accountability Office (GAO), 
 for International Development (USAID), Washington,  Washington,    DC,    62    pp.    http://www.gao.gov/ 
 DC. https://www.usaid.gov/philippines/  products/GAO-14-446 
 energy-and-environment/be-secure   

57. Sticklor, R., 2016: Changing climate, changing minds: 
  

 How one Philippine city is preparing for a water- 
scarce  future.  Global  Waters,  7  (2).  https://medium. 

  

 com/usaid-global-waters/changing-climate-   
 changing-minds-how-one-philippine-city-is-   
 preparing-for-a-water-scarce-future-29327b5c5bfa   

https://fews.net/sites/default/files/Food_assistance_needs_Peak_Needs_2018-Final.pdf
https://fews.net/sites/default/files/Food_assistance_needs_Peak_Needs_2018-Final.pdf
https://fews.net/sites/default/files/Food_assistance_needs_Peak_Needs_2018-Final.pdf
http://dx.doi.org/10.7930/J07S7KXX
http://dx.doi.org/10.7930/J07S7KXX
https://www.gpo.gov/fdsys/pkg/CHRG-113hhrg87865/html/CHRG-113hhrg87865.htm
https://www.gpo.gov/fdsys/pkg/CHRG-113hhrg87865/html/CHRG-113hhrg87865.htm
http://www.fews.net/
https://www.gpo.gov/fdsys/pkg/CHRG-113hhrg87865/html/CHRG-113hhrg87865.htm
https://www.dni.gov/files/documents/Newsroom/Reports%20and%20Pubs/Implications_for_US_National_Security_of_Anticipated_Climate_Change.pdf
https://www.dni.gov/files/documents/Newsroom/Reports%20and%20Pubs/Implications_for_US_National_Security_of_Anticipated_Climate_Change.pdf
https://www.dni.gov/files/documents/Newsroom/Reports%20and%20Pubs/Implications_for_US_National_Security_of_Anticipated_Climate_Change.pdf
https://www.dni.gov/files/documents/Newsroom/Reports%20and%20Pubs/Implications_for_US_National_Security_of_Anticipated_Climate_Change.pdf
https://www.oxfamamerica.org/static/media/files/R4_AR_2015_WEB.pdf
https://www.oxfamamerica.org/static/media/files/R4_AR_2015_WEB.pdf
https://iri.columbia.edu/news/ethiopiar4drought/
https://iri.columbia.edu/news/ethiopiar4drought/
http://jis.gov.jm/joint-ministerial-statement-effects-drought-schools-agriculture/
http://jis.gov.jm/joint-ministerial-statement-effects-drought-schools-agriculture/
http://dx.doi.org/10.17226/14682
http://dx.doi.org/10.17226/14682
http://pdf.usaid.gov/pdf_docs/PBAAF107.pdf
http://www.gao.gov/products/GAO-14-446
https://www.usaid.gov/philippines/energy-and-environment/be-secure
http://www.gao.gov/products/GAO-14-446
https://www.usaid.gov/philippines/energy-and-environment/be-secure
https://medium.com/usaid-global-waters/changing-climate-changing-minds-how-one-philippine-city-is-preparing-for-a-water-scarce-future-29327b5c5bfa
https://medium.com/usaid-global-waters/changing-climate-changing-minds-how-one-philippine-city-is-preparing-for-a-water-scarce-future-29327b5c5bfa
https://medium.com/usaid-global-waters/changing-climate-changing-minds-how-one-philippine-city-is-preparing-for-a-water-scarce-future-29327b5c5bfa
https://medium.com/usaid-global-waters/changing-climate-changing-minds-how-one-philippine-city-is-preparing-for-a-water-scarce-future-29327b5c5bfa


16 | Climate Effects on U.S. International Interests - References 

621 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 
64. Hall, J.A., S. Gill, J. Obeysekera, W. Sweet, K. Knuuti, 

and J. Marburger, 2016: Regional Sea Level Scenarios 
for Coastal Risk Management: Managing the 
Uncertainty of Future Sea Level Change and Extreme 
Water Levels for Department of Defense Coastal Sites 
Worldwide. U.S. Department of Defense, Strategic 
Environmental Research and Development Program, 
Alexandria VA, 224 pp. https://www.usfsp.edu/icar/ 
files/2015/08/CARSWG-SLR-FINAL-April-2016.pdf 

 
65. Torresan, L.Z. and C.D. Storlazzi, 2014: The Impact 

of Sea-Level Rise and Climate Change on Pacific 
Ocean Atolls That House Department of Defense 
Installations. US Geological Survey, Pacific Coastal 
and  Marine  Science  Center.  https://walrus.wr.usgs. 
gov/climate-change/atolls/ 

 
66. Taylor, P.C., W. Maslowski, J. Perlwitz, and D.J. 

Wuebbles, 2017: Arctic changes and their effects on 
Alaska and the rest of the United States. Climate 
Science Special Report: Fourth National Climate 
Assessment, Volume I. Wuebbles, D.J., D.W. Fahey, 
K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. 
Maycock, Eds. U.S. Global Change Research Program, 
Washington,    DC,    USA,    303-332.    http://dx.doi. 
org/10.7930/J00863GK 

 
67. U.S. Navy, 2014: The United States Navy Arctic 

Roadmap for 2014 to 2030. Navy’s Task Force Climate 
Change,  Washington,  DC,  47  pp.  https://www.navy. 
mil/docs/USN_arctic_roadmap.pdf 

 
68. USCG, 2013: United States Coast Guard Arctic 

strategy. CG-DCO-X. U.S. Coast Guard (USCG) 
Headquarters,   Washington,   DC,   47   pp.   https:// 
www.uscg.mil/Portals/0/Strategy/cg_arctic_ 
strategy.pdf 

 
69. U.S. GAO, 2016: Coast Guard: Arctic Strategy Is 

Underway, but Agency Could Better Assess How 
Its Actions Mitigate Known Arctic Capability Gaps. 
GAO-16-453. U.S. Government Accountability Office, 
Washington,    DC,    80    pp.    https://www.gao.gov/ 
products/GAO-16-453 

 
70. Gemenne, F., J. Barnett, W.N. Adger, and G.D. Dabelko, 

2014: Climate and security: Evidence, emerging risks, 
and a new agenda. Climatic Change, 123 (1), 1-9. 
http://dx.doi.org/10.1007/s10584-014-1074-7 

 
71. Raleigh, C., H.J. Choi, and D. Kniveton, 2015: The devil 

is in the details: An investigation of the relationships 
between conflict, food price and climate across 
Africa. Global Environmental Change, 32, 187-199. 
http://dx.doi.org/10.1016/j.gloenvcha.2015.03.005 

72. Feitelson, E. and A. Tubi, 2017: A main driver or an 
intermediate variable? Climate change, water and 
security in the Middle East. Global Environmental 
Change,     44,     39-48.     http://dx.doi.org/10.1016/j. 
gloenvcha.2017.03.001 

 
73. Sternberg, T., 2012: Chinese drought, bread and the 

Arab Spring. Applied Geography, 34, 519-524. http:// 
dx.doi.org/10.1016/j.apgeog.2012.02.004 

 
74. Maystadt, J.-F. and O. Ecker, 2014: Extreme weather 

and civil war: Does drought fuel conflict in Somalia 
through livestock price shocks? American Journal 
of  Agricultural  Economics,  96  (4),  1157-1182.  http:// 
dx.doi.org/10.1093/ajae/aau010 

 
75. Earle, A., A.E. Cascao, S. Hansson, A. Jägerskog, A. 

Swain, and J. Ö jendal, 2015: Transboundary Water 
Management and the Climate Change Debate. 
Routledge, London; New York. 

 
76. Dube, O. and J.F. Vargas, 2013: Commodity price 

shocks and civil conflict: Evidence from Colombia. 
The Review of Economic Studies, 80 (4), 1384-1421. 
http://dx.doi.org/10.1093/restud/rdt009 

 
77. Couttenier, M. and R. Soubeyran, 2014: Drought and 

civil war in sub-Saharan Africa. Economic Journal, 124 
(575), 201-244. http://dx.doi.org/10.1111/ecoj.12042 

 
78. Salehyan, I. and C.S. Hendrix, 2014: Climate shocks 

and political violence. Global Environmental Change,   
28,   239-250.   http://dx.doi.org/10.1016/j. 
gloenvcha.2014.07.007 

 
79. Linke, A.M., J. O’Loughlin, J.T. McCabe, J. Tir, and 

F.D.W. Witmer, 2015: Rainfall variability and violence 
in rural Kenya: Investigating the effects of drought 
and the role of local institutions with survey data. 
Global   Environmental   Change,   34,   35-47.   http:// 
dx.doi.org/10.1016/j.gloenvcha.2015.04.007 

 
80. Caruso, R., I. Petrarca, and R. Ricciuti, 2016: 

Climate change, rice crops, and violence. Journal of   
Peace   Research,   53   (1),   66-83.   http://dx.doi. 
org/10.1177/0022343315616061 

 
81. Detges, A., 2016: Local conditions of drought- 

related violence in sub-Saharan Africa. Journal of   
Peace   Research,   53   (5),   696-710.   http://dx.doi. 
org/10.1177/0022343316651922 

https://www.usfsp.edu/icar/files/2015/08/CARSWG-SLR-FINAL-April-2016.pdf
https://www.usfsp.edu/icar/files/2015/08/CARSWG-SLR-FINAL-April-2016.pdf
https://walrus.wr.usgs.gov/climate-change/atolls/
https://walrus.wr.usgs.gov/climate-change/atolls/
http://dx.doi.org/10.7930/J00863GK
http://dx.doi.org/10.7930/J00863GK
https://www.navy.mil/docs/USN_arctic_roadmap.pdf
https://www.navy.mil/docs/USN_arctic_roadmap.pdf
https://www.uscg.mil/Portals/0/Strategy/cg_arctic_strategy.pdf
https://www.uscg.mil/Portals/0/Strategy/cg_arctic_strategy.pdf
https://www.uscg.mil/Portals/0/Strategy/cg_arctic_strategy.pdf
https://www.gao.gov/products/GAO-16-453
https://www.gao.gov/products/GAO-16-453
http://dx.doi.org/10.1007/s10584-014-1074-7
http://dx.doi.org/10.1007/s10584-014-1074-7
http://dx.doi.org/10.1016/j.gloenvcha.2015.03.005
http://dx.doi.org/10.1016/j.gloenvcha.2015.03.005
http://dx.doi.org/10.1016/j.gloenvcha.2017.03.001
http://dx.doi.org/10.1016/j.gloenvcha.2017.03.001
http://dx.doi.org/10.1016/j.apgeog.2012.02.004
http://dx.doi.org/10.1016/j.apgeog.2012.02.004
http://dx.doi.org/10.1093/ajae/aau010
http://dx.doi.org/10.1093/ajae/aau010
http://dx.doi.org/10.1093/restud/rdt009
http://dx.doi.org/10.1093/restud/rdt009
http://dx.doi.org/10.1111/ecoj.12042
http://dx.doi.org/10.1016/j.gloenvcha.2014.07.007
http://dx.doi.org/10.1016/j.gloenvcha.2014.07.007
http://dx.doi.org/10.1016/j.gloenvcha.2015.04.007
http://dx.doi.org/10.1016/j.gloenvcha.2015.04.007
http://dx.doi.org/10.1177/0022343315616061
http://dx.doi.org/10.1177/0022343315616061
http://dx.doi.org/10.1177/0022343316651922
http://dx.doi.org/10.1177/0022343316651922


16 | Climate Effects on U.S. International Interests - References 

622 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 
82. Schleussner, C.-F., J.F. Donges, R.V. Donner, and H.J. 

Schellnhuber, 2016: Armed-conflict risks enhanced by 
climate-related disasters in ethnically fractionalized 
countries. Proceedings of the National Academy of 
Sciences of the United States of America, 113 (33), 
9216-9221. http://dx.doi.org/10.1073/pnas.1601611113 

 
83. von Uexkull, N., M. Croicu, H. Fjelde, and H. Buhaug, 

2016: Civil conflict sensitivity to growing-season 
drought. Proceedings of the National Academy of 
Sciences of the United States of America, 113 (44), 12391- 
12396. http://dx.doi.org/10.1073/pnas.1607542113 

 
84. Böhmelt, T., T. Bernauer, H. Buhaug, N.P. Gleditsch, T. 

Tribaldos, and G. Wischnath, 2014: Demand, supply, 
and restraint: Determinants of domestic water 
conflict and cooperation. Global Environmental 
Change,    29,    337-348.    http://dx.doi.org/10.1016/j. 
gloenvcha.2013.11.018 

 
85. Wilson, J.H., 2018: Temporary Protected Status: 

Overview and Current Issues. RS20844. Congressional 
Research Service, Washington, DC, 15 pp. https://fas. 
org/sgp/crs/homesec/RS20844.pdf 

 
86. USAID, 2014: USG [U.S. Goverment] Humanitarian 

Assistance for Typhoon Yolanda/Haiyan. U.S. Agency 
for International Development (USAID), Washington, 
DC.         https://www.usaid.gov/sites/default/files/ 
documents/1866/philippines_map_04-21-2014.pdf 

 
87. Parker, T., S.P. Carroll, G. Sanders, J.E. King, and I. Chiu, 

2016: The U.S. Pacific Command response to Super 
Typhoon Haiyan. Joint Force Quarterly, 82, 54-61. 
http://ndupress.ndu.edu/Portals/68/Documents/ 
jfq/jfq-82/jfq-82_54-61_Parker-et-al.pdf 

 
88. Yonetani, M., L. Yuen, W. Sophonpanich, M. Navaee, 

M. Maulit, and P. Kyaw, 2014: The Evolving Picture 
of Displacement in the Wake of Typhoon Haiyan: 
An Evidence-Based Overview. Government of the 
Philippines’ Department of Social Welfare and 
Development (DSWD); International Organization for 
Migration (IOM); Internal Displacement Monitoring 
Centre    (IDMC);    SAS,    47    pp.    https://reliefweb. 
int/sites/reliefweb.int/files/resources/The- 
Evolving-Picture-of-Displacement-in-the-Wake-of- 
Typhoon-Haiyan.pdf 

 
89. Takayabu, I., K. Hibino, H. Sasaki, H. Shiogama, N. 

Mori, Y. Shibutani, and T. Takemi, 2015: Climate 
change effects on   the   worst-case   storm   surge:  
A case study of Typhoon Haiyan. Environmental 
Research    Letters,    10    (6),    064011.    http://dx.doi. 
org/10.1088/1748-9326/10/6/064011 

90. Freeman, L., 2017: Environmental change, migration, 
and conflict in Africa:  A  critical  examination  of 
the interconnections. The Journal of Environment &    
Development,    26    (4),    351-374.    http://dx.doi. 
org/10.1177/1070496517727325 

 
91. Gleditsch, N.P., I. Salehyan, and R. Nordas, 2007: 

Climate Change and Conflict: The Migration Link. 
Coping with Crisis Working Paper Series. International 
Peace Academy, New York, NY, 13 pp. https://www. 
ipinst.org/wp-content/uploads/2007/05/cwc_ 
working_paper_climate_change.pdf 

 
92. Beaver, J.C., 2006: U.S. International Border: Brief 

Facts. Order code RS21729, CRS Report for Congress. 
Congressional Research Service, Washington, DC, 5 
pp. https://fas.org/sgp/crs/misc/RS21729.pdf 

 
93. Office of Insular Affairs, 2018: Definitions of 

Insular Area Political Organizations [web site]. U.S. 
Department of the Interior, Washington, DC. https:// 
www.doi.gov/oia/islands/politicatypes 

 
94. Kavouras, I.G., D.W. DuBois, G. Nikolich, A.Y. 

Corral Avittia, and V. Etyemezian, 2016: Particulate 
dust emission factors from unpaved roads in the 
U.S.–Mexico border semi-arid region. Journal of Arid    
Environments,    124,    189-192.    http://dx.doi. 
org/10.1016/j.jaridenv.2015.07.015 

 
95. Rodopoulou, S., M.-C. Chalbot, E. Samoli, D.W. DuBois, 

B.D. San Filippo, and I.G. Kavouras, 2014: Air pollution 
and hospital emergency room and admissions  
for cardiovascular and respiratory diseases in 
Doña Ana County, New Mexico. Environmental 
Research,   129,   39-46.   http://dx.doi.org/10.1016/j. 
envres.2013.12.006 

 
96. González-Delgado, A., M.K. Shukla, D.W. DuBois, 

J.P. Flores-Márgez, J.A. Hernández Escamilla, and E. 
Olivas, 2017: Microbial and size characterization of 
airborne particulate matter collected on sticky tapes 
along US–Mexico border. Journal of Environmental 
Sciences,   53,   207-216.   http://dx.doi.org/10.1016/j. 
jes.2015.10.037 

 
97. Joyce, L.A., S.W. Running, D.D. Breshears, V.H. Dale, 

R.W. Malmsheimer, R.N. Sampson, B. Sohngen, and 
C.W. Woodall, 2014: Ch. 7: Forests. Climate Change 
Impacts in the United States: The Third National 
Climate Assessment. Melillo, J.M., Terese (T.C.) 
Richmond, and G.W. Yohe, Eds. U.S. Global Change 
Research Program, Washington, DC, 175-194. http:// 
dx.doi.org/10.7930/J0Z60KZC 

http://dx.doi.org/10.1073/pnas.1601611113
http://dx.doi.org/10.1073/pnas.1607542113
http://dx.doi.org/10.1016/j.gloenvcha.2013.11.018
http://dx.doi.org/10.1016/j.gloenvcha.2013.11.018
https://fas.org/sgp/crs/homesec/RS20844.pdf
https://fas.org/sgp/crs/homesec/RS20844.pdf
https://www.usaid.gov/sites/default/files/documents/1866/philippines_map_04-21-2014.pdf
https://www.usaid.gov/sites/default/files/documents/1866/philippines_map_04-21-2014.pdf
http://ndupress.ndu.edu/Portals/68/Documents/jfq/jfq-82/jfq-82_54-61_Parker-et-al.pdf
http://ndupress.ndu.edu/Portals/68/Documents/jfq/jfq-82/jfq-82_54-61_Parker-et-al.pdf
http://ndupress.ndu.edu/Portals/68/Documents/jfq/jfq-82/jfq-82_54-61_Parker-et-al.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/The-Evolving-Picture-of-Displacement-in-the-Wake-of-Typhoon-Haiyan.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/The-Evolving-Picture-of-Displacement-in-the-Wake-of-Typhoon-Haiyan.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/The-Evolving-Picture-of-Displacement-in-the-Wake-of-Typhoon-Haiyan.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/The-Evolving-Picture-of-Displacement-in-the-Wake-of-Typhoon-Haiyan.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/The-Evolving-Picture-of-Displacement-in-the-Wake-of-Typhoon-Haiyan.pdf
http://dx.doi.org/10.1088/1748-9326/10/6/064011
http://dx.doi.org/10.1088/1748-9326/10/6/064011
http://dx.doi.org/10.1177/1070496517727325
http://dx.doi.org/10.1177/1070496517727325
https://www.ipinst.org/wp-content/uploads/2007/05/cwc_working_paper_climate_change.pdf
https://www.ipinst.org/wp-content/uploads/2007/05/cwc_working_paper_climate_change.pdf
https://www.ipinst.org/wp-content/uploads/2007/05/cwc_working_paper_climate_change.pdf
https://fas.org/sgp/crs/misc/RS21729.pdf
https://www.doi.gov/oia/islands/politicatypes
https://www.doi.gov/oia/islands/politicatypes
http://dx.doi.org/10.1016/j.jaridenv.2015.07.015
http://dx.doi.org/10.1016/j.jaridenv.2015.07.015
http://dx.doi.org/10.1016/j.envres.2013.12.006
http://dx.doi.org/10.1016/j.envres.2013.12.006
http://dx.doi.org/10.1016/j.jes.2015.10.037
http://dx.doi.org/10.1016/j.jes.2015.10.037
http://dx.doi.org/10.7930/J0Z60KZC
http://dx.doi.org/10.7930/J0Z60KZC


16 | Climate Effects on U.S. International Interests - References 

623 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 
98. Westerling, A.L., H.G. Hidalgo, D.R. Cayan, and 

T.W. Swetnam, 2006: Warming and earlier spring 
increase western U.S. forest wildfire activity. Science, 
313     (5789),     940-943.     http://dx.doi.org/10.1126/ 
science.1128834 

 
99. Tong, D.Q., J.X.L. Wang, T.E. Gill, H. Lei, and B. Wang, 

2017: Intensified dust storm activity and Valley 
fever infection in the southwestern United States. 
Geophysical Research Letters, 44 (9), 4304-4312. 
http://dx.doi.org/10.1002/2017GL073524 

 
100. Berger, A.M., C.J. Grandin, I.G. Taylor, A.M. Edwards, 

and S. Cox, 2017: Status of the Pacific Hake (whiting) 
stock in U.S. and Canadian waters in 2017. Prepared 
by the Joint Technical Committee of the U.S. and 
Canada Pacific Hake/Whiting Agreement. National 
Marine Fisheries Service and Fisheries and Oceans 
Canada,    202    pp.    http://www.westcoast.fisheries. 
noaa.gov/publications/fishery_management/ 
groundfish/whiting/2017-hake-assessment.pdf 

 
101. GNEB, 2016: Climate Change and Resilient 

Communities Along the U.S.-Mexico Border: The 
Role of Federal Agencies. EPA 202-R-16-001. Good 
Neighbor Environmental Board, Washington, DC, 90 
pp.  https://irsc.sdsu.edu/docs/17th_gneb_report_ 
publication_120516_final_508.pdf 

 
102. Feng, S. and Q. Fu, 2013: Expansion of global drylands 

under a warming climate. Atmospheric Chemistry and   
Physics,   13   (19),   10081-10094.   http://dx.doi. 
org/10.5194/acp-13-10081-2013 

 
103. Theobald, D.M., W.R. Travis, M.A. Drummond, and 

E.S. Gordon, 2013: Ch. 3: The changing southwest. 
Assessment of Climate Change in the Southwest United 
States: A Report Prepared for the National Climate 
Assessment. Garfin, G., A. Jardine, R. Merideth, M. 
Black, and S. LeRoy, Eds. Island Press, Washington, 
DC,     37-55.     http://swccar.org/sites/all/themes/ 
files/SW-NCA-color-FINALweb.pdf 

 
104. Wilder, M., G. Garfin, P. Ganster, H. Eakin, P. Romero- 

Lankao, F. Lara-Valencia, A.A. Cortez-Lara, S. Mumme, 
C. Neri, and F. Muñoz-Arriola, 2013: Climate change 
and U.S.-Mexico border  communities.  Assessment 
of Climate Change in the Southwest United States: A 
Report Prepared for the National Climate Assessment. 
Garfin, G., A. Jardine, R. Merideth, M. Black, and S. 
LeRoy, Eds. Island Press, Washington, DC, 340–384. 
http://swccar.org/sites/all/themes/files/SW- 
NCA-color-FINALweb.pdf 

105. Rajagopalan, K., K. Chinayakanahalli, C.O. Stockle, R.L. 
Nelson, C.E. Kruger, M.P. Brady, K. Malek, S.T. Dinesh, 
M.E. Barber, A.F. Hamlet, G.G. Yorgey, and J.C. Adam, 
2018: Impacts of near-term regional climate change 
on irrigation demands and crop yields in the Columbia 
River Basin. Water Resources Research, 54 (3), 2152- 
2182. http://dx.doi.org/10.1002/2017WR020954 

 
106. Scott, C.A. and A.N. Lutz-Ley, 2016: Enhancing water 

governance for climate resilience: Arizona, USA— 
Sonora, Mexico comparative assessment of the role 
of reservoirs in adaptive management for water 
security. Increasing Resilience to Climate Variability 
and Change: The Roles of Infrastructure and 
Governance in the Context of Adaptation. Tortajada, 
C., Ed. Springer Singapore, Singapore, 15-40. http:// 
dx.doi.org/10.1007/978-981-10-1914-2_2 

 
107. King, J.S., P.W. Culp, and C. de la Parra, 2014: Getting 

to the right side of the river: Lessons for binational 
cooperation on the road to minute 319. University of 
Denver Water Law Review, 18, 36. 

 
108. Fagherazzi, L., D. Fay, and J. Salas, 2007: Synthetic 

hydrology and climate change scenarios to improve 
multi-purpose complex water resource systems 
management. The Lake Ontario–St Lawrence  
River Study of the International Canada and US 
Joint Commission. WIT Transactions on Ecology and   
the   Environment,   103,   163-177.   http://dx.doi. 
org/10.2495/WRM070171 

 
109. Great Lakes Water Quality, 2017: Climate Change 

Impacts (Annex 9). Great Lakes Water Quality 
Agreement (GLWQA). The Government of Canada 
and the Government of the United States of America, 
Chicago, IL and Gatineau, Quebec, Canada. https:// 
binational.net/annexes/a9/ 

 
110. RMJOC, 2011: Climate  and  Hydrology  Datasets 

for Use in the River Management Joint Operating 
Committee (RMJOC) Agencies’ Longer-Term 
Planning Studies: Part IV—Summary. Bonneville 
Power Administration, Portland, OR, 59 pp. https:// 
www.bpa.gov/p/Generation/Hydro/hydro/cc/ 
Final_PartIV_091611.pdf 

 
111. Briggs, M., 2016: Climate Adaptation in the Big Bend 

Region of the Chihuahuan Desert. World Wildlife Fund, 
Rio Grande–Rio Bravo Program, Washington, DC. 

 
112. Fernandez, M., 2016: “U.S.-Mexico teamwork  

where the Rio Grande is but a ribbon.” New York 
Times,   April   24,   2016,   A15.   https://www.nytimes. 
com/2016/04/23/us/us-mexico-teamwork- 
where-the-rio-grande-is-but-a-ribbon.html?_r=1 

http://dx.doi.org/10.1126/science.1128834
http://dx.doi.org/10.1126/science.1128834
http://dx.doi.org/10.1002/2017GL073524
http://dx.doi.org/10.1002/2017GL073524
http://www.westcoast.fisheries.noaa.gov/publications/fishery_management/groundfish/whiting/2017-hake-assessment.pdf
http://www.westcoast.fisheries.noaa.gov/publications/fishery_management/groundfish/whiting/2017-hake-assessment.pdf
http://www.westcoast.fisheries.noaa.gov/publications/fishery_management/groundfish/whiting/2017-hake-assessment.pdf
https://irsc.sdsu.edu/docs/17th_gneb_report_publication_120516_final_508.pdf
https://irsc.sdsu.edu/docs/17th_gneb_report_publication_120516_final_508.pdf
http://dx.doi.org/10.5194/acp-13-10081-2013
http://dx.doi.org/10.5194/acp-13-10081-2013
http://swccar.org/sites/all/themes/files/SW-NCA-color-FINALweb.pdf
http://swccar.org/sites/all/themes/files/SW-NCA-color-FINALweb.pdf
http://swccar.org/sites/all/themes/files/SW-NCA-color-FINALweb.pdf
http://swccar.org/sites/all/themes/files/SW-NCA-color-FINALweb.pdf
http://swccar.org/sites/all/themes/files/SW-NCA-color-FINALweb.pdf
http://dx.doi.org/10.1002/2017WR020954
http://dx.doi.org/10.1007/978-981-10-1914-2_2
http://dx.doi.org/10.1007/978-981-10-1914-2_2
http://dx.doi.org/10.2495/WRM070171
http://dx.doi.org/10.2495/WRM070171
https://binational.net/annexes/a9/
https://binational.net/annexes/a9/
https://www.bpa.gov/p/Generation/Hydro/hydro/cc/Final_PartIV_091611.pdf
https://www.bpa.gov/p/Generation/Hydro/hydro/cc/Final_PartIV_091611.pdf
https://www.bpa.gov/p/Generation/Hydro/hydro/cc/Final_PartIV_091611.pdf
https://www.nytimes.com/2016/04/23/us/us-mexico-teamwork-where-the-rio-grande-is-but-a-ribbon.html?_r=1
https://www.nytimes.com/2016/04/23/us/us-mexico-teamwork-where-the-rio-grande-is-but-a-ribbon.html?_r=1
https://www.nytimes.com/2016/04/23/us/us-mexico-teamwork-where-the-rio-grande-is-but-a-ribbon.html?_r=1


16 | Climate Effects on U.S. International Interests - References 

624 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 
113. Price-Waldman, S. and J. Raff, 2016: The Mexican 

Citizens Fighting America’s Fires [video], Atlantic 
Documentaries. The Atlantic (magazine). 7:21 
minutes. https://www.theatlantic.com/video/ 
index/480354/los-diablos/ 

 
114. NOAA, North American Drought Monitor in June 2011. 

NOAA National Climatic Data Center, Asheville, NC. 
https://www.ncdc.noaa.gov/sotc/drought/201106 

 
115. NOAA,  Smoke  from  Canadian  Wildfires  

Travels Over United States [image]. National 
Oceanic and Atmospheric Administration. ht tps : 
// w w w.nnvl .noaa .gov/ images/hig h_  
resolution/2082v1_20170817-AERO.png 

 

 
116. USGCRP, 2016: The Impacts of Climate Change on 

Human Health in the United States: A Scientific 
Assessment. U.S. Global Change Research Program,   
Washington,   DC,   312   pp.   http://dx.doi. 
org/10.7930/J0R49NQX 

 
117. DOD, 2015: National Security Implications of Climate- 

Related Risks and a Changing Climate: Submitted in 
Response to a Request Contained in Senate Report 
113-211, Accompanying H.R. 4870, the Department of 
Defense Appropriations Bill, 2015. U.S. Department 
of  Defense  (DOD),  Washington,  DC,  14  pp.  http:// 
archive.defense.gov/pubs/150724-congressional- 
report-on-national-implications-of-climate-change. 
pdf?source=govdelivery 

 
118. Fredericks, A.C. and A. Fernandez-Sesma, 2014: The 

burden of dengue and chikungunya worldwide: 
Implications for the southern United States and 
California. Annals of Global Health, 80 (6), 466- 
475. https://annalsofglobalhealth.org/articles/ 
abstract/10.29024/j.aogh.2015.02.006/ 

 
119. Añez, G. and M. Rios, 2013: Dengue in the United 

States of America: A worsening scenario? BioMed 
Research  International,  2013,  678645.  http://dx.doi. 
org/10.1155/2013/678645 

120. Grubaugh, N.D., J.T. Ladner, M.U.G. Kraemer, G. 
Dudas, A.L. Tan, K. Gangavarapu, M.R. Wiley, S. White, 
J. Thézé, D.M. Magnani, K. Prieto, D. Reyes, A.M. 
Bingham, L.M. Paul, R. Robles-Sikisaka, G. Oliveira, D. 
Pronty, C.M. Barcellona, H.C. Metsky, M.L. Baniecki, 
K.G. Barnes, B. Chak, C.A. Freije, A. Gladden-Young, A. 
Gnirke, C. Luo, B. MacInnis, C.B. Matranga, D.J. Park, J. 
Qu, S.F. Schaffner, C. Tomkins-Tinch, K.L. West, S.M. 
Winnicki, S. Wohl, N.L. Yozwiak, J. Quick, J.R. Fauver, 
K. Khan, S.E. Brent, R.C. Reiner Jr, P.N. Lichtenberger, 
M.J.  Ricciardi,  V.K.  Bailey,  D.I.  Watkins,  M.R.  Cone, 
E.W. Kopp Iv, K.N. Hogan, A.C. Cannons, R. Jean, A.J. 
Monaghan, R.F. Garry, N.J. Loman, N.R. Faria, M.C. 
Porcelli, C. Vasquez, E.R. Nagle, D.A.T. Cummings, D. 
Stanek, A. Rambaut, M. Sanchez-Lockhart, P.C. Sabeti, 
L.D. Gillis, S.F. Michael, T. Bedford, O.G. Pybus, S. 
Isern, G. Palacios, and K.G. Andersen, 2017: Genomic 
epidemiology reveals multiple introductions of Zika 
virus into the United States. Nature, 546 (7658), 401- 
405. http://dx.doi.org/10.1038/nature22400 

 
121. Muñoz, Á.G., M.C. Thomson, A.M. Stewart-Ibarra, 

G.A. Vecchi, X. Chourio, P. Nájera, Z. Moran, and X. 
Yang, 2017: Could the recent Zika epidemic have been 
predicted? Frontiers in Microbiology, 8 (1291). http:// 
dx.doi.org/10.3389/fmicb.2017.01291 

 
122. Tjaden, N.B., J.E. Suk, D. Fischer, S.M. Thomas, C. 

Beierkuhnlein, and J.C. Semenza, 2017: Modelling 
the effects of global climate change on Chikungunya 
transmission in the 21st century. Scientific Reports, 7 (1), 
3813. http://dx.doi.org/10.1038/s41598-017-03566-3 

 
123. Paz, S. and J.C. Semenza, 2016: El Niño and climate 

change—Contributing factors in the dispersal of Zika 
virus in the Americas? The Lancet, 387 (10020), 745. 
http://dx.doi.org/10.1016/S0140-6736(16)00256-7 

 
124. Castro, L.A., S.J. Fox, X. Chen, K. Liu, S.E. Bellan, 

N.B. Dimitrov, A.P. Galvani, and L.A. Meyers, 2017: 
Assessing real-time Zika risk in the United States. 
BMC  Infectious  Diseases,  17  (1),  284.  http://dx.doi. 
org/10.1186/s12879-017-2394-9 

 
125. Monaghan, A.J., C.W. Morin, D.F. Steinhoff, O. Wilhelmi, 

M. Hayden, D.A. Quattrochi, M. Reiskind, A.L. Lloyd, 
K. Smith, C.A. Schmidt, P.E. Scalf, and K. Ernst, 2016: 
On the seasonal occurrence and abundance of the 
Zika virus vector mosquito Aedes aegypti in the 
contiguous United States. Plos Currents: Outbreaks. 
http://currents.plos.org/outbreaks/article/on- 
the-seasonal-occurrence-and-abundance-of-the- 
zika-virus-vector-mosquito-aedes-aegypti-in-the- 
contiguous-united-states/ 

https://www.theatlantic.com/video/index/480354/los-diablos/
https://www.theatlantic.com/video/index/480354/los-diablos/
https://www.ncdc.noaa.gov/sotc/drought/201106
https://www.ncdc.noaa.gov/sotc/drought/201106
https://www.nnvl.noaa.gov/images/high_resolution/2082v1_20170817-AERO.png
https://www.nnvl.noaa.gov/images/high_resolution/2082v1_20170817-AERO.png
https://www.nnvl.noaa.gov/images/high_resolution/2082v1_20170817-AERO.png
http://dx.doi.org/10.7930/J0R49NQX
http://dx.doi.org/10.7930/J0R49NQX
http://archive.defense.gov/pubs/150724-congressional-report-on-national-implications-of-climate-change.pdf?source=govdelivery
http://archive.defense.gov/pubs/150724-congressional-report-on-national-implications-of-climate-change.pdf?source=govdelivery
http://archive.defense.gov/pubs/150724-congressional-report-on-national-implications-of-climate-change.pdf?source=govdelivery
http://archive.defense.gov/pubs/150724-congressional-report-on-national-implications-of-climate-change.pdf?source=govdelivery
http://archive.defense.gov/pubs/150724-congressional-report-on-national-implications-of-climate-change.pdf?source=govdelivery
https://annalsofglobalhealth.org/articles/abstract/10.29024/j.aogh.2015.02.006/
https://annalsofglobalhealth.org/articles/abstract/10.29024/j.aogh.2015.02.006/
http://dx.doi.org/10.1155/2013/678645
http://dx.doi.org/10.1155/2013/678645
http://dx.doi.org/10.1038/nature22400
http://dx.doi.org/10.3389/fmicb.2017.01291
http://dx.doi.org/10.3389/fmicb.2017.01291
http://dx.doi.org/10.1038/s41598-017-03566-3
http://dx.doi.org/10.1016/S0140-6736(16)00256-7
http://dx.doi.org/10.1016/S0140-6736(16)00256-7
http://dx.doi.org/10.1186/s12879-017-2394-9
http://dx.doi.org/10.1186/s12879-017-2394-9
http://currents.plos.org/outbreaks/article/on-the-seasonal-occurrence-and-abundance-of-the-zika-virus-vector-mosquito-aedes-aegypti-in-the-contiguous-united-states/
http://currents.plos.org/outbreaks/article/on-the-seasonal-occurrence-and-abundance-of-the-zika-virus-vector-mosquito-aedes-aegypti-in-the-contiguous-united-states/
http://currents.plos.org/outbreaks/article/on-the-seasonal-occurrence-and-abundance-of-the-zika-virus-vector-mosquito-aedes-aegypti-in-the-contiguous-united-states/
http://currents.plos.org/outbreaks/article/on-the-seasonal-occurrence-and-abundance-of-the-zika-virus-vector-mosquito-aedes-aegypti-in-the-contiguous-united-states/
http://currents.plos.org/outbreaks/article/on-the-seasonal-occurrence-and-abundance-of-the-zika-virus-vector-mosquito-aedes-aegypti-in-the-contiguous-united-states/
http://currents.plos.org/outbreaks/article/on-the-seasonal-occurrence-and-abundance-of-the-zika-virus-vector-mosquito-aedes-aegypti-in-the-contiguous-united-states/
http://currents.plos.org/outbreaks/article/on-the-seasonal-occurrence-and-abundance-of-the-zika-virus-vector-mosquito-aedes-aegypti-in-the-contiguous-united-states/


16 | Climate Effects on U.S. International Interests - References 

625 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 
 

126.  Sweet, W.V.,  R.E. Kopp, C.P.  Weaver,  J. Obeysekera, 
R.M.   Horton,   E.R.   Thieler,   and   C.   Zervas,   2017: 
Global and Regional Sea Level Rise Scenarios for the 

134. GEO, 2015: GEO Strategic Plan  2016-2025: 
Implementing  GEOSS. Group on Earth 
Observations (GEO), [Geneva, Switzerland], 

United States. NOAA Tech. Rep. NOS CO-OPS 083.  19 pp. http://www.earthobservations.org/ 
National Oceanic and Atmospheric Administration,  documents/GEO_Strategic_Plan_2016_2025_ 

National Ocean Service, Silver Spring, MD, 75 pp.  Implementing_GEOSS.pdf 
https://tidesandcurrents.noaa.gov/publications/   

techrpt83_Global_and_Regional_SLR_Scenarios_ 135. Hou, A.Y., R.K. Kakar, S. Neeck, A.A. Azarbarzin, C.D. 
for_the_US_final.pdf  Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. 

 
127. Kopp, R.E., R.M. Horton, C.M. Little, J.X. Mitrovica, 

 Iguchi, 2014: The Global Precipitation  Measurement 
mission.  Bulletin  of  the  American Meteorological 

M. Oppenheimer, D.J. Rasmussen, B.H. Strauss, and  Society,   95   (5),   701-722.   http://dx.doi.org/10.1175/ 
C. Tebaldi, 2014: Probabilistic 21st and 22nd century  bams-d-13-00164.1 

sea-level  projections  at  a  global  network  of  tide- 
gauge  sites.  Earth’s  Future,  2  (8),  383-406.  http:// 

 
136. 

 
Roemmich, D., G.C. Johnson, S. Riser, R. Davis, J. 

dx.doi.org/10.1002/2014EF000239  Gilson, W.B. Owens, S.L. Garzoli, C. Schmid, and M. 
 
128. Perlwitz, J., T. Knutson, J.P. Kossin, and A.N. LeGrande, 

 Ignaszewski,  2009:  The  Argo  program:  Observing 
the global ocean with profiling floats. Oceanography, 

2017: Large-scale circulation and climate  variability. 
Climate   Science   Special   Report:   Fourth   National 
Climate  Assessment,  Volume  I.  Wuebbles,  D.J., D.W. 

 22 (2), 34–43. http://dx.doi.org/10.5670/ 
oceanog.2009.36 

Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and 137. NIDIS, 2017: North American Drought Monitor. 
T.K. Maycock, Eds. U.S. Global Change Research  U.S. National Integrated Drought Information 

Program,   Washington,   DC,   USA,   161-184.   http://  System   (NIDIS).   https://www.drought.gov/nadm/ 
dx.doi.org/10.7930/J0RV0KVQ  content/overview 

129. Global Change Research Act of 1990. Pub. L. No. 101- 138. World Climate Research Programme, 2017: WCRP 
606, 104 Stat. 3096-3104, November 16, 1990. http://  website. World Climate Research Programme, 
www.gpo.gov/fdsys/pkg/STATUTE-104/pdf/  Geneva, Switzerland, accessed Sep 11. https://www. 

STATUTE-104-Pg3096.pdf  wcrp-climate.org/ 

130. McPhaden, M.J., A.J. Busalacchi, and D.L.T. Anderson, 
2010: A TOGA retrospective. Oceanography, 23 (3), 

139. Future Earth, 2017: Research for Global Sustainability: 
Annual Report 2016–17. Scrutton, A. and D. Strain, 

86–103. http://dx.doi.org/10.5670/oceanog.2010.26  Eds. Future Earth (FE) Secretariat, FE Global 
  Hubs, 51 pp. http://www.futureearth.org/ 

131. US CLIVAR Scientific Steering Committee, 2013: US  annual-report-2016-2017 
Climate Variability & Predictability Program Science   

Plan. Report 2013-7. US CLIVAR Project Office, 140. IPCC, 2014: Climate Change 2014: Synthesis Report. 
Washington,  DC,  85  pp.  https://usclivar.org/sites/  Contribution of Working Groups I, II and III to the 
default/files/US_CLIVAR_Science_Plan.pdf  Fifth Assessment Report of the Intergovernmental 

  Panel on Climate Change. Pachauri, R.K. and L.A. 
132. Wuebbles, D.J., 2017: Appendix A: Observational 

datasets used in climate studies. Climate Science 
Special Report: Fourth National Climate Assessment, 
Volume  I.  Wuebbles,  D.J.,  D.W.   Fahey,  K.A. Hibbard, 

 Meyer, Eds. Intergovernmental Panel on Climate 
Change  (IPCC),  Geneva,  Switzerland,  151  pp.  http:// 
ipcc.ch/report/ar5/syr/ 

D.J. Dokken, B.C. Stewart, and T.K. Maycock, Eds. U.S. 141. WMO, 2014: Assessment for Decision-Makers: 
Global Change Research Program, Washington, DC,  Scientific Asssessment of Ozone Depletion: 2014. 

USA, 430-435. http://dx.doi.org/10.7930/J0BK19HT  Report No. 56. World Meteorological Organization 
  Geneva,  Switzerland,  88  pp.  http://www.wmo.int/ 

133. Rai, A., J.A. Robinson, J. Tate-Brown, N. Buckley,  pages/prog/arep/gaw/ozone_2014/documents/ 
M. Zell, K. Tasaki, G. Karabadzhak, I.V. Sorokin,  ADM_2014OzoneAssessment_Final.pdf 
and S. Pignataro, 2016: Expanded benefits for   

humanity   from   the   International   Space   Station. 
Acta    Astronautica,    126,    463-474.    http://dx.doi. 

  

org/10.1016/j.actaastro.2016.06.030   

http://www.earthobservations.org/documents/GEO_Strategic_Plan_2016_2025_Implementing_GEOSS.pdf
http://www.earthobservations.org/documents/GEO_Strategic_Plan_2016_2025_Implementing_GEOSS.pdf
http://www.earthobservations.org/documents/GEO_Strategic_Plan_2016_2025_Implementing_GEOSS.pdf
https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf
https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf
https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf
http://dx.doi.org/10.1175/bams-d-13-00164.1
http://dx.doi.org/10.1175/bams-d-13-00164.1
http://dx.doi.org/10.1002/2014EF000239
http://dx.doi.org/10.1002/2014EF000239
http://dx.doi.org/10.5670/oceanog.2009.36
http://dx.doi.org/10.5670/oceanog.2009.36
http://dx.doi.org/10.7930/J0RV0KVQ
https://www.drought.gov/nadm/content/overview
http://dx.doi.org/10.7930/J0RV0KVQ
https://www.drought.gov/nadm/content/overview
http://www.gpo.gov/fdsys/pkg/STATUTE-104/pdf/STATUTE-104-Pg3096.pdf
http://www.gpo.gov/fdsys/pkg/STATUTE-104/pdf/STATUTE-104-Pg3096.pdf
https://www.wcrp-climate.org/
http://www.gpo.gov/fdsys/pkg/STATUTE-104/pdf/STATUTE-104-Pg3096.pdf
https://www.wcrp-climate.org/
http://dx.doi.org/10.5670/oceanog.2010.26
http://www.futureearth.org/annual-report-2016-2017
http://www.futureearth.org/annual-report-2016-2017
https://usclivar.org/sites/default/files/US_CLIVAR_Science_Plan.pdf
https://usclivar.org/sites/default/files/US_CLIVAR_Science_Plan.pdf
http://ipcc.ch/report/ar5/syr/
http://ipcc.ch/report/ar5/syr/
http://dx.doi.org/10.7930/J0BK19HT
http://www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/ADM_2014OzoneAssessment_Final.pdf
http://www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/ADM_2014OzoneAssessment_Final.pdf
http://www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/ADM_2014OzoneAssessment_Final.pdf
http://dx.doi.org/10.1016/j.actaastro.2016.06.030
http://dx.doi.org/10.1016/j.actaastro.2016.06.030


16 | Climate Effects on U.S. International Interests - References 

626 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 
142. AMAP, 2011: Snow, Water, Ice and Permafrost in the 

Arctic (SWIPA): Climate Change and the Cryosphere. 
Arctic Monitoring and Assessment Programme, 
Oslo,    Norway,    538    pp.    https://www.amap.no/ 
documents/doc/snow-water-ice-and-permafrost- 
in-the-arctic-swipa-climate-change-and-the- 
cryosphere/743 

 
143. WMO, 2016: Regional Climate Outlook Forum. 

World Meteorological Organization (WMO), 
Global Framework for Climate Services, Geneva, 
Switzerland.        https://library.wmo.int/opac/doc_ 
num.php?explnum_id=3191 

 
144. Guido, Z., V. Rountree, C. Greene, A. Gerlak, and A. 

Trotman, 2016: Connecting climate information 
producers and users: Boundary organization, 

150. Hallegatte, S., A. Vogt-Schilb, M. Bangalore, and J. 
Rozenberg, 2017: Unbreakable: Building the Resilience 
of the Poor in the Face of Natural Disasters. World 
Bank,  Washington,  D.C,  187  pp.  http://hdl.handle. 
net/10986/25335 

 
151. Mochizuki, J., R. Mechler, S. Hochrainer-Stigler, A. 

Keating, and K. Williges, 2014: Revisiting the “disaster 
and development” debate—Toward a broader 
understanding of macroeconomic risk and resilience. 
Climate  Risk  Management,  3,  39-54.  http://dx.doi. 
org/10.1016/j.crm.2014.05.002 

 
152. USAID, 2012: Building Resilience to Recurrent 

Crisis: USAID Policy and Program Guidance. 
U.S. Agency  for  International Development, 
Washington, DC, 27 pp. https://www.usaid. 

 knowledge  networks,  and  information  brokers   at 
Caribbean Climate Outlook forums. Weather, Climate, 

 gov/sites/d efa ul t/fi les/doc ume nts/1870/ 
USAIDResiliencePolicyGuidanceDocument.pdf 

and Society, 8 (3), 285-298. http://dx.doi.org/10.1175/ 
wcas-d-15-0076.1 

 
153. 

 
Nordhaus, W.D., 1994: Managing the Global Commons: 

  The Economics of Climate Change. MIT Press, 
145. GFCS, 2017: GRCS [web site]. Global Framework  Cambridge, MA, 223 pp. 

 for Climate Services (GRCS), Geneva, Switzerland. 
http://www.gfcs-climate.org/ 

 
154. 

 
Stern, N., 2007: The Economics of Climate Change. 

   The Stern Review. Cambridge University Press, 
146. START International, 2017: START [web site]. START  Cambridge, New York, 712 pp. 

 International, Washington, DC. http://start.org/   
  155. Estrada, F., R.S.J. Tol, and W.J.W. Botzen, 2017: Global 
147. Kopp,  R.E.,  D.R.  Easterling,  T.   Hall,  K.  Hayhoe,   R. 

Horton,   K.E.   Kunkel,   and   A.N.   LeGrande,   2017: 
 economic impacts of climate variability and change 

during the 20th century. PLOS ONE, 12 (2), e0172201. 
 Potential surprises—Compound extremes and tipping 

elements. Climate Science Special Report: Fourth 
National  Climate  Assessment,  Volume  I. Wuebbles, 

 

156. 

http://dx.doi.org/10.1371/journal.pone.0172201 
 
Tol, R.S.J., 2018: The economic impacts of climate 

 D.J.,   D.W.   Fahey,   K.A.   Hibbard,   D.J.   Dokken, B.C. 
Stewart, and T.K. Maycock, Eds. U.S. Global Change 

 change.   Review   of   Environmental   Economics and 
Policy, 12 (1), 4-25. http://dx.doi.org/10.1093/ 

 Research Program, Washington, DC, USA, 411-429.  reep/rex027 
 http://dx.doi.org/10.7930/J0GB227J   
  157. USAID, 2016: USAID Climate Action Review: 2010- 
148. Mani, M., S. Bandyopadhyay, S. Chonabayashi, A. 

Markandya, and T. Mosier, 2018: South Asia’s Hotspots: 
Impacts  of  Temperature  and  Precipitation  Changes  on 
Living  Standards.  South  Asia  Development Matters. 

 2016. U.S. Agency for International Development, 
Washington,   DC,   40   pp.   https://www.usaid.gov/ 
climate/climate-action-review-2010-2016 

 World   Bank,   Washington,   DC,   101   pp.   http://hdl. 158. Hallegatte, S., M. Bangalore, L. Bonzanigo, M. Fay, 
 handle.net/10986/28723  T. Kane, U. Narloch, J. Rozenberg, D. Treguer, and 
   A. Vogt-Schilb, 2016: Shock Waves: Managing the 
149. UNISDR, 2015: Global Assessment Report (GAR) on  Impacts of Climate Change on Poverty. World 

 Disaster Risk Reduction 2015. United Nations Office  Bank,  Washington,  D.C,  207  pp.  http://hdl.handle. 
 for Disaster Risk Reduction (UNISDR), Geneva,  net/10986/22787 
 Switzerland,   311   pp.   https://www.unisdr.org/we/   
 inform/publications/42809   

https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-climate-change-and-the-cryosphere/743
https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-climate-change-and-the-cryosphere/743
https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-climate-change-and-the-cryosphere/743
https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-climate-change-and-the-cryosphere/743
https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-climate-change-and-the-cryosphere/743
https://library.wmo.int/opac/doc_num.php?explnum_id=3191
https://library.wmo.int/opac/doc_num.php?explnum_id=3191
http://hdl.handle.net/10986/25335
http://hdl.handle.net/10986/25335
http://dx.doi.org/10.1016/j.crm.2014.05.002
http://dx.doi.org/10.1016/j.crm.2014.05.002
https://www.usaid.gov/sites/default/files/documents/1870/USAIDResiliencePolicyGuidanceDocument.pdf
https://www.usaid.gov/sites/default/files/documents/1870/USAIDResiliencePolicyGuidanceDocument.pdf
https://www.usaid.gov/sites/default/files/documents/1870/USAIDResiliencePolicyGuidanceDocument.pdf
http://dx.doi.org/10.1175/wcas-d-15-0076.1
http://dx.doi.org/10.1175/wcas-d-15-0076.1
http://www.gfcs-climate.org/
http://start.org/
http://dx.doi.org/10.1371/journal.pone.0172201
http://dx.doi.org/10.1093/reep/rex027
http://dx.doi.org/10.1093/reep/rex027
http://dx.doi.org/10.7930/J0GB227J
https://www.usaid.gov/climate/climate-action-review-2010-2016
https://www.usaid.gov/climate/climate-action-review-2010-2016
http://hdl.handle.net/10986/28723
http://hdl.handle.net/10986/28723
http://hdl.handle.net/10986/22787
http://hdl.handle.net/10986/22787
https://www.unisdr.org/we/inform/publications/42809
https://www.unisdr.org/we/inform/publications/42809


16 | Climate Effects on U.S. International Interests - References 

627 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 
159. Chambwera, M., G. Heal, C. Dubeux, S. Hallegatte, L. 

Leclerc, A. Markandya, B.A. McCarl, R. Mechler, and 
J.E. Neumann, 2014: Economics of adaptation. Climate 
Change 2014: Impacts, Adaptation, and Vulnerability. 
Part A: Global and   Sectoral   Aspects.   Contribution 
of Working Group II  to  the  Fifth  Assessment  Report  
of the Intergovernmental Panel of Climate Change. 
Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. 
Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. 
Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, 
S. MacCracken, P.R. Mastrandrea, and L.L. White, 
Eds. Cambridge University Press, Cambridge, United 
Kingdom and New York, NY, USA, 945-977. 

 
160. CNA Corporation, 2007: National Security and 

the Threat of Climate Change. CNA Corporation, 
Arlington,   VA,   63   pp.   https://www.cna.org/cna_ 
files/pdf/National%20Security%20and%20the%20 
Threat%20of%20Climate%20Change.pdf 

 
161. CNA Military Advisory Board, 2014: National Security 

and the Accelerating Risks of Climate Change. CNA 
Corporation,  Alexandria,  VA,  36  pp.  https://www. 
cna.org/cna_files/pdf/MAB_5-8-14.pdf 

 
162. Defense Science Board, 2011: Trends and 

Implications of Climate Change on National and 
International Security. Defense Science Board (DSB), 
Washington, DC, 176 pp. http://www.dtic.mil/docs/ 
citations/ADA552760 

 
163. DOD, 2010: Quadrennial Defense Review. U.S. 

Department   of   Defense,   128   pp.   http://archive. 
defense.gov/qdr/QDR%20as%20of%2029JAN10%20 
1600.pdf 

 
164. Burke, M.B., E. Miguel, S. Satyanath, J.A. Dykema, 

and D.B. Lobell, 2009: Warming increases the risk 
of civil war in Africa. Proceedings of the National  
Academy of Sciences of the United States of America, 
106   (49),   20670-20674.   http://dx.doi.org/10.1073/ 
pnas.0907998106 

 
165. Hsiang, S.M., M. Burke, and E. Miguel, 2013: 

Quantifying the influence of climate on human 
conflict.  Science,  341  (6151),  1235367.  http://dx.doi. 
org/10.1126/science.1235367 

 
166. Dell, M., B.F. Jones, and B.A. Olken, 2012: Temperature 

shocks and economic growth: Evidence from the 
last half century. American Economic Journal: 
Macroeconomics,     4     (3),     66-95.     http://dx.doi. 
org/10.1257/mac.4.3.66 

167. Gleditsch, N.P., 2012: Whither the weather? Climate 
change and conflict. Journal of Peace Research, 49 (1), 
3-9. http://dx.doi.org/10.1177/0022343311431288 

 
168. O’Loughlin, J., F.D.W. Witmer, A.M. Linke, A. Laing, A. 

Gettelman, and J. Dudhia, 2012: Climate variability and 
conflict risk in East Africa, 1990–2009. Proceedings of 
the National Academy of Sciences of the United States of   
America,   109   (45),   18344-18349.   http://dx.doi. 
org/10.1073/pnas.1205130109 

 
169. Salehyan, I., 2014: Climate change and conflict: Making 

sense of disparate findings. Political Geography, 43, 
1-5. http://dx.doi.org/10.1016/j.polgeo.2014.10.004 

 
170. Theisen, O.M., H. Holtermann, and H. Buhaug, 

2011/12: Climate wars? Assessing the claim that 
drought breeds conflict. International Security, 36 
(3), 79-110. https://muse.jhu.edu/article/461857/pdf 

 
171. Marra, J., M. Merrifield, and W. Sweet, 2015: 

Advancing Best Practices for the Formulation of   
Localized   Sea   Level   Rise/Coastal   Inundation 
Extremes’ Scenarios for Military Installations in the 
Pacific Islands. SERDP Project RC-2335. Strategic 
Environmental Research and Development Program 
(SERDP), Alexandria, VA, 55 pp. http://www.dtic.mil/ 
cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc. 
pdf&AD=AD1022212 

 
172. Ide, T., 2017: Research methods for exploring the 

links between climate change and conflict. Wiley 
Interdisciplinary Reviews: Climate Change, 8 (3), 
e456-n/a. http://dx.doi.org/10.1002/wcc.456 

 
173. De Châtel, F., 2014: The role of drought and climate 

change in the Syrian uprising: Untangling the 
triggers of the revolution. Middle Eastern Studies, 
50 (4), 521-535. http://dx.doi.org/10.1080/00263206 
.2013.850076 

 
174. Gleick, P.H., 2014: Water, drought, climate change, 

and conflict in Syria. Weather, Climate, and Society,   
6   (3),   331-340.   http://dx.doi.org/10.1175/ wcas-d-
13-00059.1 

 
175. Selby, J., O.S. Dahi, C. Fröhlich, and M. Hulme, 2017: 

Climate change and the Syrian civil war revisited. 
Political    Geography,    60,    232-244.    http://dx.doi. 
org/10.1016/j.polgeo.2017.05.007 

 
176. Werrell, C.E., F. Femia, and T. Sternberg, 2015: Did we 

see it coming? State fragility, climate vulnerability, 
and the uprisings in Syria and Egypt. SAIS Review of  
International  Affairs  35  (1),  29-46.  http://dx.doi. 
org/10.1353/sais.2015.0002 

https://www.cna.org/cna_files/pdf/National%20Security%20and%20the%20Threat%20of%20Climate%20Change.pdf
https://www.cna.org/cna_files/pdf/National%20Security%20and%20the%20Threat%20of%20Climate%20Change.pdf
https://www.cna.org/cna_files/pdf/National%20Security%20and%20the%20Threat%20of%20Climate%20Change.pdf
https://www.cna.org/cna_files/pdf/MAB_5-8-14.pdf
https://www.cna.org/cna_files/pdf/MAB_5-8-14.pdf
http://www.dtic.mil/docs/citations/ADA552760
http://www.dtic.mil/docs/citations/ADA552760
http://archive.defense.gov/qdr/QDR%20as%20of%2029JAN10%201600.pdf
http://archive.defense.gov/qdr/QDR%20as%20of%2029JAN10%201600.pdf
http://archive.defense.gov/qdr/QDR%20as%20of%2029JAN10%201600.pdf
http://dx.doi.org/10.1073/pnas.0907998106
http://dx.doi.org/10.1073/pnas.0907998106
http://dx.doi.org/10.1126/science.1235367
http://dx.doi.org/10.1126/science.1235367
http://dx.doi.org/10.1257/mac.4.3.66
http://dx.doi.org/10.1257/mac.4.3.66
http://dx.doi.org/10.1177/0022343311431288
http://dx.doi.org/10.1073/pnas.1205130109
http://dx.doi.org/10.1073/pnas.1205130109
http://dx.doi.org/10.1016/j.polgeo.2014.10.004
https://muse.jhu.edu/article/461857/pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&amp;doc=GetTRDoc.pdf&amp;AD=AD1022212
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&amp;doc=GetTRDoc.pdf&amp;AD=AD1022212
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&amp;doc=GetTRDoc.pdf&amp;AD=AD1022212
http://dx.doi.org/10.1002/wcc.456
http://dx.doi.org/10.1080/00263206.2013.850076
http://dx.doi.org/10.1080/00263206.2013.850076
http://dx.doi.org/10.1175/wcas-d-13-00059.1
http://dx.doi.org/10.1175/wcas-d-13-00059.1
http://dx.doi.org/10.1175/wcas-d-13-00059.1
http://dx.doi.org/10.1016/j.polgeo.2017.05.007
http://dx.doi.org/10.1016/j.polgeo.2017.05.007
http://dx.doi.org/10.1353/sais.2015.0002
http://dx.doi.org/10.1353/sais.2015.0002


16 | Climate Effects on U.S. International Interests - References 

628 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 
 

177. IPCC, 2013: Climate Change 2013: The Physical Science 
Basis. Contribution of Working Group I to the Fifth 
Assessment Report of the Intergovernmental Panel on 
Climate Change. Stocker, T.F.,  D.  Qin, G.-K.  Plattner, 

181. Douglas, T.A., M.T. Jorgenson, D.N. Brown, C.A. 
Hiemstra, A.K. Liljedahl, C. Downer, N. Pradhan, S. 
Marchenko, S. Campbell, G. Senseman, and K. Olson, 
2016:  Addressing  the  Impacts  of  Climate  Change 

M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia,  on U.S. Army Alaska: With Decision Support Tools 
V. Bex, and P.M. Midgley, Eds. Cambridge University  Developed Through Field Work and Modeling. SERDP 

Press, Cambridge, UK and New York, NY, 1535 pp.  Project RC-2110. U.S. Army Cold Regions Research 
http://www.climatechange2013.org/report/  and Engineering Laboratory, Fort Wainwright, 

  179 pp. http://www.dtic.mil/dtic/tr/fulltext/ 
178. Herring, S.C., A. Hoell, M.P. Hoerling, J.P. Kossin,  u2/1030958.pdf 

C.J. Schreck III, and P.A. Stott, 2016: Explaining   

extreme events of 2015 from a climate perspective. 
Bulletin  of  the  American  Meteorological  Society, 

182. Moss,    R.H.,    L.O.    Mearns,    J.    Brandenberger,  A. 
Delgado, E.L. Malone, J. Rice, T.  Wang, Z. Yang, M. 

97 (12), S1-S145. http://dx.doi.org/10.1175/  Bukovsky, R. McCrary, S. McGinnis, A. Blohm, S. 
BAMS-ExplainingExtremeEvents2015.1  Broomell, and J.J. Henriques, 2016: Understanding 

 
179. NAS, 2016: Attribution of Extreme Weather Events 

 Data    Needs    for    Vulnerability    Assessment and 
Decision Making to Manage Vulnerability of 

in the Context of Climate Change. The National  Department of Defense Installations to Climate 
Academies  Press,  Washington,  DC,  186  pp.  http:// 
dx.doi.org/10.17226/21852 

 
180. Lewis, K.H. and T.M. Lenton, 2015: Knowledge 

problems in climate change and security research. 
Wiley Interdisciplinary Reviews: Climate Change, 6 
(4), 383-399. http://dx.doi.org/10.1002/wcc.346 

Change. SERDP Project RC-2206. Strategic 
Environmental Research and Development Program 
(SERDP),     Alexandria,     VA.     http://www.dtic.mil/ 
cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc. 
pdf&AD=AD1025344 

http://www.climatechange2013.org/report/
http://www.dtic.mil/dtic/tr/fulltext/u2/1030958.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/1030958.pdf
http://dx.doi.org/10.1175/BAMS-ExplainingExtremeEvents2015.1
http://dx.doi.org/10.1175/BAMS-ExplainingExtremeEvents2015.1
http://dx.doi.org/10.17226/21852
http://dx.doi.org/10.17226/21852
http://dx.doi.org/10.1002/wcc.346
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&amp;doc=GetTRDoc.pdf&amp;AD=AD1025344
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&amp;doc=GetTRDoc.pdf&amp;AD=AD1025344
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&amp;doc=GetTRDoc.pdf&amp;AD=AD1025344


 

 

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 

Sector Interactions, Multiple Stressors, and Complex Systems 
 
 

Federal Coordinating Lead Authors 
Leah Nichols 
National Science Foundation 

 
Robert Vallario 
U.S. Department of Energy 

 
 

Chapter Lead 
Leon Clarke 
Pacific Northwest National Laboratory 

 
 

Chapter Authors 
Mohamad Hejazi 
Pacific Northwest National Laboratory 

 
Jill Horing 
Pacific Northwest National Laboratory 

 
Anthony C. Janetos 
Boston University 

 
Katharine Mach 
Stanford University 

 
Michael Mastrandrea 
Carnegie Institution for Science 

 
 

Review Editor 
Kai Lee 
Williams College (Emeritus) and the Packard 
Foundation (Retired) 

 
Marilee Orr 
U.S. Department of Homeland Security 

 
Benjamin L. Preston 
Rand Corporation 

 
Patrick Reed 
Cornell University 

 
Ronald D. Sands 
U.S. Department of Agriculture 

 
Dave D. White 
Arizona State University 

 
 
 

 

Recommended Citation for Chapter 
Clarke, L., L. Nichols, R. Vallario, M. Hejazi, J. Horing, A.C. Janetos, K. Mach, M. Mastrandrea, M. Orr, B.L. Pres- 
ton, P.  Reed, R.D. Sands, and D.D.  White, 2018: Sector Interactions, Multiple Stressors, and Complex Systems.    
In Impacts, Risks, and Adaptation in the  United  States:  Fourth  National  Climate  Assessment,  Volume  II  [Reid-  
miller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)]. U.S. 
Global Change Research Program, Washington, DC, USA, pp. 629–659. doi: 10.7930/NCA4.2018.CH17 

 
On the Web:  https://nca2018.globalchange.gov/chapter/complex-systems 

17 

http://doi.org/10.7930/NCA4.2018.CH17


 

 

 
 

Key Message 1 Landslide blocking a road in California 
 

 
The sectors and systems exposed to climate (for example, energy, water, and agriculture) 
interact with and depend on one another and other systems less directly exposed to 
climate (such as the financial sector). In addition, these interacting systems are not only 
exposed to climate-related stressors such as floods, droughts, and heat waves, they are 
also subject to a range of non-climate factors, from population movements to economic 
fluctuations to urban expansion. These interactions can lead to complex behaviors 
and outcomes that are difficult to predict. It is not possible to fully understand the 
implications of climate change on the United States without considering the interactions 
among sectors and their consequences. 

Key Message 2 
 

Climate change risk assessment benefits from a multisector perspective, encompassing 
interactions among sectors and both climate and non-climate stressors. Because such 
interactions and their consequences can be challenging to identify in advance, effectively 
assessing multisector risks requires tools and approaches that integrate diverse evidence and 
that consider a wide range of possible outcomes. 

Interactions Among Sectors 

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 

17 Sector Interactions, Multiple Stressors, and Complex Systems 

Multisector Risk Assessment 



17 | Sector Interactions, Multiple Stressors, and Complex Systems 

631 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 

Key Message 3 
 

The joint management of interacting systems can enhance the resilience of 
communities, industries, and ecosystems to climate-related stressors. For example, 
during drought events, river operations can be managed to balance water demand 
for drinking water, navigation, and electricity production. Such integrated approaches 
can help avoid missed opportunities or unanticipated tradeoffs associated with the 
implementation of management responses to climate-related stressors. 

 
Key Message 4 

 

Predicting the responses of complex, interdependent systems will depend on developing 
meaningful models of multiple, diverse systems, including human systems, and 
methods for characterizing uncertainty. 

 
Executive Summary 

 

The world we live in is a web of natural, built, 
and social systems—from global and regional 
climate; to the electric grid; to water  manage- 
ment systems such as dams, rivers, and canals; to 
managed and unmanaged forests; and to financial 
and economic systems. Climate affects many of 
these systems individually, but they also affect 
one another, and often in ways that are hard to 
predict. In addition, while climate-related risks 
such as heat waves, floods, and droughts have 
an important influence on these interconnected 
systems, these systems are also subject to a range 
of other factors, such as population growth, 
economic forces, technological change, and 
deteriorating infrastructure. 

 
A key factor in assessing risk in this context is 
that it is hard to quantify and predict all the 
ways in which climate-related stressors might 
lead to severe or widespread consequences for 
natural, built, and social systems. A multisector 
perspective can help identify such critical risks 
ahead of time, but uncertainties will always 
remain regarding exactly how consequences 
will materialize in the future. Therefore, 

effectively assessing multisector risks requires 
different tools and approaches than would be 
applied to understand a single sector by itself. 

 
In interacting systems, management responses 
within one system influence how other systems 
respond. Failure to anticipate interdependencies 
can lead to missed opportunities for managing 
the risks of climate change; it can also lead to 
management responses that increase risks to 
other parts of the system. Despite the challenge 
of managing system interactions, there are 
opportunities to learn from experience to guide 
future risk management decisions. 

 
There is a large gap in the multisector and mul- 
tiscale tools and frameworks that are available to 
describe how different human systems interact 
with one another and with the earth system, 
and how those interactions affect the total 
system response to the many stressors they are 
subject to, including climate-related stressors. 
Characterizing the nature of such interactions 
and building the capacity to model them are 
important research challenges. 

Management of Interacting Systems 

Advancing Knowledge 
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Complex Sectoral Interactions 
 

Sectors are interacting and interdependent through physical, social, institutional, environmental, and economic linkages. These 
sectors and the interactions among them are affected by a range of climate-related and non-climate influences. From Figure 17.1 
(Sources: Pacific Northwest National Laboratory, Arizona State University, and Cornell University). 
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Introduction 
 

The world we live in is a web of natural, built, 
and social systems—from global and regional 
climate; to the electric grid; to water man- 
agement systems such as dams, rivers, and 
canals; to managed and unmanaged forests; 
and to financial and economic systems. Climate 
affects many of these systems individually, 

but they also affect one another, and often 
in ways that are hard to predict. In addition, 
while climate-related risks such as heat waves, 
floods, and droughts have an important influ- 
ence on these interdependent systems, these 
systems are also subject to a range of other 
factors, such as population growth, economic 
forces, technological change, and deteriorating 
infrastructure (Figure 17.1). 

 

Complex Sectoral Interactions 
 

Figure 17.1: Sectors are interacting and interdependent through physical, social, institutional, environmental, and economic 
linkages. These sectors and the interactions among them are affected by a range of climate-related and non-climate influences. 
Sources: Pacific Northwest National Laboratory, Arizona State University, and Cornell University. 
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Assessing the risks associated with climate 
change requires us to acknowledge that 
understanding the risks to individual sectors is 
important but may not always be sufficient to 
characterize the risks to interdependent sys- 
tems. Improved understanding of the complex 
dynamics that arise from interactions among 
systems is therefore essential to understand 
risk and manage our response to a changing 
climate. Characterizing the nature of such 
interactions and building the capacity to model 
them are important research challenges. 

Regional and Sectoral Summary 

Examples of interactions among sectors and 
systems can be found across the regions in this 
assessment. The cascading failures resulting from 
hurricanes are considerations across several 
coastal regions, including the Southern Great 
Plains (for example, Hurricane Harvey in 2017; see 
Box 17.1), the Southeast (for example, Hurricane 
Irma in 2017), and the Caribbean (for example, 
Hurricane Maria in 2017). Energy, water, and land 
systems subject to both climate-related stressors 
(such as droughts and heat waves) and non- 
climate influences (such as changes to population, 
urbanization, and economic development) are 
important considerations in the Southwest, the 
Southern Great Plains (for example, the 2012–2015 

drought in Texas), and the Northwest (for 
example, the snow drought in Oregon in 2015). 
The feedbacks between forest fires and water 
quality and availability have created challenges in 
regions including the Southeast (for example, the 
Appalachian region in 2016) and the Southwest 
(for example, the Sierra Nevada range over the 
last five years). Changes in arctic permafrost have 
caused significant erosion, leading to new risks 
in transportation and human health in Alaska. 
The natural gas and other energy industries rely 
on the effective management of not only rail- 
roads and transportation networks but also the 
diminishing water supply in the Northern Great 
Plains region. A need for cross-sector planning 
for climate change impacts in the Great Lakes 
region has led to new adaptation networks in the 
Midwest. In Hawai‘i, increasing ocean tempera- 
tures and ocean acidification threaten coral reefs 
and marine biodiversity, with attendant economic 
impacts to tourism, fishery yields, and popula- 
tions who depend on these for their livelihoods. 
Increasingly frequent and intense storms, heavy 
precipitation events, warmer water temperatures, 
and a rise in sea level in the Chesapeake Bay 
in the Northeast are projected to impact local 
populations, who depend on productive fisheries 
and ecosystems for their  livelihoods,  resourc- 
es, and culture. 

 

 

Box 17.1: Hurricane Harvey: Cascading Failures and Lessons from Emerging 
Management Approaches 
Hurricane Harvey, which struck Houston, Texas, in August 2017 (Figure 17.2), provides a clear example of how 
impacts from extreme weather events can cascade through tightly connected natural, built, and social systems 
exposed to severe climate-related stressors (see Key Message 1) (see also Ch. 23: S. Great Plains, Box 23.1 for 
more information on Hurricane Harvey). Harvey knocked out power to 300,000 customers in Texas,1 with cas- 
cading effects on critical infrastructure facilities such as hospitals, water and wastewater treatment plants, and 
refineries. Eleven percent of U.S. refining capacity and a quarter of oil production from the U.S. Gulf of Mexico 
were shut down. Actual and anticipated gasoline shortages caused price spikes regionally and nationally.2

 

 
In addition to causing direct death and injury, the storm affected public health by disrupting supporting sys- 
tems. In addition, floodwaters carried toxins and pathogens. Flooding inundated a total of 43 EPA Superfund 
toxic sites (damaging the protective cap at one site and leading to a short-term release of dioxins), and flooded 

wastewater treatment plants spilled untreated sewage.3 Although most hospitals were able to remain open 
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Box 17.1: Hurricane Harvey: Cascading Failures and Lessons from Emerging 
Management Approaches, continued 

(sometimes on backup power), their ability to serve their patients was strained. Widespread power outages 
forced evacuations that exceeded the emergency shelter capacity, and otherwise healthy people who had no 
access to shelters or needed power for medical devices turned to hospitals. Roadways clogged with debris, and 
floodwater hampered the ability to get supplies and evacuate vulnerable patients. Disrupted communications 
networks interfered with hospitals’ ability to coordinate with each other and emergency services.4

 

 
These interconnected infrastructure systems operate within the context of non-climate influences, including 
social institutions and policy environments (see Key Message 3) (see also Ch. 11: Urban, Key Message 3). For 
example, in the area affected by Hurricane Harvey, regional land management practices over the last several de- 
cades have reduced the area covered by wetlands, forests, and prairies, which historically absorbed storm water 
runoff.5 These natural environments have been increasingly replaced with impermeable surfaces, decreasing 
Houston’s resilience to flooding.5

 

 
Hurricanes have struck densely populated, interconnected U.S. urban systems several times, including Hurricane 
Katrina in New Orleans in 2005 and Superstorm Sandy in New York City in 2012. While each city and storm is unique, 
planners and decision-makers can learn from past events and outstanding examples of resilience. During Harvey, the 
Texas Medical Center in Houston, the world’s largest medical center, remained fully functional despite disruptions to 
transportation, water, and electricity, in large part due to lessons learned and resilience investments made following 

the devastation of Tropical 
Storm Allison in 2001 and Hur- 
ricane Ike in 2008.6 In the af- 
termath of Superstorm Sandy, 
the mayor of New York City ex- 
plicitly brought climate-related 
risks into response planning 
and called for a more holistic 
risk management strategy 
(see Key Message 3), initiated 
through the Special Initiative 
for Rebuilding and Resilien- 
cy and the Climate Change 
Adaptation Task Force.7 This 
task force brought together 
stakeholders from major infra- 
structure and health sectors 

Figure 17.2: Hurricane Harvey led to widespread flooding and knocked out power to 
300,000 customers in Texas in 2017, with cascading effects on critical infrastructure 
facilities such as hospitals, water and wastewater treatment plants, and refineries. The 
photo shows Port Arthur, Texas, on August 31, 2017—six days after Hurricane Harvey 
made landfall along the Gulf Coast. Photo credit: Staff Sgt. Daniel J. Martinez, U.S. Air 
National Guard. 

such as water, transportation, 
energy, and communications 
to recognize and address 
interdependencies. 
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Key Message 1 
 

 
The sectors and systems exposed  to 
climate (for example, energy, water, and 
agriculture) interact with and depend 
on one another and other systems less 
directly exposed to climate (such as the 
financial sector). In addition, these inter- 
acting systems are not only exposed to 
climate-related stressors such as floods, 
droughts, and heat waves, they are also 
subject to a range of non-climate factors, 
from population movements to economic 
fluctuations to urban expansion. These 
interactions can lead to complex behav- 
iors and outcomes that are difficult to 
predict. It is not possible to fully under- 
stand the implications of climate change on 
the United States without considering the 
interactions among sectors and 
their consequences. 

The sectors and systems subject to climate- 
related risks do not exist in isolation; they 
interact with one another and with other 
sectors and systems. For example, agricultural 
systems require water for irrigation, which is 
supplied from lakes, rivers, dams, and reser- 
voirs. Forest management influences the runoff 
that makes its way into these water systems. 
Electricity systems use water for hydroelectric 
power as well as for cooling thermoelectric 
power plants. Many urban transportation sys- 
tems rely on electricity to power subways and 
buses. Meanwhile, medical services, and public 
health more broadly, are enabled by transpor- 
tation, water, electricity, and communications 
(Ch. 11: Urban, KM 3). To most effectively assess 
the risks associated with climate-related 
stressors such as floods, droughts, or heat 
waves, the interactions among these systems 
must be considered in addition to the effects of 
these stressors on individual systems.8 

In addition, climate-related stressors are not 
the only influences to which natural, built, and 
social systems are exposed. For example, popu- 
lation movements and demographic changes, 
economic growth, and changes in industrial 
activity can all influence systems exposed to 
climate-related stressors as well as systems 
that interact with them (see, for example, Box 
17.3). Such factors can have powerful impacts 
on these systems or alter their vulnerability 
to climate-related stressors. For example, 
rapid population growth in the coastal 
United States over the past half-century has 
significantly increased society’s exposure to 
extreme weather events like hurricanes.9 These 
demographic trends may have a greater impact 
on future hurricane damages than sea level rise 
or changes in storm intensity.10 

 
A long history of research on complex systems 
(e.g., Simon 200011), spanning disciplines from 
meteorology12 to ecology13 to paleontology14 to 
computer science, 15 has shown that  systems 
that depend on one another are subject to new 
and often complex behaviors that do not emerge 
when these systems are considered in isolation. 
These behaviors, in turn, raise the prospect of 
unanticipated, and potentially catastrophic, 
risks.16 For example, failures can cascade from one 
system to another; that is, failures in one system 
can lead to increased risks or failures in other 
systems. Such cascades have been observed with 
Hurricane Harvey (see Box 17.1), the Northeast 
blackout (see Box 17.5),17 and erosion and perma- 
frost thaw in Alaska (Ch. 26: Alaska, KM 3), where 
failures in physical infrastructure systems had 
downstream consequences for human health 
and safety. Tightly connected supply chains 
can quickly transmit impacts from events such 
as floods, droughts, heat waves, and tropical 
cyclones in one region or part of the world to 
systems in another (see Ch. 16: International, 
KM 1). For example, the spike in food prices in 
2010–2011 was driven in part by drought-related 
declines in production of basic grains in Australia 

Interactions Among Sectors 
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and Eastern Europe, which provided a short-term 
income increase to U.S. farmers of those com- 
modities (see Ch. 16: International, KM 1).18 

 
Similarly, changes in one part of a system may 
alter the thresholds and tipping points in other 
parts of the system (see Kopp et al. 201719). For 
example, the overuse and depletion of groundwa- 
ter removes a backstop in times of drought (see 
Box 17.3). Forest wildfires can affect water and 
air quality and render soil impermeable, altering 
both health and flood risks (see Box 17.4). Inter- 
actions among systems can also buffer systems 
from shocks and introduce a measure of system 
stability or recovery potential that might not have 

otherwise existed (see Box 17.5). For example, 
social networks, which are increasingly reflected 
in social media enabled by communications 
infrastructure, can have an important influence 
on the resilience of communities to natural 
hazards. Compound events, such as simultaneous 
temperature extremes and drought, can produce 
greater economic costs than events considered 
separately.19 The complexity of the interactions 
that exist among these various systems limits the 
ability to predict the consequences of climate- 
related stressors with confidence. This poses 
important challenges for risk assessment as well 
as the management of those risks. 

 

Box 17.2: Uncovering System Complexities: Wolves and the Yellowstone Ecosystem 
One challenge in understanding interconnected 
systems is that interactions are often not revealed 
until some stress or intervention occurs (see Key 
Message 1). In addition, societal values and ac- 
tions can play an important role in such systems. A 
non-climate example illustrates this challenge very 
clearly—the consequences of the 1995 reintroduc- 
tion of wolves into the Yellowstone National Park 
ecosystem.20 Concurrent with the eradication of 
wolves in the early 20th century, streamside willow 
populations declined as elk herds grew and browsed 
them more heavily. Willows along the small stream 
network were reduced to short stature or eliminated 
entirely. Beavers abandoned streams that lacked 

A lone gray wolf in Yellowstone National Park. © Michelle 
Callahan/Flickr (CC BY 2.0). 

willows needed for food and dam construction. In spite of the controversy over wolf reintroductions because of 
predation on livestock, the National Park Service reintroduced wolves in 1995–1996.21 Since wolves have been 
reintroduced, there have been some effects on willow stands, but these appear to largely be due to reductions 
in overall elk number, rather than strictly to behavioral responses to the presence of the wolves.22 But in areas 
where beavers were also lost, the overall system has not returned to its state before the eradication of wolves. 
The changes due to the loss of beavers have apparently reduced the capacity of the system to return to its origi- 
nal state, even when the wolves returned.23,24 This example illustrates the unpredictable nature of complex, inter- 
connected systems and how they may react to multiple stressors and interventions driven by societal decisions. 
It also illustrates that there is no guarantee that such systems, once perturbed, will return to their original state 
when management actions are taken.25 Because climate change is a stress that is outside the recent experi- 
ence of species in many ecosystems, it, too, may uncover complexities due to ecosystem-level interactions that 
might not be immediately apparent. 

https://creativecommons.org/licenses/by/2.0/legalcode


17 | Sector Interactions, Multiple Stressors, and Complex Systems 

638 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 

Box 17.3: Energy, Water, and Land Linkages 

Climate-related stressors such as extreme temperatures, large precipitation events, floods, and droughts 
highlight the interactions among energy, water, and land systems. These climate-related stressors also interact 
with non-climate influences such as population, markets, technology, and infrastructure to affect energy, water, 
and land systems individually as well as the dynamics between these sectors. Understanding how risks evolve 
under a changing climate, and classifying which risks are the most consequential, poses a significant challenge 
but is critically important to develop response strategies that enhance resilience across systems. Risks to ener- 
gy, water, and land systems must be considered in the context of both climate-related and non-climate-related 
influences as well as the broader social and institutional context (Figure 17.3). As risks evolve, the vulnerabili- 
ties and exposure rates for energy, water, and land systems also evolve (see Key Message 1).26

 

 
Energy–Water–Land Interactions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.3: Energy, water, and land systems are interconnected and impacted by both climate-related and non-climate 
stressors. These influences affect these systems individually as well as the dynamics among these sectors. A multisector 
perspective is necessary to understand risks and develop response strategies that enhance resilience across multiple 
systems. Sources: Pacific Northwest National Laboratory, Arizona State University, and Cornell University. 
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Box 17.3: Energy, Water, and Land Linkages, continued 

The interactions between climate, energy, water, and land in California present a compelling example that 
illustrates the need to understand complex systems to develop response strategies. Hydropower generation 
supplies an average of 15% of the state’s total electricity consumption,27 while at the same time the state’s 
thermoelectric power plants rely on water for cooling. Meanwhile, the State Water Project is California’s largest 
single electricity consumer, demanding an average of 2%–3% of total generation for pumping and conveyance.28 

This emphasizes the importance of water for energy and of energy for water.29 The state’s agricultural sector de- 
mands approximately 40% of average available freshwater30 and uses substantial amounts of summer seasonal 
peak load electricity to pump groundwater, particularly during droughts. Along with uncertainty about future 
drought and precipitation extremes,19,31,32 California faces an increasing population, deteriorating infrastructure, 
and potential energy and water resource limits for an agricultural sector that is evolving to depend on declining 
groundwater aquifers (Ch. 25: Southwest, KM 1). 

 
The complexity of interconnected energy, water, and land systems highlights the potential impacts of societal 
choices and the need for institutional integration to explicitly account for sectoral interdependencies and multi- 
ple stressors (see Key Message 3).33,34 Choices in any one sector to confront the many climate-related stressors 
facing that sector (such as floods, droughts, deteriorating infrastructure, land surface subsidence [sinking], 
landslides, and wildfires) have the potential to yield cascading cost, reliability, and resilience impacts across the 
full, connected system (see Key Message 3).35,36,37,38,39 Taking California’s recent droughts as an example, when 
surface water supplies were strongly curtailed from 2002 to 2016, the result was increased well pumping to 
meet agricultural demands, which led to a loss of approximately 5.0 cubic miles (20.7 km3) of groundwater)40— 
or about the size of Lake Powell. Increasing well depths and lost hydropower production influence farmers’ 
decisions about both capital investments in pumping wells and transitions to higher-profit tree and vine crops 
that cannot be fallowed.27 Using groundwater as a key economic backstop for agriculture during droughts raises 
significant concerns about the reversibility of aquifer depletions, the weakening of levees, and accelerating rates 
of land surface subsidence,35,39,41,42,43 all of which may alter the future resilience of California’s energy, water, and 
land systems to climate extremes (Ch. 25: Southwest, KM 1). 

 

Key Message 2 
 

 
Climate change risk assessment benefits 
from a multisector perspective, encom- 
passing interactions among sectors and 
both climate and non-climate stressors. 
Because such interactions and their 
consequences can be challenging to 
identify in advance, effectively assessing 
multisector risks requires tools and 
approaches that integrate diverse evi- 
dence and that consider a wide range of 
possible outcomes. 

The number and complexity of possible 
interactions among systems affected  by 
climate expand the scope of climate change  
risk assessment. Recent assessments have 
acknowledged the importance of this expanded 
perspective. For example, Chapter 10 of the 
Third National Climate Assessment (NCA3) 44 

highlighted interactions among energy, water, 
and land systems that people and economies 
depend on. Other recent climate change  
impact assessments (e.g., Oppenheimer et 
al. 2014, Houser et al. 2015, Rosenzweig et al. 
201745,46,47) have highlighted risks emerging 
from interactions among different sectors, 
geographic regions, and stressors. 

Multisector Risk Assessment 
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A key factor in assessing risk in this context is 
that it is hard to quantify all the ways in which 
climate-related stressors might lead to  severe 
or widespread consequences for natural, built, 
and social systems. A multisector perspective 
can help identify critical risks ahead of time, but 
uncertainties will always remain regarding exactly 
how consequences will materialize in the future. 
In some cases, interactions are well known. For 
example, yearly fluctuations in river flows affect 
hydropower generation, in turn shaping energy 
costs and profits and reliance on other energy 
sources (see Box 17.3). Yet even in these cases, it 
is often difficult to quantify all relevant processes 
and interactions. Sometimes, interactions are 
only obvious in retrospect, such as those asso- 
ciated with many past hurricanes (see Box 17.1) 
or the Northeast blackout (see Box 17.5), with 
impacts cascading through different parts of the 
built environment and affecting human health, 
well-being, and livelihoods. In still other cases, 
all the relevant interactions are simply not fully 
understood, for example in the context of the 
linkages between wildfires, pine bark beetles, and 
forest management (see Box 17.4). 

Therefore, effectively assessing multisector risks 
requires different tools and approaches than 
would be applied to understand a single sector 
by itself. For example, as land management, 
infrastructure, and climate all change through 
time, statistical analysis of extreme weather 
events based on the past becomes less accurate 
in predicting future outcomes (Ch. 28: Adaptation, 
KM 2).48 Approaches can be applied to integrate 
diverse evidence, combining quantitative and 
qualitative results and drawing from the natural 
and social sciences and other forms of analy- 
sis.49,50,51 As one example, models and numerical 
estimates can be complemented by methods 
quantifying expert judgment in order to consider 
uncertainties not well represented by the models. 
For instance, models and expert judgment have 
been used together to inform understanding of 
future sea level rise.52 Scenarios can also be used 
to explore preparedness across possible futures, 
including extreme outcomes that have been rare 
in historical experience but may be particularly 
consequential in the future.50,53,54,55 Such scenarios 
in assessment can inform understanding of 
different decisions and choices for managing 
climate risks, responding to uncertainties about 
the future by starting with goals and priori- 
ties people have. 

 

 

Box 17.4: Wildfires, Pine Bark Beetles, and Forest Management 

Multiple stressors (see Key Message 1) act on U.S. forest ecosystems, impacting wildfire frequency and inten- 
sity in complex ways (see Key Message 2) (see also Ch. 6: Forests, KM 1). In the western United States, partic- 
ularly in Colorado and California, wildfires have become more frequent and larger in area (see Ch. 6: Forests, 
Figure 6.4; see also Ch. 24: Northwest, KM 1 for an additional example), and this trend is expected to continue 
as the climate warms (see Ch. 25: Southwest, KM 2).56 Drought, preceded by warm, wet seasons, can increase 
fuel flammability and availability. In addition to these climate-related stresses, choices about land use and 
land-cover change, increased pest populations, human migration, and earth system processes all impact forest 
ecosystems.56,57 The interaction of these stressors can alter the vulnerability of these systems, both exacerbat- 
ing and diminishing the likelihood and impact of wildfire. For example, as humans have moved and expanded 
the wildland–urban interface, increased fire suppression practices have led to changes in vegetation structure.58 

Without natural fires, vegetation has become denser, resulting in significantly larger and more damaging wild- 
fires.56 Meanwhile, the interaction of pests with wildfire includes feedback that is oftentimes nonlinear. Warmer 
winters have allowed pests such as the bark beetle to reach higher elevations and cause significant tree mortal- 

ity.59 Insect-killed trees influence fuels and fire behavior, while in some cases wildfire can mitigate the risk of 
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Box 17.4: Wildfires, Pine Bark Beetles, and Forest Management, continued 

bark beetle.58 The impacts of beetle-killed trees on fire likelihood vary over time, with an initial high probability of 
crown fires followed by the possibility of surface fires.60

 

 
Wildfires have significant health and economic impacts. Fine particles and ozone precursors released during 
fires can lead to increased cardiovascular and respiratory damage (Ch. 13: Air Quality, KM 2).61 Increased wild- 
fires are projected to increase costs associated with health effects, loss of homes and other property, wildfire 
response, and fuel management.62 However, risk analysis and planning around wildfire entail the challenge of 
accounting for all of the stressors acting on the system. Meanwhile, the stressors interact with one another 
and vary across temporal and sectoral scales (see Key Messages 2 and 4). Efforts are being made to improve 
prospective vulnerability assessments.57 The majority of research focuses only on first-order direct fire impacts 
and fails to recognize indirect and cascading consequences, such as erosion and the health impacts of smoke.63 

To conduct prospective analyses, most modeling efforts include climate and land-use and land-cover change as 
primary drivers but have a difficult time predicting human-induced stressors such as migration and settlement.57

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wildfire at the Wildland–Urban Interface 
Figure 17.4: Wildfires pose significant health and economic impacts through interfaces between wildlands and human 
settlements. Shown here is a wildfire in the Whiskeytown National Recreation Area in California in August 2004. Photo 
credit: Carol Jandrall, National Park Service. 
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Key Message 3 
 

The joint management of interacting sys- 
tems can enhance the resilience of com- 
munities, industries, and ecosystems to 
climate-related stressors. For example, 
during drought events, river operations 
can be managed to balance water de- 
mand for drinking water, navigation, and 
electricity production. Such integrated 
approaches can help avoid missed op- 
portunities or unanticipated tradeoffs 
associated with the implementation of 
management responses to climate- 
related stressors. 

 
In interacting systems, management responses 
within one system influence how other 
systems respond. Within water basins, for 
example, upstream management decisions 
can constrain downstream water-dependent 
management decisions that affect agriculture, 
transportation, domestic and  commercial 
use, and environmental protection. Failure to 
anticipate such interdependencies  can  lead 
to missed opportunities for managing the 
risks of climate change; they can also lead to 
management responses that increase risks to 
other parts of the system. For example, the 
use of groundwater in California as an agri- 
cultural backstop in the recent drought may 
alter California’s resilience to future droughts 
(see Box 17.3). 

 
In practice, managers of agricultural, natural 
resource, or infrastructure systems do manage 
at least some degree of system interdependen- 
cies. For example, electrical utilities account 
for the management of water resources to 
provide power plant cooling capacity, manage 
fuel supply chains through transportation net- 
works,64 and manage demand from customers. 
This requires utilities to acquire appropriate 

operational permits, licenses, and contracts 
relevant to other systems and to incorporate 
the characteristics of those systems in strate- 
gic planning and risk management. At the same 
time, water utilities are users of electricity, 
particularly those that rely on desalination, 
which is very energy intensive. Hence, efforts 
to enhance the resilience of water supply 
systems to drought can have important conse- 
quences for the energy sector and electricity 
costs.65 Such indirect risks can be challenging  
to manage, particularly when system managers 
have no operational control or jurisdiction over 
the interacting system. When drought reduced 
barge traffic on the Mississippi in 2013, farmers 
had limited options other than seeking more 
expensive transportation options or incurring 
delays in getting their products to market.66,67 

More holistic management approaches there- 
fore hold the potential for anticipating these 
risks and developing effective strategies and 
practices for risk reduction. 

 
Despite the challenge of managing system 
interactions, there are opportunities to learn 
from experience to guide future risk manage- 
ment decisions (Ch. 28: Adaptation, KM 3). The 
financial sector has invested significantly in 
understanding and managing systemic risks— 
including those associated with climate change 
and climate policy.68 Mechanisms include risk 
assessment, financial disclosures, contingency 
planning, and the development of regulations 
and industry standards that recognize system 
interdependencies. Another example is that 
of the Department of Defense (DoD), which 
integrates consideration for the implications 
of climate change and variability for food, 
water, energy, human migration, supply chains, 
conflict, and disasters into decision-making 
and operations around the world.69 In so doing, 
the DoD focuses on enhancing preparedness, 
building partnerships with other public and 
private organizations, and including climate 
change in existing planning processes.69,70 

Management of Interacting Systems 
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These strategies are relevant to any organi- 
zation attempting to enhance its resilience to 
climate change. 

 
A multisector perspective recognizes that 
systems have multiple points of vulnerability, 
that risk can propagate between systems, and 
that anticipating threats and disruptions requires 
situational awareness within and between 
systems.71,72 Translating the growing awareness of 
such complexities into the design of policies and 
practices that effectively address climate change 
risks, however, requires rethinking how systems 
are managed in order to identify opportunities for 
risk reduction or greater efficiency. For example, 
risk can be reduced by building excess capacity, 
flexibility, and redundancy into systems.73 Reserve 
margins for electricity grids, multi-objective 

reservoir management, grain storage, multimodal 
transportation networks, and redundant com- 
munications are all mechanisms that provide 
flexibility for coping with a broad range of risks. 
Resilience can also be enhanced by planning for 
system recovery in the event of diverse types of 
disruptions. For example, restoring power in the 
wake of a natural disaster is critical for restoring 
other services such as transportation, water, 
health, and communications (see Box 17.5). Nev- 
ertheless, the costs of designing, constructing, 
operating, and monitoring resilient, interacting 
systems that are robust to multiple sources of 
stress can be significant. Hence, consideration of 
the costs and benefits of resilience over the entire 
life cycle of the system may be necessary to make 
the business case. 

 
Box 17.5: Cascading Failures: Electricity, Public Health, and the 2003 Northeast Blackout 
The interactions among severe weather, electric power infrastructure, and public health demonstrate how impacts can 
cascade within and across sectors (see Key Message 1) and how risk management depends on understanding these 
interactions (see Key Message 3). The 2016 Climate and Health Assessment identified the impacts of climate- 
related extreme events on critical infrastructure as a major threat to public health, but it also emphasized the influence 
of non-climatic factors such as inequalities in income and education as well as individual behavioral choices on health 
outcomes (Ch. 14: Human Health, KM 1).67

 

 
More frequent and severe heat waves in many parts of the United States would increase stresses on electric power, 
increasing the risk of cascading failures within the electric power network that could propagate into other sectors (Ch. 
4: Energy, KM 1).74 Hot weather increases demand for electricity, mostly for residential air conditioning, while reducing 
transmission efficiency and pushing power infrastructure closer to its operating tolerances (Ch. 4: Energy, KM 1).75 The 
Northeast blackout in August 2003, which affected the Northeast and the Canadian province of Ontario, is a familiar 
example of a cascading network failure that has been well documented (Figure 17.5) (see also Ch. 11: Urban, KM 3). In 
2003, a single electrical line warmed on a hot day and sagged into vegetation, tripping out of service. Redirected power 
overloaded other lines, causing them to trip as well. The disruption cascaded through the network until at the peak of 
the outage it affected an estimated 50 million people in the Northeast and Canada’s Ontario province.76 Depending on 
the location, the outage lasted several hours to up to two days, resulting in economic losses of $4–$10 billion due to 
disruption of businesses and industries.76

 

 
In the decade following the blackout, despite improvements in reliability and vegetation control standards, 
weather-related outages actually increased, accounting for 80% of major outages reported; about 20% of weather- 
related outages cause cascading failures.77 In addition, today’s grid is increasingly large, complex, and heavily loaded, 
which some researchers suggest increases the potential for blackouts.78,79 Conversely, others suggest that tighter 
integration with communications and information technology (IT) infrastructure will improve resilience.80
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Box 17.5: Cascading Failures: Electricity, Public Health, and the 2003 Northeast 
Blackout, continued 

Given the challenges facing today’s grid, lessons from the 2003 blackout can still help the public health sector 
plan for and manage complex consequences of disruptions to interacting infrastructures.81 Power outages com- 
promise other critical infrastructures, including telecommunications, IT infrastructure, transportation systems, 
and water and wastewater treatment. In 2003, these disruptions had a broad range of implications for public 
health, including reduced access to medical equipment and pharmacies, isolation in multistory buildings, slow 
emergency response times, hospital closures, and temporary loss of disease surveillance systems.82,83 These 
impacts translated into health consequences; one study estimated that the event caused 90 excess deaths 
during August.83 Maintaining a resilient healthcare infrastructure system therefore depends on being able to 
successfully adapt, respond, and recover when supporting infrastructure systems are disrupted (see Key 
Message 3).84 This reflects the importance of emergency response and disaster risk reduction planning at the 
community level as well as consideration of the health implications of urban design and 
infrastructure planning.67

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Northeast Blackout 
Figure 17.5: During the August 2003 blackout, an estimated 50 million people in Canada and the northeastern United States 
lost power, with cascading impacts on public health and critical infrastructure. These images show (clockwise from upper left): 
nighttime satellite imagery of the area before the outage; the same view during the blackout; people walking on the Manhattan 
Bridge; and passengers being evacuated from a subway train on the Manhattan Bridge during the outage. Image credits: (top) 
NOAA; (bottom left) Jack Szwergold (CC BY-NC 2.0); (bottom right) Eric Skiff (CC BY-SA 2.0). 

https://creativecommons.org/licenses/by-nc/2.0/legalcode
https://creativecommons.org/licenses/by-sa/2.0/legalcode
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Key Message 4 
 

 
Predicting the responses of complex, 
interdependent systems will depend on 
developing meaningful models of mul- 
tiple, diverse systems, including human 
systems, and methods for character- 
izing uncertainty. 

 
Although it is clear that climate-related and 
non-climate stressors impact multiple natural, 
built, and social systems simultaneously, there- 
by altering societal risks, the tools available for 
predicting these dynamics lag those that pre- 
dict the dynamics of individual systems. There 
are many existing modeling efforts that explore 
complex natural systems, including climate 
models and numerical weather forecasting 
models. Although these models are applied to 
scenarios driven by social and policy decisions, 
the models themselves rarely incorporate 
the feedback relationships to social systems 
and policy contexts.85,86,87,88 Engineering and 
resource management models that explicitly 
incorporate societal  economic  decisions 
and represent built systems at a very high 
resolution have not traditionally been linked to 
climate projections. Some integrated human– 
earth system models are explicitly designed to 
identify system linkages but frequently lack key 
features or sufficient resolution of the inherent 
dynamics of the natural environment.89,90 These 
and other intersectoral models are also used 
to create scenarios of how combined natural– 
human systems might evolve (for example, the 
Shared Socioeconomic Pathways [SSPs]) (see 
Scenario Products section of App. 3).53 Such 
scenarios can be useful for exploring the range 
of possible outcomes of larger trends, but the 
results should not be considered predictive. 
There is a large gap, therefore, in the multisec- 
tor and multiscale tools and frameworks that 
are available to describe how different human 

systems interact with one another and with the 
earth system and how those interactions affect 
the total system response to the many stress- 
ors they are subject to, including climate-relat- 
ed stressors.91 However, increasing recognition 
of this gap has given rise to a number of inno- 
vative research projects that seek to directly 
link climate scenarios or earth system models 
to high-resolution models of built infrastruc- 
ture and human systems (e.g., Allen et al. 2016; 
Voisin et al. 2016; Ke et al. 2016; Zhou et al. 2017, 
2018; Tidwell et al. 201692,93,94,95,96,97). 

 
The responses of interacting systems to both 
climate-related and non-climate stressors 
exhibit deep uncertainty, especially when 
interactions with societal decisions are includ- 
ed. Deep uncertainty arises when there is a 
lack of clarity about the appropriate models 
to apply, the relative probability of various 
scenarios, and the desirability of alternative 
outcomes.98 Risk management decisions must 
therefore be made in the face of these uncer- 
tainties (see Key Message 2). An important 
research challenge is therefore advancing sci- 
entific methods and tools that can be applied 
in climate research, risk assessment, and risk 
management for complex, interdependent 
systems under deep uncertainty.99 
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Traceable Accounts 
Process Description 
The scope of this chapter was developed to fill a gap in previous National Climate Assessments 
(NCAs), notably the risks that emerge from interactions among sectors. Previous NCAs have 
touched on this subject, for example the energy, water, and land use chapter in the Third National 
Climate Assessment (NCA3). However, these assessments never included a chapter specifically 
focused on a general treatment of this topic. Emerging scientific research is highlighting the 
links between sectors and the potential complexity and implications of these interactions, from 
complex system dynamics such as cascading failures to management approaches and approaches 
to risk. These concepts were then incorporated into a detailed terms of reference for the chapter, 
outlining the scope and the general content to be included in the document. 

The author team for this chapter was constructed to bring together the necessary diverse expe- 
rience, expertise, and perspectives. Our authors brought expertise and experience in multiscale, 
multisector research and modeling, with a focus in specific sectors or sectoral combinations 
including critical infrastructure, energy–water–land interactions, and ecosystems. The authors 
also had expertise in complex systems science and previous experience in assessment processes. 

The chapter was developed through technical discussions, a literature review, and expert delib- 
eration by chapter authors through email and phone discussions. The team evaluated the state of 
the science on the analysis of sectoral interdependencies, compounding stressors, and complex 
system science. Case studies were drawn from a range of sources intended to represent the key 
themes in the chapter. 

Key Message 1 
 

The sectors and systems exposed to climate (for example, energy, water, and agriculture) 
interact with and depend on one another and other systems less directly exposed to climate 
(such as the financial sector). In addition, these interacting systems are not only exposed to 
climate-related stressors such as floods, droughts, and heat waves, they are also subject to a 
range of non-climate factors, from population movements to economic fluctuations to urban 
expansion. These interactions can lead to complex behaviors and outcomes that are difficult to 
predict. It is not possible to fully understand the implications of climate change on the United 
States without considering the interactions among sectors and their consequences. (High 
Confidence) 

 
Description of evidence base 
A suite of examples across this assessment and within this chapter demonstrate the interactions 
between systems and the potentially important implications of these linkages. Examples in this 
chapter include Hurricane Harvey; the 2003 Northeast blackout; energy–water–land systems in 
California and throughout the nation; forest systems facing influences from wildfires, drought, 
and pine bark beetles; and the implications of the reintroduction of wolves in Yellowstone. Each 
of these examples is supported by its own evidence base; the linkages between systems and the 

Interactions Among Sectors 
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importance of non-climate influences is self-evident from these examples. Beyond these exam- 
ples, a small set of recent literature has begun to explore ways to more systematically quantify 
the implications of including sectoral interdependencies in climate risk assessment (e.g., Harri- 
son et al. 20168). 

In addition to literature specific to risk assessment in the context of climate change, there is a 
long history of research on complex systems11 that raises the potential for a range of dynamics 
that might emerge from sectoral interdependencies and compounding stressors. This includes 
research spanning disciplines from meteorology12 to ecology13 to paleontology14 to computer 
science.15 This literature supports the conclusion that more complex dynamics may occur when 
multiple systems interact with one another. 

Major uncertainties 

The interactions between sectors and systems relevant to climate risk assessment are self-   
evident, and there are clear examples of unanticipated dynamics emerging from these interactions 
in the past. Yet our understanding is limited regarding the precise nature of complex system 
behavior in the context of climate risk assessment and its ultimate influence on the outcomes of 
such assessments. As noted in Key Message 4, the available tools and frameworks are simply not 
sufficient at this point to identify key risks emerging from intersectoral interdependencies and 
compounding stressors. 

Description of confidence and likelihood 

We have high confidence in this message, because there is high agreement and extensive evidence 
that a range of critical intersectoral interdependencies and compounding stressors are present 
and relevant to climate risk assessment. At the same time, the precise impact of these on system 
dynamics is not well understood. 

Key Message 2 
 

Climate change risk assessment benefits from a multisector perspective, encompassing 
interactions among sectors and both climate and non-climate stressors. Because such 
interactions and their consequences can be challenging to identify in advance, effectively 
assessing multisector risks requires tools and approaches that integrate diverse evidence and 
that consider a wide range of possible outcomes. (High Confidence) 

 
Description of evidence base 
Recent climate change assessments (e.g., Oppenheimer et al. 2014, Houser et al. 201545,46) empha- 
size that a multisector perspective expands the scope of relevant risks and uncertainties associ- 
ated with climate change impacts. Assessing these risks requires attention to multiple interacting 
sectors, geographic regions, and stressors, such as 1) interactions in the management of water, 
land, and energy (see Box 17.3), or 2) spatial compounding of impacts if, for example, multiple 
infrastructure systems fail within a city (see Box 17.1). Risk assessment also requires attention to 
indirect and long-distance climate change impacts, for instance resulting from human migration 
or conflict.45,100 Analyses of historical events (see Box 17.5), evaluations of statistical risk (e.g., 

Multisector Risk Assessment 
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Carleton and Hsiang 2016101), and process-based modeling projections are some of the methods 
demonstrating these complex interactions across sectors, scales, and stressors. 

Different tools and approaches are required to assess multisector risks. Approaches can be applied 
to integrate diverse evidence, combining quantitative and qualitative results and drawing from 
the natural and social sciences and other forms of analysis.47,49,51 For instance, models and expert 
judgment have been used together to inform our understanding of future sea level rise,52 and 
scenarios can also be used to explore preparedness across possible futures.53,54,55 

Major uncertainties 

For interdependent systems affected by multiple stressors, the number and complexity of possible 
interactions are greater, presenting deeper uncertainties. It is often difficult or impossible to 
represent all relevant processes and interactions in analyses of risks, especially quantitatively. For 
example, quantitative projections can evaluate probabilities of well-understood sectoral interac- 
tions but will be limited by processes or parameters that are poorly known or unknowable. This 
is why the integration of diverse evidence and attention to deeper uncertainties are important in 
multisector risk assessment. 

Description of confidence and likelihood 

We have high confidence in this Key Message because there is high agreement that a multisector 
perspective alters risk assessment, as is reflected in recent climate change assessments. However, 
the evidence basis for multisector evaluations is emerging. 

Key Message 3 
 

The joint management of interacting systems can enhance the resilience of communities, 
industries, and ecosystems to climate-related stressors. For example, during drought events, 
river operations can be managed to balance water demand for drinking water, navigation, and 
electricity production. Such integrated approaches can help avoid missed opportunities or 
unanticipated tradeoffs associated with the implementation of management responses to 
climate-related stressors. (High Confidence) 

 
Description of evidence base 
Recent literature has documented that the management of interacting infrastructure systems is 
a key factor influencing their resilience to climate and other stressors. A range of studies have 
argued that the complexity of institutional arrangements in mature, democratic economies like 
the United States poses challenges to the pursuit of climate adaptation objectives and sustainabil- 
ity more broadly.72,102,103,104,105 The complexity associated with interacting systems of systems poses 
significant challenges to integrated management.105 The allocation of authority and responsibility 
for system management across multiple levels of government as well as between public and 
private sectors often contributes to decision-making by one actor being enabled or constrained by 
other actors.72,103 

Management of Interacting Systems 
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The interdependencies among systems reflect the potential value in the development of more 
integrated management strategies.72 This concept of integrated management is reflected in  
existing literatures, particularly those associated with integrated water resources management 
106,107,108,109 and integrated infrastructure planning.110,111,112 Such studies often address integration 
within sectors or systems, with less consideration for integration between or among systems. This 
has the potential to lead to missed opportunities for improving management practice.72 However, 
assessments of energy,113 urban infrastructure,75 and coupled energy–water–land114 systems 
conducted as part of NCA344 identified a range of interdependencies across multiple sectors (see 
Dawson 2015115). 

A range of strategies have been proposed for enhancing the capacity to manage system interde- 
pendencies and climate change risk. Significant effort has been invested in understanding and 
modeling system dynamics to enhance capabilities for risk and vulnerability assessment. These 
efforts have largely focused on physical infrastructure systems, infrastructure networks, and the 
potential for cascading failures.116,117,118,119 Such capabilities help to identify what can be monitored 
in complex systems to enhance situational awareness, anticipate disruptions, and increase 
resilience.71,120,121 

There is ample evidence of comanagement of interdependent systems, often as a function of 
resource assurance and/or contingency planning. For example, the use of water for electricity 
generation (hydropower or cooling in thermal generation) involves regulatory constraints around 
water use as well as operational decision-making regarding water management.72,114,122,123,124,125 These 
interactions have been a major focus of studies addressing the climate–water–energy nexus. 
Meanwhile, emergency managers as well as agricultural, commercial, and industrial supply chains 
often develop contingency plans in the event of disruptions of transportation, telecommunica- tions, 
water, and/or electricity.81,126,127,128,129 

A key element of such planning is to build redundancy and flexibility into system operations.73 

Evidence suggests that adding flexibility or robustness to systems or transforming systems such 
that they interact or behave in fundamentally different ways can increase construction, mainte- 
nance, or procurement costs.82,130,131 However, a number of studies exploring the valuation of resil- 
ience actions and investments have concluded that the benefits of resilience interventions can be 
significantly greater than the costs, provided the long-term mitigating effects of the intervention 
are factored in.132,133,134 

Given the complexity of governance systems, the responsibility for the design and implementation 
of such strategies for integrated management rests on a broad range of actors. Over the latter part 
of the 20th century, the privatization of infrastructure, including energy, telecommunications, 
and water, transferred infrastructure management, responsibility, and risk to the private sector.135 

Nevertheless, local, state, and federal governments continue to have critical roles in regulation, 
risk assessment, and research and development. In addition, many institutions, organizations, 
and individuals either have infrastructure dependencies or influence the dynamics, operations, 
investment, and performance of infrastructure.136 The increasing interconnectedness of both 
infrastructure and the people who use and manage that infrastructure is leading to both new 
challenges and opportunities for comanaging these systems, particularly in urban areas.137,138,139 
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A growing literature is identifying opportunities to enhance consideration of human health and 
other benefits in the design of urban landscapes and infrastructure.67,140,141,142,143 

Major uncertainties 

The dominant uncertainties associated with the management of climate risks and system interde- 
pendencies include understanding indirect effects and feedbacks between systems, particularly 
with respect to predicting system responses. Technological change could have significant implica- 
tions for the resilience, interconnectedness, and responses of systems to climate-related stressors 
and other disturbances. Such change could increase the complexity of integrated management 
with implications that could be positive or negative with respect to vulnerability. In addition, the 
future evolution of governance and regulatory dimensions of infrastructures systems, as well as 
consumer choices and behavior, are associated with irreducible uncertainty, largely because they 
involve choices yet to be made. 

Description of confidence and likelihood 

There is high agreement and extensive evidence that institutional arrangements and governance 
are critical to the management of systems and their interdependencies. This finding is reflected in 
scientific assessments, modeling studies, and observations of system responses and performance, 
as well as in theories emerging from complex systems science. Furthermore, a history of man- 
agement practice associated with water, energy, transportation, telecommunications, food, and 
health systems that spans decades to centuries provides evidence for the importance of system 
interdependencies. Thus, there is high confidence in this message. 

Key Message 4 
 

Predicting the responses of complex, interdependent systems will depend on developing 
meaningful models of multiple, diverse systems, including human systems, and methods for 
characterizing uncertainty. (High Confidence) 

 
Description of evidence base 
This Key Message is based on an understanding of a range of analyses and modeling tools 
described throughout the chapter. 

Major uncertainties 

Because the Key Message is the authors’ assessment of the overall state of development of 
research tools and models, and the subsequent importance of developing research tools, the con- 
cept of major uncertainties is not entirely appropriate. This is a matter of the authors’ judgment, 
not calculation or assessment of underlying probabilities. 

Description of confidence and likelihood 

See above. No likelihood statement is appropriate, and the high confidence is based on the authors’ 
assessment of the underlying literature and development of methods and modeling tools. 

Advancing Knowledge 
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Key Message 1 Bartram Bridge in Pennsylvania 
 

 
The seasonality of the Northeast is central to the region’s sense of place and is an 
important driver of rural economies. Less distinct seasons with milder winter and 
earlier spring conditions are already altering ecosystems and environments in ways 
that adversely impact tourism, farming, and forestry. The region’s rural industries 
and livelihoods are at risk from further changes to forests, wildlife, snowpack, and 
streamflow. 

Key Message 2 
 

The Northeast’s coast and ocean support commerce, tourism, and recreation that 
are important to the region’s economy and way of life. Warmer ocean temperatures, sea 
level rise, and ocean acidification threaten these services. The adaptive capacity of 
marine ecosystems and coastal communities will influence ecological and 
socioeconomic outcomes as climate risks increase. 

 
Key Message 3 

 

The Northeast’s urban centers and their interconnections are regional and national hubs 
for cultural and economic activity. Major negative impacts on critical infrastructure, 
urban economies, and nationally significant historic sites are already occurring and will 
become more common with a changing climate. 

Changing Seasons Affect Rural Ecosystems, Environments, and Economies 
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Key Message 4 
 

Changing climate threatens the health and well-being of people in the Northeast 
through more extreme weather, warmer temperatures, degradation of air and water 
quality, and sea level rise. These environmental changes are expected to lead to health- 
related impacts and costs, including additional deaths, emergency room visits and 
hospitalizations, and a lower quality of life. Health impacts are expected to vary by 
location, age, current health, and other characteristics of individuals and communities. 

 
Key Message 5 

 

Communities in the Northeast are proactively planning and implementing actions to 
reduce risks posed by climate change. Using decision support tools to develop and 
apply adaptation strategies informs both the value of adopting solutions and the 
remaining challenges. Experience since the last assessment provides a foundation to 
advance future adaptation efforts. 

 

Executive Summary 
The distinct seasonality 
of the Northeast’s cli- 
mate supports a diverse 
natural landscape 
adapted to the extremes 
of cold, snowy winters 
and warm to hot, humid 
summers. This natural 
landscape provides the 
economic and cultural 
foundation for many 

rural communities, which are largely supported 
by a diverse range of agricultural, tourism, and 
natural resource-dependent industries (see 
Ch. 10: Ag & Rural, Key Message 4).1 The recent 
dominant trend in precipitation throughout the 
Northeast has been towards increases in rainfall 
intensity,2 with increases in intensity exceeding 
those in other regions of the contiguous United 
States. Further increases in rainfall intensity are 
expected,3 with increases in total precipitation 
expected during the winter and spring but 
with little change in the summer.4 Monthly 

 
precipitation in the Northeast is projected to be 
about 1 inch greater for December through April 
by end of century (2070–2100) under the higher 
scenario (RCP8.5).4 

 
Ocean and coastal ecosystems are being affected 
by large changes in a variety of 
climate-related environmental conditions. These 
ecosystems support fishing and aquaculture,5 

tourism and recreation, and coastal commu- 
nities.6 Observed and projected increases in 
temperature, acidification, storm frequency and 
intensity, and sea levels are of particular concern 
for coastal and ocean ecosystems, as well as local 
communities and their  interconnected  social 
and economic systems. Increasing temperatures 
and changing seasonality on the Northeast 
Continental Shelf have affected marine organisms 
and the ecosystem in various ways. The warming 
trend experienced in the Northeast Continental 
Shelf has been associated with many fish and 
invertebrate species moving northward and to 
greater depths.7,8,9,10,11 Because of the diversity of 
the Northeast’s coastal landscape, the impacts 

Threats to Human Health 
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from storms and sea level rise will vary at differ- 
ent locations along the coast.12,13 

 
Northeastern cities, with their abundance of 
concrete and asphalt and relative lack of vege- 
tation, tend to have higher temperatures than 
surrounding regions due to the urban heat island 
effect. During extreme heat events, nighttime 
temperatures in the region’s big cities are gen- 
erally several degrees higher than surrounding 
regions, leading to higher risk of heat-related 
death. Urban areas are at risk for large numbers 
of evacuated and displaced populations and dam- 
aged infrastructure due to both extreme precip- 
itation events and recurrent flooding, potentially 
requiring significant emergency response efforts 
and consideration of a long-term commitment to 
rebuilding and adaptation, and/or support 
for relocation where needed. Much of the infra- 
structure in the Northeast, including drainage 
and sewer systems, flood and storm protection 
assets, transportation systems, and power supply, 
is nearing the end of its planned life expectancy. 
Climate-related disruptions will only exacerbate 
existing issues with aging infrastructure. Sea level 
rise has amplified storm impacts in the Northeast 
(Key Message 2), contributing to higher surges 
that extend farther inland, as demonstrated in 
New York City in the aftermath of Superstorm 
Sandy in 2012.14,15,16 Service and resource supply 
infrastructure in the Northeast is at increasing 
risk of disruption, resulting in lower quality of life, 
economic declines, and increased social inequal- 
ity.17 Loss of public services affects the capacity 
of communities to function as administrative and 
economic centers and triggers disruptions of 
interconnected supply chains (Ch. 16: Internation- 
al, Key Message 1). 

 
Increases in annual average temperatures across 
the Northeast range from less than 1°F (0.6°C) in 
West Virginia to about 3°F (1.7°C) or more in New 
England since 1901.18,19 Although the relative risk 
of death on very hot days is lower today than it 
was a few decades ago, heat-related illness and 

death remain significant public health problems 
in the Northeast.20,21,22,23 For example, a study in 
New York City estimated that in 2013 there were 
133 excess deaths due to extreme heat.24 These 
projected increases in temperature are expected  
to lead to substantially more premature deaths, 
hospital admissions, and emergency department 
visits across the Northeast.23,25,26,27,28,29 For example, 
in the Northeast we can expect approximately  
650 additional premature deaths per year from 
extreme heat by the year 2050 under either a 
lower (RCP4.5) or higher (RCP8.5) scenario and 
from 960 (under RCP4.5) to 2,300 (under RCP8.5) 
more premature deaths per year by 2090.29 

 
Communities, towns, cities, counties, states, and 
tribes across the Northeast are engaged in efforts 
to build resilience to environmental challenges 
and adapt to a changing climate. Developing and 
implementing climate adaptation strategies in 
daily practice often occur in collaboration with 
state and federal agencies (e.g., New Jersey Cli- 
mate Adaptation Alliance 2017, New York Climate 
Clearinghouse 2017, Rhode Island STORMTOOLS 
2017, EPA 2017, CDC 201530,31,32,33,34). Advances in 
rural towns, cities, and suburban areas include 
low-cost adjustments of existing building codes 
and standards. In coastal areas, partnerships 
among local communities and federal and state 
agencies leverage federal adaptation tools and 
decision support frameworks (for example, 
NOAA’s Digital Coast, USGS’s Coastal Change 
Hazards Portal, and New Jersey’s Getting to Resil- 
ience). Increasingly, cities and towns across the 
Northeast are developing or implementing plans 
for adaptation and resilience in the face of chang- 
ing climate (e.g., EPA 201733). The approaches are 
designed to maintain and enhance the everyday 
lives of residents and promote economic devel- 
opment. In some cities, adaptation planning 
has been used to respond to present and future 
challenges in the built environment. Regional 
efforts have recommended changes in design 
standards when building, replacing, or retrofitting 
infrastructure to account for a changing climate. 
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Lengthening of the Freeze-Free Period 
 

These maps show projected shifts in the date of the last spring freeze (left column) and the date of the first fall freeze (right 
column) for the middle of the century (as compared to 1979–2008) under the lower scenario (RCP4.5; top row) and the higher 
scenario (RCP8.5; middle row). The bottom row shows the shift in these dates for the end of the century under the higher 
scenario. By the middle of the century, the freeze-free period across much of the Northeast is expected to lengthen by as much 
as two weeks under the lower scenario and by two to three weeks under the higher scenario. By the end of the century, the 
freeze-free period is expected to increase by at least three weeks over most of the region. From Figure 18.3 (Source: adapted 
from Wolfe et al. 201835). 
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Coastal Impacts of Climate Change 
 

(top) The northeastern coastal landscape is composed of uplands and forested areas, wetlands and estuarine systems, mainland 
and barrier beaches, bluffs, headlands, and rocky shores, as well as developed areas, all of which provide a variety of important 
services to people and species. (bottom) Future impacts from intense storm activity and sea level rise will vary across the 
landscape, requiring a variety of adaptation strategies if people, habitats, traditions, and livelihoods are to be protected. From 
Figure 18.7 (Source: U.S. Geological Survey). 
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Background 
 

The Northeast region is characterized by four 
distinct seasons and a diverse landscape that  
is central to the region’s cultural identity, 
quality of life, and economic success. It is both 
the most heavily forested and most densely 
populated region in the country. Residents 
have ready access to beaches, forests, and 
other natural areas and use them heavily for 
recreation. Colorful autumn foliage, winter 
recreation, and summer vacations in the 
mountains or at the beach are all important 
parts of the Northeast’s cultural identity, and 
this tourism contributes billions of dollars to 
the regional economy. The seasonal climate, 
natural systems, and accessibility of certain 
types of recreation are threatened by declining 
snow and ice, rising sea levels, and rising 
temperatures. By 2035, and under both lower 
and higher scenarios (RCP4.5 and RCP8.5), 
the Northeast is projected to be more than 
3.6°F (2°C) warmer on average than during the 
preindustrial era. This would be the largest 
increase in the contiguous United States and 
would occur as much as two decades before 
global average temperatures reach a simi- 
lar milestone.36 

 
The region’s oceans and coasts support a 
rich maritime heritage and provide an iconic 
landscape, as well as economic and ecological 
services. Highly productive marshes,37,38 

fisheries,39,40 ecosystems,41,42 and coastal 
infrastructure43,44 are sensitive to changing 
environmental conditions, including shifts in 
temperature, ocean acidification, sea level, 
storm surge, flooding, and erosion. Many of 
these changes are already affecting coastal and 
marine ecosystems, posing increasing risks to 
people, traditions, infrastructure, and econ- 
omies (e.g., Colburn et al. 201645). These risks 
are exacerbated by increasing demands on 
these ecosystems to support human use and 

development. The Northeast has experienced 
some of the highest rates of sea level rise46   

and ocean warming39 in the United States, and 
these exceptional increases relative to other 
regions are projected to continue through the 
end of the century.47,48,49,50 

 
The Northeast is quite varied geographically, 
with a wide spectrum of communities includ- 
ing densely populated cities and metropolitan 
regions and relatively remote hamlets and 
villages (Figure 18.1). Rural and urban areas 
have distinct vulnerabilities, impacts, and 
adaptation responses to climate change.51,52 The 
urbanized parts of the Northeast are depen- 
dent on the neighboring rural areas’ natural 
and recreational services, while the rural 
communities are dependent on the economic 
vitality and wealth-generating capacity of the 
region’s major cities. Rural and urban com- 
munities together are under increasing threat 
of climate change and the resulting impacts, 
and adaptation strategies reveal their inter- 
dependence and opportunities for successful 
climate resilience.51 Rural–urban linkages53,54,55 

in the region could also be altered by climate 
change impacts. 

 
In rural areas, community identity is often 
built around the prominence of small, mul- 
tigenerational, owner-operated businesses 
and the natural resources of the local area. 
Climate variability can affect human migration 
patterns56 and may change flows into or out  
of the Northeast as well as between rural and 
urban locations. Published research in this 
area, however, is limited. The Northeast has 
long been losing residents to other regions 
of the country.57 Droughts and flooding can 
adversely affect ecosystem function, farm 
economic viability, and land use. Although 
future projections of major floods remain 
ambiguous, more intense precipitation events 
(Ch. 2: Climate, KM 6)58 have increased the risk 
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of some types of inland floods, particularly 
in valleys, where people, infrastructure, and 
agriculture tend to be concentrated. With 
little redundancy in their infrastructure and, 

therefore, limited economic resilience, many 
rural communities have limited ability to cope 
with climate-related changes. 

 

Population Density 
 

Figure 18.1: A satellite mosaic overlaid with primary roads and population density highlights the diverse characteristics of the 
region in terms of settlement patterns, interconnections among population centers of varying sizes, and variability in relief across 
the ocean shelf. Sources: U.S. Department of Transportation, U.S. Geological Survey, and ERT, Inc. 
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Residents in urban areas face multiple climate 
hazards, including temperature extremes, 
episodes of poor air quality, recurrent 
waterfront and coastal flooding, and intense 
precipitation events that can lead to increased 
flooding on urban streams. These physical 
changes may lead to large numbers of evacu- 
ated and displaced populations and damaged 
infrastructure; sustaining communities may 
require significant investment and planning 
to provide emergency response efforts, a 
long-term commitment to rebuilding and 
adaptation, and support for relocation. 
Underrepresented communities, such as the 
poor, elderly, language-isolated, and recent 
immigrants, are more vulnerable due to their 
limited ability to prepare for and cope with 
extreme weather and climate events.59 Service 
infrastructure in the Northeast is at increasing 
risk of disruption, resulting in lower quality of 
life, economic declines, and enhanced social 
inequality.17 Interdependencies across critical 
infrastructure sectors such as water, energy, 
transportation, and telecommunication (and 
related climate security issues) can lead to 
cascading failures during extreme weather and 
climate-related disruptions (Ch. 17: Complex 
Systems).17,59,60 The region’s high density of built 
environment sites and facilities, large number 
of historic structures, and older housing and 
infrastructure compared to other regions 
suggest that urban centers in the  Northeast are 
particularly vulnerable to climate shifts and 
extreme weather events. For example, because 
much of the historical development of industry 
and commerce in New England occurred along 
rivers, canals, coasts, and other bodies of 
water, these areas often have a higher density 
of contaminated sites, waste management 

facilities, and petroleum storage facilities that 
are potentially vulnerable to flooding. As a 
result, increases in flood frequency or severity 
could increase the spread of contaminants into 
soils and waterways, resulting in increased 
risks to the health of nearby ecosystems, 
animals, and people—a set of phenomena well 
documented following Superstorm Sandy.61,62,63 

 
The changing climate of the Northeast threat- 
ens the health and well-being of residents 
through environmental changes that lead to 
health-related impacts and costs, including 
additional deaths, emergency room visits and 
hospitalizations, higher risk of infectious dis- 
eases, lower quality of life, and increased costs 
associated with healthcare utilization. Health 
impacts of climate change vary across people 
and communities of the Northeast and depend 
on social, socioeconomic, demographic, and 
societal factors; community adaptation efforts; 
and underlying individual vulnerability (see Key 
Message 5) (see also Ch. 28: Adaptation). 

 
Maintaining functioning, sustainable commu- 
nities in the face of climate change requires 
effective adaptation strategies that anticipate 
and buffer impacts, while also enabling com- 
munities to capitalize upon new opportunities. 
Many northeastern cities already have or are 
rapidly developing short-term and long-term 
plans to mitigate climate effects and to plan 
for efficient investments in sustainable devel- 
opment and long-term adaptation strategies. 
Although timely adaptation to climate-related 
impacts would help reduce threats to people’s 
health, safety, economic well-being, and ways 
of life, changes to those societal elements will 
not be avoided completely. 
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Key Message 1 
 

 
The seasonality of the Northeast is cen- 
tral to the region’s sense of place and is 
an important driver of rural economies. 
Less distinct seasons with milder winter 
and earlier spring conditions are already 
altering ecosystems and environments 
in ways that adversely impact tourism, 
farming, and forestry. The region’s rural 
industries and livelihoods are at risk 
from further changes to forests, wildlife, 
snowpack, and streamflow. 

The distinct seasonality of the Northeast’s 
climate supports a diverse natural landscape 
adapted to the extremes of cold, snowy winters 
and warm to hot, humid summers. This natural 
landscape provides the economic and cultural 
foundation for many rural communities, which 
are largely supported by a diverse range of 
agricultural, tourism, and natural resource- 
dependent industries (Ch. 10: Ag & Rural, KM 
4).1 The outdoor recreation industry contrib- 
utes nearly $150 billion in consumer spending 
to the Northeast economy and supports more 
than one million jobs across the region.64 

Additionally, agriculture, fishing, forestry, and 
related industries together generate over $100 
billion in economic activity annually, support- 
ing more than half a million jobs in production 
and processing region-wide.65 Projected 
changes in the Northeast’s seasons will contin- 
ue to affect terrestrial and aquatic ecosystems, 
forest productivity, agricultural land use, 
and other resource-based industries.1 Alpine, 
freshwater aquatic, and certain forest habitats 
are most at risk.66 Without efforts to mitigate 
climate change, warming winters and earlier 
spring conditions under a higher scenario 

(RCP8.5) will affect native ecosystems and the 
very character of the rural Northeast.67 

 
Seasonal differences in Northeast temperature 
have decreased in recent years as winters have 
warmed three times faster than summers.3 By 
the middle of this century, winters are project- 
ed to be milder still, with fewer cold extremes, 
particularly across inland and northern por- 
tions of the Northeast.3 This will likely result 
in a shorter and less pronounced cold season 
with fewer frost days and a longer transition 
out of winter into the growing season.68 

Under the higher scenario (RCP8.5), the trend 
of decreasing seasonality continues for the 
northern half of the region through the end of 
the century, but by then summer temperatures 
across the Mid-Atlantic are projected to rise 
faster than those in winter.4 

 
A Changing Winter–Spring Transition 
Forests are already responding to the ongoing 
shift to a warmer climate, and changes in the 
timing of leaf-out affect plant productivity, 
plant–animal interactions, and other essential 
ecosystem processes.69,70 Warmer late-winter 
and early-spring temperatures in the North- 
east have resulted in trends towards earlier 
leaf-out and blooming, including changes of 1.6 
and 1.2 days per decade, respectively, for lilac 
and honeysuckle (Ch. 7: Ecosystems, Figure 
7.3).71 The increase in growing season length is 
partially responsible for observed increases in 
forest growth and carbon sequestration.72 

 
While unusual winter or early-spring warmth 
has caused plants to start growing and emerge 
from winter dormancy earlier in the spring, 
the increased vulnerability of species to subse- 
quent cold spells is yet unknown. Early emer- 
gence from winter dormancy causes plants 
to lose their tolerance to cold temperatures 
and risk damage by temperatures they would 
otherwise tolerate. Early budbreak followed by 
hard freezes has led to widespread loss of fruit 

Changing Seasons Affect Rural 
Ecosystems, Environments, and 
Economies 
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crops and reduced seasonal growth of native 
tree species in the Northeast.35,73 

 
Shifting seasonality can also negatively affect 
the health of forests (Ch. 6: Forests, KM 1) and 
wildlife, thereby impacting the rural industries 
dependent upon them. Warmer winters will 
likely contribute to earlier insect emergence74 

and expansion in the geographic range and 
population size of important tree pests such as 
the hemlock woolly adelgid, emerald ash borer, 
and southern pine beetle.75,76,77 Increases in less 
desired herbivore populations are also likely, 
with white-tailed deer and nutria (exotic South 
American rodents) already being a major con- 
cern in different parts of the region.78 Accord- 
ing to State Farm Insurance,79  motorists in 
West Virginia and Pennsylvania are already the 
first and third group of claimants most likely 

to file an insurance claim that is deer-related. 
Erosion from nutria feeding in lower Eastern 
Shore watersheds of Maryland has resulted in 
widespread conversion of marsh to shallow 
open water, changing important ecosystems 
that can buffer against the adverse impacts 
from climate change.80 Species such as moose, 
which drive a multimillion-dollar tourism 
industry, are already experiencing increased 
parasite infections and deaths from ticks.81,82,83 

Warmer spring temperatures are associated 
with earlier arrivals of migratory songbirds,84 

while birds dependent upon spruce–fir forests 
in the northern and mountainous parts of the 
region are already declining and especially 
vulnerable to future change.85 Northern and 
high-elevation tree species such as spruce and 
fir are among the most vulnerable to climate 
change in the Northeast.70,86,87 

 
 
 

 
A nutria shows off its signature orange teeth. These large South American rodents are already a major concern in parts of the 
Northeast. Photo credit: ©Jason Erickson/iStock/Getty Images Plus. 
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Challenges for Natural Resource-Based 
Industries 
Shorter, more moderate winters will present 
new challenges for rural industries. Poor 
surface and road conditions or washout have 
the potential to limit future logging operations, 
which need frozen or snow-covered soils to 
meet environmental requirements for winter 
operations.70,88 Maple syrup production is 
linked to climate through potential shifts in 
sugar maple habitat,89 tapping season timing 
and duration,90,91 and the quality of both the 
trees and sap.92,93 Climate change is making 
sugar maple tapping more challenging by 
increasing variability within and between 
seasons. Research into how the industry can 
adapt to these changes is ongoing.89,94,95 With 
changes in weather and ecology come shifts 
in the cultural relationships to seasons as they 
have historically existed. Indigenous women 
from across these northeastern forests have 
come together to protect and sustain cultural 
traditions of the land they call Maple Nation. 
These climate impacts not only threaten the 
maple tree itself but also the seeds, soil, water, 
plants, and cultural lifeways that Indigenous 
peoples and tribal nations in the region associ- 
ate with them.96,97 

 
On the other hand, the impacts of warming 
on forests and ecosystems during the summer 
and autumn are less well understood.98 In the 
summer, flowering in many agricultural crops 
and tree fruits is regulated in part by nighttime 
temperature, and growers risk lower yields 
as these temperatures rise.35 Warmer autumn 
temperatures98 influence processes such as 

leaf senescence (the change in leaf color as 
photosynthesis ceases), fruit ripening, insect 
phenology,35 and the start of bird migration and 
animal hibernation.99  October  temperatures 
are the best predictor of leaf senescence in 
the northern hemisphere,100 but other climatic 
factors can also shift the timing of autumn 
processes. Agricultural drought can advance 
leaf coloring and leaf drop, while abundant 
soil moisture can delay senescence.101,102 Early 
frost events or strong winds can also result 
in sudden leaf senescence and loss.98 Many 
deciduous trees are projected to experience 
an overall increase in their amount of autumn 
foliage color.103 

 
As Northeast  winters  warm,  scenarios  project 
a combination of less early winter snowfall and 
earlier snowmelt, leading to a shorter snow 
season.104,105 The proportion of winter precipi- 
tation falling as rain has already increased and 
will likely continue to do so in response to a 
northward shift in the snow–rain  transition 
zone projected under both lower and higher 
scenarios (RCP4.5 and RCP8.5).106,107,108 The shift 
in precipitation type and fewer days below 
freezing3,4,35 are expected to result in fewer 
days with snow on the ground; decreased snow 
depth, water equivalent, and extent; an earlier 
snowmelt;105,109,110 and less lake ice.111 Warming 
during the winter–spring transition has already 
led to earlier snowmelt-related runoff in areas 
of the Northeast with substantial snowpack 
(Figure 18.2).112 Earlier snowmelt-related runoff 
and lower spring peak streamflows in these 
areas are expected in the 2041–2095 period 
compared with the 1951–2005 period.105 
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Historical Changes in the Timing of Snowmelt-Related Streamflow 
 

Figure 18.2: This map of part of the Northeast region shows consistently earlier snowmelt-related streamflow timing for rivers 
from 1960 to 2014. Each symbol represents the change for an individual river over the entire period. Changes in the timing of 
snowmelt potentially interfere with the reproduction of many aquatic species113 and impact water-supply reservoir management 
because of higher winter flows and lower spring flows.114 The timing of snowmelt-related streamflow in the Northeast is sensitive 
to small changes in air temperature. The average winter–spring air temperature increase of 1.67°F in the Northeast from 1940 
to 2014 is thought to be the cause of average earlier streamflow timing of 7.7 days.112 The timing of snowmelt-related streamflow 
is a valuable long-term indicator of winter–spring changes in the Northeast. Source: adapted from Dudley et al. 2017;112 Digital 
Elevation Model CGIAR–CSI (CGIAR Consortium for Spatial Information). Reprinted with permission from Elsevier. 

The Northeast winter recreation industry is an 
important economic resource for rural areas, 
supporting approximately 44,500 jobs and 
generating between $2.6–$2.7 billion in revenue 
annually.115,116 Like other outdoor tourism 
industries, it is strongly influenced by weather 
and climate, making it particularly vulnerable 
to climate change.116,117,118 Even under the lower 
scenario (RCP4.5), the average length of the 
winter recreation season and the number of 

recreational visits are projected  to  decrease 
by mid-century.118 Under the same scenario, 
lost time for snowmaking is expected to delay 
the start of the ski season across southern 
areas, potentially impacting revenues during 
the winter holiday season. Activities that rely 
on natural snow and ice cover are projected to 
remain economically viable in only far northern 
parts of the region by end of century under the 
higher scenario (RCP8.5).117,118 
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Sensitivity to projected changes in winter 
climate varies geographically, and venues are 
adapting by investing in artificial snowmaking, 
opening higher-elevation trails, and offering a 
greater range of activities and services.115,117 As 
the margin for an economically viable winter 
recreation season (a season with more than  
100 days for skiing; more than 50 for snow- 
mobiling) shifts northward and toward higher 
elevations, some affected areas will be able to 
extend their seasons with artificial snowmak- 
ing. However, the capacity of some vulnerable 
southern and low-elevation locations to adapt 
in the long term is expected to be limited by 
warming nighttime temperatures.115,116,119 Mar- 
kets farther north may benefit from a greater 
share of regional participation depending on 
recreationist preferences like travel time118,120 

and perceived snow cover conditions informed 
by local weather, referred to as the back- 
yard effect.121 

 
Intense Precipitation 
The recent dominant trend in precipitation 
throughout the Northeast has been towards 
increases in rainfall intensity,2,58 with recent 
increases in intensity exceeding those  in 
other regions in the contiguous United States. 
Further increases in rainfall intensity are 
expected,3 with increases in precipitation 
expected during the winter and spring with 
little change in the summer.4 Monthly precipi- 
tation in the Northeast is projected to be about     
1 inch greater for December through April by 
end of century (2070–2100) under the higher 
scenario (RCP8.5).4 

 
Studies suggest that Northeast agriculture, 
with nearly $21 billion in annual commodity 
sales,122 will benefit from the changing climate 
over the next half-century35,123 due to greater 
productivity over a longer growing season 
(Figure 18.3) (see also Ch. 10: Ag & Rural). 

However, excess moisture is already a leading 
cause of crop loss in the Northeast.35 Recent 
and projected increases in precipitation 
amount, intensity, and persistence124,125 indicate 
increasing impacts on agricultural operations. 
Increased precipitation can result in soil com- 
paction,126 delays in planting, and reductions in 
the number of days when fields are workable.127 

If the trend in the frequency of heavy rainfall 
prior to the last frost continues, overly wet 
fields could potentially prevent Northeast 
farmers from taking full advantage of an earlier 
spring.35 Increased soil erosion and agricul- 
tural runoff—including manure, fertilizer, and 
pesticides128,129—are linked to excess nutrient 
loading of water bodies as well as possible food 
safety or public health issues from food and 
waterborne infections.130 Warmer winters are 
likely to increase livestock productivity in the 
Northeast129 but are expected to also increase 
pressure from weeds and pests,35 demand for 
pesticides,128 and the risk of human health 
effects from increased chemical exposures.130 

 
The projected changes in precipitation 
intensity and temperature seasonality 
would also affect streams and the biological 
communities that live in them. Freshwater 
aquatic ecosystems are vulnerable to changes 
in streamflow, higher temperatures, and 
reduced water quality.131 Such ecosystems 
are especially vulnerable to increases in high 
flows, decreases in low flows, and the timing 
of snowmelt.113,132,133 The impact of heavy 
precipitation on streamflows partly depends 
upon watershed conditions such as prior soil 
moisture and snowpack conditions, which vary 
throughout the year.134,135,136,137 Although the 
annual minimum streamflows have increased 
during the last century,138,139,140 late-summer 
warming4,141 could lead to decreases in the 
minimum streamflows in the late summer and 
early fall by mid-century.142 
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Species that are particularly vulnerable to 
temperature and flow changes include stream 
invertebrates, freshwater mussels, amphibians, 
and coldwater fish.66,131,143 For example, a recent 
study of the habitat suitable for dragonflies and 
damselflies (species that are a good indicator of 
ecosystem health along rivers) in the Northeast 
projected, under both the lower and higher 
scenarios (RCP4.5 and RCP8.5), habitat declines 
of 45%–99% by 2080, depending on the 

species.144 Other particularly vulnerable groups 
include species with water-dependent habitats, 
such as salamanders and coldwater fish.66,145 

Increasing temperatures within freshwater 
streams threaten coldwater fisheries across 
northern New England and south through the 
Appalachian Mountains. A decrease in recre- 
ational fishing revenue is expected by end of 
this century under a higher scenario (RCP8.5) 
with the loss of coldwater habitat.29,131,146 

 

Lengthening of the Freeze-Free Period 
 

Figure 18.3: These maps show projected shifts in the date of the last spring freeze (left column) and the date of the first fall freeze (right 
column) for the middle of the century (as compared to 1979–2008) under the lower scenario (RCP4.5; top row) and the higher scenario 
(RCP8.5; middle row). The bottom row shows the shift in these dates for the end of the century under the higher scenario. By the middle 
of the century, the freeze-free period across much of the Northeast is expected to lengthen by as much as two weeks under the lower 
scenario and by two to three weeks under the higher scenario. By the end of the century, the freeze-free period is expected to increase 
by at least three weeks over most of the region. Source: adapted from Wolfe et al. 2018.35 
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Key Message 2 
 

 
The Northeast’s coast and ocean support 
commerce, tourism, and recreation that 
are important to the region’s economy 
and way of life. Warmer ocean tem- 
peratures, sea level rise, and ocean 
acidification threaten these services. The 
adaptive capacity of marine ecosystems 
and coastal communities will influence 
ecological and socioeconomic outcomes 
as climate risks increase. 

Ocean and coastal ecosystems are being 
affected by large changes in a variety of cli- 
mate-related environmental conditions. These 
ecosystems support fishing and aquaculture,5 

tourism and recreation, and coastal communi- 
ties.6 They also provide important ecosystem 
services (benefits to people provided by the 
functions of various ecosystems), including 
carbon sequestration,147 wave attenuation,148,149 

and fish150 and shorebird151 habitats. Observed 
and projected increases in temperature, acidi- 
fication, storm frequency and intensity, and sea 
levels are of particular concern for coastal and 
ocean ecosystems, as well as local communities 
and their interconnected social and economic 
systems (Box 18.1). 

 
 
 
 

Change in Sea Surface Temperature on the Northeast Continental Shelf 
 

Figure 18.4: The figure shows annual average sea surface temperature (SST) differences from the 1982–2011 average (black 
dots and line). Over the period 1982–2016, sea surface temperature on the Northeast Continental Shelf has warmed at a rate 
of 0.06°F (0.033°C) per year (red dashed line). This rate is three times faster than the 1982–2013 global SST warming rate of 
0.018°F (0.01°C) per year (gray dotted line).39 The inset shows Northeast Continental Shelf seasonal SST differences from the 
1982–2011 average as five-year rolling means for summer (July, August, September; red line) and winter (January, February, 
March; blue line). These seasons are centered on the warmest (summer) and coolest (winter) months for Northeast Shelf SSTs. 
Both seasons have warmed over the time period, but the summer warming rate has been stronger. Source: Gulf of Maine 
Research Institute. 

Changing Coastal and Ocean 
Habitats, Ecosystem Services, and 
Livelihoods 
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Ocean Warming 
Ocean and coastal temperatures along the North- 
east Continental Shelf have warmed by 0.06°F 
(0.033°C) per year over the period 1982–2016 
(Figure 18.4), which is three times faster than the 
1982–2013 global average rate of 0.018°F (0.01°C) 
per year.39 Over the last decade (2007–2016), the 
regional warming rate has been four times faster 
than the long-term trend, with temperatures ris- 
ing 0.25°F (0.14°C) per year (Figure 18.4). Variability 
in ocean temperatures over the Northeast Con- 
tinental Shelf (see Figure 18.1 for the location) has 
been related to the northern position of the Gulf 
Stream, the volume of water entering from the 
Labrador Current, and large-scale background 
warming of the oceans.39,48,152,153 In addition to 
this warming trend, seasonality is also changing. 
Warming has been strongest during the summer 
months, and the duration of summer-like sea 
surface  temperatures  has  expanded.154   In  parts 
of the Gulf of Maine, the summer-like season 
lengthened by two days per year since 1982, 
largely due to later fall cooling; the summer-like 
period expanded less rapidly (about 1 day per 
year) in the Mid-Atlantic, primarily due to earlier 
spring warming.154 

 
Increasing temperatures and changing season- 
ality on the Northeast Continental Shelf have 
affected marine organisms and the ecosystem 
in various ways (Ch. 7: Ecosystems, KM 1; Ch. 9: 
Oceans). Seasonal ocean temperature changes 
have shifted characteristics of the spring 
phytoplankton blooms158 and the timing of fish 
and invertebrate reproduction,163,164 migration 
of marine fish that return to freshwater to 
spawn,165,166 and marine fisheries.155 As  the  timing 
of ecosystem conditions and biological  events 
shifts, interactions between species and human 
activities such as fishing or whale watching will 
likely  be  affected.42,155,163,166,167,168   These  changes 
have the potential to affect economic activity and 
social features of fishing communities, working 
waterfronts, travel and tourism, and other natural 
resource-dependent local economies. 

The warming trend experienced in the Northeast 
Continental Shelf has been associated with many 
fish and invertebrate species moving northward 
and to greater depths (Ch. 1: Overview, Figure 
1.2h).7,8,9,10,11 As these shifts have occurred, com- 
munities of animals present in a given area have 
changed substantially.169 Species interactions can 
be affected if species do not shift at the same rate; 
generally, species groups appear to be moving 
together,10 but overlap between pairs of specific 
species has changed.42 

 
Rising ocean temperatures have also affected the 
productivity of marine populations. Species at the 
southern extent of their range, such as northern 
shrimp, surf clams, and Atlantic cod, are declining 
as waters warm,39,170,171 while other species, such 
as black sea bass, are experiencing increased 
productivity.11 Some species, such as American 
lobster and surf clam, have declined in southern 
regions where temperatures have exceeded 
their biological tolerances but have increased in 
northern areas as warming waters have enhanced 
their productivity.40,171,172,173 The  productivity  of 
some harvested and cultured species may also be 
indirectly influenced by changing levels of marine 
pathogens and diseases. For example, increasing 
prevalence of shell disease in lobsters and several 
pathogens in oysters have been associated with 
rising water  temperatures;174,175  other  pathogens 
that infect shellfish pose  risks  to  human  health 
(see Key Message 4). 

 
Temperature-related changes in the distribution 
and productivity of species are affecting fisheries. 
Some fishermen now travel farther to catch 
certain species176 or target new species that are 
becoming more prevalent as waters warm.155 

However, these types of responses do not always 
keep pace with ecosystem change due to con- 
straints associated with markets, shoreside infra- 
structure, and regulatory limits such as access to 
quota licenses or permits.177,178,179 In addition, stock 
assessment and fishery management processes 
do not explicitly account for temperature 
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influences on the managed species. In the case 
of Gulf of Maine cod, rising temperatures have 
been associated with changes in recruitment, 
growth, and mortality; failure to account for 
declining productivity as a result of warming led 
to catch advice that allowed for overfishing on 

the stock.39,180 Proactive conservation and man- 
agement measures can support climate resilience 
of fished species. For example, long-standing 
industry and management measures to protect 
female and large lobsters have supported the 
growth of the Gulf of Maine–Georges Bank stock 

 

Box 18.1: Ocean Heat Wave Provides Glimpse of Climate Future 

In 2012, sea surface temperatures on the Northeast Continental Shelf rose approximately 3.6°F (2°C) above the 
1982–2011 average. This departure from normal was similar in magnitude to the changes projected for the end 
of the century under the higher scenario (RCP8.5) and represented the largest, most intense warm water event 
ever observed in the Northwest Atlantic Ocean (Ch. 9: Oceans).155,156,157 This heat wave altered seasonal cycles 
of phytoplankton and zooplankton,158,159 brought Mid-Atlantic fish species into the Gulf of Maine,155 and altered 
the occurrence of North Atlantic right whales in the Gulf of Maine.160 Commercial fisheries were also affected. 
A fishery for squid developed quickly along the coast of Maine, but the New England lobster fishery was nega- 
tively affected. Specifically, early spring warming triggered an early start of the fishing season, creating a glut of 
lobster in the supply chain and leading to a severe price collapse.155 During 2012, the dockside price for lobster 
hit its lowest level in the past decade and dropped from an average per-pound value of $3.62 for June and July 
2000–2011 to just $2.37 in those months in 2012. The experience during the 2012 ocean heat wave revealed 
vulnerabilities in the lobster 
industry and prompted a 
variety of adaptive responses, 
such as expanding processing 
capacity and further develop- 
ing domestic and international 
markets161 in an attempt to 
buffer against similar industry 
impacts in the future. Although 
an outlier when compared with 
our current climate, the ocean 
temperatures in 2012 were 
well within the range projected 
for the region by the end of 
the century under the higher 
scenario (RCP8.5).162 The 2012 
ocean heat wave provided a 
glimpse of impacts affecting 
ecological and social systems, 
and experiences during this 
event can serve as a stress 
test to guide adaptation plan- 
ning in years to come (akin to 
2015 in the Northwest) (see 
Ch. 24: Northwest, Box 24.7). 

Ocean Heat Wave of 2012 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18.5: The map shows the difference between sea surface temperatures (SST) for 
June–August 2012 in the Northwest Atlantic and the average values for those months in 
1982–2011.155 While ocean temperatures during 2012 were exceptionally high compared 
to the current climate, they were within the range of end-of-century temperatures projected 
for the region under the higher scenario (RCP8.5). This heat wave affected the Northeast 
Continental Shelf ecosystem and fisheries, and similar extreme events are expected to 
become more common in the future (Ch. 9: Oceans). Source: adapted from Mills et al. 
2013.155 Reprinted with permission from Elsevier. 
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as waters warmed, but the lack of these measures 
in southern New England exacerbated declines in 
that stock as temperatures increased.40 

 
Ocean Acidification 
In addition to warming, coastal waters in the 
Northeast, particularly in the Gulf of Maine, are 
sensitive to the effects of ocean acidification 
because they have a low capacity for main- 
taining stable pH levels.181,182 These waters are 
particularly vulnerable to acidification due to 
hypoxia (low-oxygen conditions)183 and fresh- 
water inputs,  which  are  expected  to  increase 
as climate change progresses.142,181,184 At the 
coastal margins, acidification is exacerbated by 
nutrient loading from land-based runoff and 
atmospheric deposition during heavy rainfall 
events. When added to the system, these 
nutrients promote the growth of algae that 
release carbon dioxide, which contributes to 
acidification, as they decay.185 

 
Fisheries and aquaculture rely on shell-forming 
organisms that can suffer in more acidic con- 
ditions (Ch. 9: Oceans).181,182,186 Some of the most 
valuable wild- and culture-based fisheries in 
the region harvest shelled organisms—includ- 
ing lobsters, scallops, blue crabs, oysters, 
surf clams, and mussels.5 To date, there have 
been few studies of how local populations and 
different life stages will be affected by ocean 
acidification,182 but actions taken by industry 
to counter the potential negative impacts 
are emerging. For example, when an oyster 
hatchery in Maine experienced low survival 
rates of larval oysters following exposure to 
low pH water during large runoff events, it 
collaborated with scientists to develop systems 
to monitor and control carbonate conditions in 
the facility (Ch. 9: Oceans).187 

Future Projections of Ocean Warming and 
Acidification 
Climate projections indicate that in the future, 
the ocean over the Northeast  Continental 
Shelf will experience more warming than most 
other marine ecosystems around the world.48,49 

Continued warming and acidification are 
expected to further affect species and fisheries 
in the region. Future projections indicate 
that declines in the density of a zooplankton 
species, Calanus finmarchicus—an important 
food source for many fish and whales in the 
Northeast Shelf region—will occur as waters 
continue to warm through the end of the 
century.188 Northward species distribution 
trends are projected to continue as ocean 
waters warm further.189 A species vulnerability 
assessment indicated that approximately 50% 
of the commercial, forage, and protected fish 
and invertebrate species on the Northeast 
Continental Shelf will be highly or very highly 
vulnerable to climate change through 2050 
under the higher scenario (RCP8.5).143 In 
general, species in the southern portion of the 
region are expected to remain stable through 
mid-century, but many species in the northern 
portion are expected to be negatively affected 
by warming and acidification over that time- 
frame.143,186 Species population models project- 
ed forward under future ocean conditions also 
indicate declines of species that support some 
of the most valuable and iconic fisheries in the 
Northeast, including Atlantic cod,39,190 Atlantic 
sea scallops,191 and American lobster.40 In 
addition, species that are already endangered 
and federally protected in the Northeast—such 
as Atlantic sturgeon, Atlantic salmon, and right 
whales—are expected to be further threatened 
by climate change.192,193,194,195 
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Changes in Distribution and Abundance of Marine Species 
 

Figure 18.6: The figure shows changes over time in geographic distribution (top panel) and biomass (four bottom panels) for 
various marine species along the Northeast Shelf. As waters in the region have warmed, the spatial distributions of many fish 
species have been shifting northward, while population trends of several marine species show more variability over time. The 
top panel shows shifts in spatial distribution over time for select fish species, based on their latitudinal centers of biomass. The 
four panels on the bottom show biomass estimates for the same marine resource stocks. Gulf of Maine cod, a coldwater species, 
has not shifted in location but has declined in biomass, while black sea bass (a warmwater species) has moved northward and 
increased in biomass as waters have warmed. The lobster distribution shift reflects declines in productivity of the southern stock 
and increasing biomass of the northern stock. Sources: (black sea bass) adapted from Northeast Fisheries Science Center 
2017;204 (all others) Gulf of Maine Research Institute. 
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A number of coastal communities in the North- 
east region have strong social and cultural ties 
to marine fisheries, and in some communities, 
fisheries represent an important economic 
activity as well.196,197 Future ocean warming and 
acidification, which are expected under all 
scenarios considered, would affect fish stocks 
and fishing opportunities available to coastal 
communities. Fisheries targeting species at the 
southern extent of their range have already 
experienced substantial declines in landings 
with rising ocean temperatures,170,173,198,199,200 

and this pattern is projected to continue in the 
future (e.g., Cooley et al. 2015, Pershing et al. 
2015, Le Bris et al. 201839,40,191). Fishers may need 
to travel farther to fishing locations for species 
they currently catch,189 increasing fuel and 
crew costs. Distribution shifts (Figure 18.6) can 
also create opportunities to target new species 
moving into an area.155 The impacts and oppor- 
tunities associated with these changes will not 
be evenly shared within or among fisheries, 
fleets, or communities; as such, adaptation 
may alter social dynamics, cultural ties, and 
economic benefits.201,202,203 

 
Sea Level Rise, Storms, and Flooding 
Along the Mid-Atlantic coast (from Cape 
Hatteras, North Carolina, to Cape Cod, Massa- 
chusetts), several decades of tide gauge data 
through 2009 have shown that sea level rise 
rates were three to four times higher than the 
global average rate.46,205,206 The region’s sea level 
rise rates are increased by land subsidence 
(sinking)—largely due to vertical land move- 
ment related to the melting of glaciers from  
the last ice age—which leaves much of the land 
in this region sinking with respect to current 
sea level.47,207,208,209 Additionally, shorter-term 
fluctuations in the variability of ocean 

dynamics,210,211 atmospheric shifts,212,213 and ice 
mass loss from Greenland and Antarctica214 

have been connected to these recent acceler- 
ations in the sea level rise rate in the region. 
For example, a slowdown of the Gulf Stream 
during a shorter period of extreme sea level 
rise observed over 2009–2010 has been linked 
to a weakening of the Atlantic meridional 
overturning circulation—the northward flow of 
upper-level warm, salty waters in the Atlantic 
(including the Gulf Stream current) and the 
southward flow of colder, deeper waters.215 

These higher-than-average rates of sea level 
rise measured in the Northeast have also led 
to a 100%–200% increase in high tide flooding 
in some places, causing more persistent and 
frequent (so-called nuisance flooding) impacts 
over the last few decades.44,47,216,217 

 
Coastal flood risks from storm-driven precip- 
itation and surges are major drivers of coastal 
change218,219 and are also amplified by sea level 
increases.217,220,221 Storms have unique climato- 
logical features in the Northeast—Nor’easters 
(named for the low-pressure systems typically 
impacting New England and the Mid-Atlantic 
with strong northeasterly winds blowing from 
the ocean over coastal areas) typically occur 
between September and April, and when 
coupled with the Atlantic hurricane season 
between June and September, the region is 
susceptible to major storms nearly year-round. 
Storm flood heights driven by hurricanes in 
New York City increased by more than 3.9 feet 
(1.2 m) over the last thousand years.14 When 
coupled with storm surges, sea level rise can 
pose severe risks of flooding, with consequent 
physical and mental health impacts on coastal 
populations (see Key Messages 4 and 5). 
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Coastal Impacts of Climate Change 
 

Figure 18.7: (top) The northeastern coastal landscape is composed of uplands and forested areas, wetlands and estuarine 
systems, mainland and barrier beaches, bluffs, headlands, and rocky shores, as well as developed areas, all of which provide 
a variety of important services to people and species. (bottom) Future impacts from intense storm activity and sea level rise will 
vary across the landscape, requiring a variety of adaptation strategies if people, habitats, traditions, and livelihoods are to be 
protected. Source: U.S. Geological Survey. 

 
Landscape Change and Impacts on 
Ecosystems Services 
Because of the diversity of the Northeast’s 
coastal landscape, the impacts from storms  
and sea level rise will vary at different locations 
along the coast (Figure 18.7).12,13 Rocky and 
heavily developed coasts have limited infil- 
tration capacity to absorb these impacts, and 
thus, these low-elevation areas will become 
gradually inundated.222,223 However, more 
dynamic environments, such as mainland and 
barrier beaches, bluffs, and coastal wetlands, 
have evolved over thousands of years in 
response to physical drivers. Such responses 

include erosion, overwashing, vertical accre- 
tion (increasing elevation due to sediment 
movement), flooding in response to storm 
events,218,224,225 and landward migration over the 
longer term as sea level has risen.226 Uplands, 
forests, and agricultural lands can provide 
transitional areas for these more dynamic 
settings, wherein the land gradually converts 
to a tidal marsh. 

 
Varied ecosystem services and natural features 
have long attracted and sustained people along 
the coast of the Northeast region. Ecosystem 
services—including the provisioning of 
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groundwater resources, the filtering of non- 
point source pollution, sequestering carbon, 
mitigating storm impacts and erosion, and 
sustaining working waterfronts and cultural 
features such as iconic regional landscapes, 
recreation, and traditions—are facing multiple 
climate threats. Marshes and beaches serve as 
the first line of defense for coastal property 
and infrastructure in the face of storms.227 

They also provide critical habitat for a variety 
of migratory shorebirds and, when combined 
with nearshore seagrass and estuaries, serve 
as nurseries for many commercial marine 
species.37,38,150,151,228,229 Regional marshes trap 
and store carbon147,230,231,232 and help to cap- 
ture non-point source pollution before it 
enters seawater.233,234,235 Regional beaches are 
important tourist and recreational attractions, 
and many coastal national parks and national 
historic sites throughout the region help 
preserve cultural heritage and iconic coastal 
landscapes.236,237 The Northeast coast is also 
home to many Indigenous peoples whose 
traditions and ways of life are deeply tied to 
land and water (Box 18.2). Coastal tribes often 
have limited resources, infrastructure, and land 
ownership, and these  limitations  can  worsen 
the impacts of climate change and prohibit 
relocation (Ch. 15: Tribes, KM 1 and 3). 

Box 18.2: Indigenous Peoples 
and Tribal Nations 

Indigenous peoples and tribal nations of the North- 
east region have millennia-long relationships with 
the diverse landscapes and climate zones found 
throughout the region.238,239,240 Currently, for the 18 
federally recognized, numerous state-recognized, 
and federally unrecognized tribal nations of the 
Northeast,241,242 the challenges of adapting to a 
changing climate add additional uncertainty to exist- 
ing efforts for reclamation of land and sovereignty 
and the revitalization of languages and cultures (Ch. 
15: Tribes, KM 1 and 3).97,243 However, in response 
to a regional shift in the seasons, there has been an 
increase in climate adaptation work by tribes over 
the last decade (Ch.15: Tribes, Figure 15.1). These 
projects have been framed by Indigenous knowledg- 
es to address impacts to culturally and economically 
important resources and species, such as brown 
ash, sweetgrass, forests, and sugar maple, as well 
inland and ocean fisheries.238,244,245,246 These proj- 
ects provide important results for the tribal nations 
themselves but could also provide examples of 
adaptation and survival for other tribal nations and 
non-tribal communities to consider as they work 
towards a deeper and more complex engagement 
to address future landscapes.97,240 Although not all 
tribally led climate research and projects across 
regions have been reported or published, there are 
even fewer publicly available examples in the North- 
east region, and especially for state-recognized and 
unrecognized tribes. This seems to present itself 
as a potential future research opportunity for tribal 
engagement and collaborations in the Northeast 

(Ch. 15: Tribes).97
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Projections of Future Sea Level Rise and 
Coastal Flooding 
Projections for the region suggest that sea 
level rise in the Northeast will be greater 
than the global average of approximately 
0.12 inches (3 mm) per year.247,248 According 
to Sweet et al. (2017),47 the more probable sea 
level rise scenarios—the Intermediate-Low and 
Intermediate scenarios from a recent federal 
interagency sea level rise report (App. 3: Data     
& Scenarios)—project sea level  rise  of  2  feet 
and 4.5 feet (0.6 m and 1.4 m) on average in the 
region by 2100, respectively.47 The  worst-case 
and lowest-probability scenarios, however, 
project that sea levels in the region would rise 
upwards of 11 feet (3 m) on average by the end  
of the century.47 The higher projections for the 
region as compared with most others in the 
United States are due to continued changes in 
oceanic and atmospheric dynamics, thermal 
expansion, ice melt contributions from Green- 
land and Antarctica, and ongoing subsidence in 
the region due to tectonics and non-tectonic 
effects such as groundwater withdraw- 
al.47,50,249,250,251,252 Furthermore, the strongest 
hurricanes are  anticipated  to  become  both 
more frequent and more intense in the future, 
with greater amounts of precipitation (Ch. 2: 
Climate,  Box  2.5).50,253,254,255  Thirty-two  percent 
of open-coast north and Mid-Atlantic  beaches 
are predicted to overwash during an intense 
future nor’easter type storm,256 a number that 
increases to more than 80% during a Category     
4 hurricane.257,258 

 
Future Adaptability of the Coastal Landscape 
The dynamic ability of coastal ecosystems  
to adapt to climate-driven changes depends 
heavily upon sufficient sediment supply, ele- 
vation and slope, barriers to migration,225 tidal 
restrictions, wave climatology,219,259 and the 
rates of sea level rise. Although nearly 70% of 
the Northeast coast has some physical ability 
to dynamically change,13 an estimated 88% of 
the Northeast population lives on developed 

coastal landforms that have limited ability to 
naturally adapt to sea level rise.260 Built infra- 
structure along the coast, such as seawalls, 
bulkheads, and revetments, as well as natural 
barriers, such as coastal bluffs, limits landward 
erosion; jetties and groins interrupt alongshore 
sediment supply; and culverts and dams create 
tidal restrictions that can limit habitat suitabil- 
ity for fish communities (see Figure 18.7).261 An 
estimated 26% of open ocean coast from Maine 
to Virginia contains engineering structures.262 

While these structures can help mitigate haz- 
ards to people and property, they also reduce 
the land area for ecosystem migration, as well 
as the adaptive capacity of natural coastal envi- 
ronments.43,227,263,264 The ability of marshes in the 
region to respond to sea level-induced change 
varies by location, with some areas increasing 
in elevation, experiencing vegetation shifts, 
and/or expanding in extent while others are 
not.265,266,267,268,269,270,271 Forest diebacks, or “ghost 
forests,” due to wetland encroachment70,272 are 
being observed in southern New Jersey and 
Maryland (Figure 18.8), although one study 
found that southern New England forests are 
not showing similar signs of dieback.273 

 

Forest Dieback Due to Sea Level Rise 
Figure 18.8: Atlantic white cedars dying near the banks of 
the Bass River in New Jersey show wetland encroachment 
on forested areas. Photo credit: Ted Blanco/Climate Central. 
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Projected changes in climate will threaten the 
integrity of coastal landforms and ecosystems 
that provide services people and animals rely 
on and that act as important natural buffers to 
hazards. Under more extreme scenarios (such 
as the higher scenario, RCP8.5), marshes are 
unlikely to survive and, thus, would convert 
to open water.224,274,275 At lower rates of sea 
level rise, marsh health will depend heavily 
upon site-specific hydrologic, physical, and 
sediment supply conditions.259,275,276,277,278 Long- 
term coastal erosion, as driven by sea level 
rise and storms, is projected to continue, with 
one study finding the shoreline likely to erode 
inland at rates of at least 3.3 feet (1 m) per 
year among 30% of sandy beaches along the 
U.S. Atlantic coast.279 Continued increases in 
the rate of sea level rise—on the order of 0.08 
inches (2 mm) per year above the 20th-century 
rate—could cause much of the open ocean 
coasts in the Mid-Atlantic to transition to a 
state wherein coastal barrier systems migrate 
landward more rapidly, experience reductions 
in width or height, and overwash and breach 
more frequently.280 Such an increase is project- 
ed to occur this century under the Intermedi- 
ate-Low scenario, which suggests that global 
sea levels will rise approximately 0.24 inches (6 
mm) per year.47 

 
An ongoing challenge, now and in the future, 
is to adequately account for and determine the 
monetary value of the ecosystem services pro- 
vided by marine and coastal environments6,41,281 

and to adaptively manage the ecosystems to 
achieve targets that are responsive to both 
development and conservation.282 

These changes to the coastal landscape would 
threaten the sustainability of communities 
and their livelihoods. Historical settlement 
patterns and ongoing development combine to 
increase the regional vulnerability of coastal 
communities to sea level rise, coastal storms, 
and increased inundation during high tides 
and minor storms. For example, estimates 
of coastal property losses and protective 
investments through 2100 due to sea level 
rise and storm surge vary from less than $15 
billion for southeastern Massachusetts to in 
excess of $30 billion for coastal New Jersey and 
Delaware under either the lower (RCP4.5) or 
higher (RCP8.5) scenarios (discounted at 3%).29 

Saltwater intrusion can also impact drinking 
water supplies, including the alteration of 
groundwater systems.283,284 A growing area of 
research explores potential migration patterns 
in response to climate-related coastal impacts, 
where coastal states such as Massachusetts, 
New Jersey, and New York are anticipated 
to see large outflows of migrants, a pattern 
that would stress regional locations further 
inland.285 In addition to property and infra- 
structure impacts (Key Message 3), the facili- 
ties and cultural resources that support coastal 
tourism and recreation (such as parking lots, 
pavilions, and boardwalks), as well as cultural 
landscapes and historic structures,236,237 will be 
at increased risk from high tide flooding, storm 
surge, and long-term inundation. In some 
locations, these culturally and socially import- 
ant structures also support economic activity; 
for example, many fishing communities rely on 
small docks and other shoreside infrastructure 
for their fishing operations, increasing the risk 
of substantial disruption if they are lost to sea 
level rise and increasing storm frequency.45,286 
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Key Message 3 
 

 
The Northeast’s urban centers and their 
interconnections are regional and na- 
tional hubs for cultural and economic 
activity. Major negative impacts on crit- 
ical infrastructure, urban economies, and 
nationally significant historic sites are 
already occurring and will become more 
common with a changing climate. 

 
Climate–Infrastructure Interaction and 
Heightened Risks 
Northeastern cities, with their abundance 
of concrete and asphalt and relative lack of 
vegetation, tend to have higher temperatures 
than surrounding regions due to the urban 
heat island effect (increased temperatures, 
typically measured during overnight periods, 
in highly urbanized areas in comparison 
to outlying suburban, exurban, and rural 
locations). During extreme heat events, 
nighttime temperatures in the region’s big 
cities are generally several degrees higher  
than surrounding regions, leading to higher 
risk of heat-related death. In urban areas, the 
hottest days in the Northeast are also often 
associated with high concentrations of urban 
air pollutants including ground-level ozone 
(Ch. 13: Air Quality, KM 1). This combination of 
heat stress and poor urban air quality can pose 
a major health risk to vulnerable groups: young 
children, elderly, socially or linguistically iso- 
lated, economically disadvantaged, and those 
with preexisting health conditions, including 
asthma. Vulnerability is further heightened 
as key infrastructure, including  electricity 
for air conditioning, is more likely to fail pre- 
cisely when it is most needed—when demand 
exceeds available supply—with the potential 
for substantial negative health consequences.287 

Finally, vulnerability to heat waves is not evenly 
distributed throughout the region. Rather, 
outdoor versus indoor air temperatures, 
baseline health, occupation, and access to air 
conditioning are important determinants of 
vulnerability (see Key Message 4). 

 
Urban areas are at risk for large numbers of 
evacuated and displaced populations and 
damaged infrastructure due to both extreme 
precipitation events and recurrent flooding, 
potentially requiring significant emergency 
response efforts and consideration of long- 
term commitment to rebuilding and adap- 
tation, and/or support for relocation where 
needed. Poor, elderly, historically marginalized, 
recent immigrants, and linguistically or socially 
isolated individuals as well as those populations 
with existing health disparities are more 
vulnerable to precipitation events and flooding 
due to a limited ability to prepare for and cope 
with such events.59 

 
Critical Infrastructure Service Disruption 
Much of the infrastructure in the Northeast, 
including drainage and sewer systems, flood 
and storm protection assets, transportation 
systems, and power supply, is nearing the end of 
its planned life expectancy. Current water-related 
infrastructure in the United States is not designed 
for the projected wider variability of future 
climate conditions compared to  those  recorded 
in the last century (Ch. 3: Water, KM 2). In order 
to make Northeast systems resilient to the kind 
of extreme climate-related disruptions the region 
has experienced recently—and the sort of dis- 
ruptions projected for the future—would require 
significant new investments in infrastructure. For 
example, in Pennsylvania, bridges are expected 
to be more prone to damage during extreme 
weather events, because the state leads the 
country in the highest percentage of structurally 
deficient bridges.288 Pennsylvania’s water treat- 
ment and wastewater systems are also notably 
aging, requiring an estimated $28 billion in new 

Maintaining Urban Areas 
and Communities and Their 
Interconnectedness 
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investment over the next 20 years for repairs and 
to meet increasing demands.288 

 
Climate-related disruptions will only exacer- 
bate existing issues with aging infrastructure. 
Sea level rise has amplified storm impacts 
in the Northeast region (Key Message 2), 
contributing to higher surges that extend 
further inland, as demonstrated in New York 
City.14,15,16 Sea level rise is leading to an increase 
in the frequency of coastal flooding, a trend 
that is projected to grow for cities such as 
Baltimore and Washington, DC.289 High tide 
flooding has increased by a factor of 10 or 
more over the last 50 years for many cities in 
the Northeast region and will become increas- 
ingly synonymous with regular inundation, 
exceeding 30 days per year for an estimated 20 
cities by 2050 even under a very low scenario 
(RCP2.6).216 More frequent high tide flooding 
(also referred to as nuisance, or sunny day, 
flooding) will be experienced at low-elevation 
cities and towns in the region (Figure 18.9). Sea 
level rise (see Key Message 2) under higher 
scenarios will likely increase property losses 
from hurricanes and other coastal storms for 
the region by $6–$9 billion per year by 2100, 
while changes in hurricane activity could raise 
these estimates to $11–$17 billion per year.260 

In other words, projected future costs are 
estimated to continue along a steep upward 
trend relative to what is being experienced 
today. However, there is limited published 

 

 

King Tide Flooding in Northeast 
Figure 18.9: The photo shows king tide flooding on Dock 
Street in Annapolis, Maryland, on December 21, 2012. Photo 
credit: Amy McGovern (CC BY 2.0). 

 
research that quantifies the costs associated 
with increased damage across an entire 
system in response to amplified storm events. 
Actions to replace and/or significantly modify 
the Northeast’s aging infrastructure provide 
opportunities to incorporate climate change 
adaptation and resilience into standard capital 
upgrades, reducing these future costs. 

 
Impacts on Urban Economies 
Service and resource supply infrastructure 
in the Northeast region is at increasing risk 
of disruption, resulting in lower quality of 
life, economic declines, and increased social 
inequality.17 Loss of public services affects the 
capacity of communities to function as admin- 
istrative and economic centers and triggers 
disruptions of interconnected supply chains 
(Ch. 16: International, KM 1). Interdependencies 
across critical infrastructure sectors such as 
water, energy, transportation, and telecom- 
munication can lead to cascading failures 
during extreme weather and climate-related 
disruptions,17,59 as occurred during the 2003 
blackout in New York City (Ch. 17: Complex 
Systems, Box 17.5; Ch. 11: Urban). For example, 
the Northeast is projected to experience a 
significant increase in summer heat and the 
number and/or duration of heat waves that 
will further stress summertime energy peak 

Mitigation in the Northeast 
The Northeast region has traditionally been a leader 
in greenhouse gas mitigation action, serving as 
a potential model for other states. The Regional 
Greenhouse Gas Initiative is the first mandatory 
market-based program in the United States to cap 
and reduce CO2 emissions from the power sector 
through a cooperative effort among Connecticut, 
Delaware, Maine, Maryland, Massachusetts, New 

Hampshire, New York, Rhode Island, and Vermont. 

https://creativecommons.org/licenses/by/2.0/legalcode
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load demands from higher air conditioning 
use and the greater need to pump and treat 
water. Energy supply failures can also affect 
transportation operations, and even after 
electricity is restored, a significant time lag 
can occur until transportation services such  
as subway signals and traffic lights return to 
operation.290 Understanding and coping with 
these interdependencies require cross-sector 
analysis and engagement by the private sector 
and within and across different levels of gov- 
ernment. As a result, the connection between 
climate impacts, adaptation, and sustained 
economic development of cities is a major 
concern in the region. 

 
The large number of manufacturing, distribu- 
tion, and storage facilities, as well as historic 
structures, in the region are also vulnerable to 
climate shifts and extremes. For example, pow- 
er plants in New York City tend to be located 
along the coastline for easy access to water for 
cooling and maritime-delivered fuel and are 
often located within about 16 feet (5 m) of sea 
level.59 This is not unusual, as there are many 
power plants and petroleum storage facilities 
located along the Northeast coastline.291 

 
The historic preservation  community 
has begun to address the issue of climate 
change.292,293 Many historic districts in cities 
and towns, such as Annapolis, Maryland, and 
Newport, Rhode Island, are at low elevations 
along the coast and now face the threat of 
rising sea levels. 

 
Preparedness in Cities and Towns 
Projected increases in coastal flooding, heavy 
precipitation, runoff, and extreme heat would 
have negative impacts on urban centers with 
disproportionate effects on at-risk communities. 

Larger cities, including Boston, MA,  Burlington, 
VT, Hartford, CT, Newark, NJ, Manchester, NH, 
New York, Philadelphia, PA, Pittsburgh, PA, 
Portland, ME, Providence, RI, and  Washington, 
DC, have begun to plan for climate change and in 
some instances have started to implement action, 
particularly when upgrading aging infrastructure 
(e.g., NYC Special Initiative for Rebuilding and 
Resiliency 2013, Climate Ready Boston 2016, 
City of Philadelphia 2016, City of Pittsburgh 
2017294,295,296,297). Examples from municipalities of 
varying sizes are common (e.g., U.S. EPA 201733). 
These cities seek to maintain the within-city  
and intercity connectivity that fosters growth, 
diversity, liveliness of urban neighborhoods, and 
protection of vulnerable populations, including 
the elderly, young, and disadvantaged. Further, 
city leaders hope to avoid forced migration of 
highly vulnerable populations and the loss of his- 
torical and cultural resources. City managers and 
stakeholders recognize that extreme heat events, 
sea level rise, and storm surge have the potential 
to lead to complex disasters and sustained critical 
infrastructure damage. Specific actions cities are 
taking focus largely on promoting the resilience 
of critical infrastructure, enhancing the social 
resilience of communities (especially of vulnerable 
populations), promoting ecosystem service haz- 
ard mitigation, and developing new indicators and 
monitoring systems to achieve a better under- 
standing of climate risks and to identify adapta- 
tion strategies (see Key Message 5) (see also Ch. 
11: Urban). In the Northeast region, Superstorm 
Sandy illustrated urban coastal flooding risk, and 
many localities, not just those directly impacted 
by the storm, have developed increased coastal 
resilience plans and efforts. New York City has 
been able to put in place a broad set of efforts in a 
variety of critical infrastructure sectors, including 
making the subway more protected from flooding 
(Figure 18.10). 
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Subway Air Vent Flood Protection 
Figure 18.10: The photo shows a subway air vent with a 
multiuse raised flood protection grate that was installed as 
part of the post–Superstorm Sandy coastal resilience efforts 
on West Broadway in lower Manhattan, New York City. Photo 
credit: William Solecki. 

Many Northeast cities are served by combined 
sewer systems that collect and treat both 
storm water and municipal wastewater. 
During heavy rain events, combined systems 
can be overwhelmed and release untreated 
sewage into local bodies of water.298 Moderate 
flooding events are expected to become more 
frequent in most of the Northeast during the 
21st century because of more intense precip- 
itation related to climate change.58,142 Finally, 
increased precipitation and high streamflows 
also increase streambed erosion, especially 
when coupled with wetter soils prior to storm 
events.299,300 Erosion at bridges can cause 
bridge failures,301 leading to transportation 
disruption, injuries, and potential fatalities. 

 
The impacts of changes in precipitation and 
temperature on water supply system behavior 
in the Northeast are complex. Future potable 
water supplies are expected to be adequate  
to meet future demand on average across 
the Northeast, but the number of watersheds 
where demand exceeds supply is projected to 

 
increase under most climate change scenari- 
os.302 Studies of specific water systems in the 
Northeast show mixed results. The New York 
City reservoir system shows high resilience 
and reliability under different climate change 
scenarios.303 Projected flows in the Potomac 
River, the primary water supply for the Wash- 
ington, DC, metropolitan area, are lower in 
most climate change scenarios, with minor to 
major impacts on water supply.304 

Key Message 4 
 

Changing climate threatens the health 
and well-being of people in the Northeast 
through more extreme weather, warmer 
temperatures, degradation of air and 
water quality, and sea level rise. These 
environmental changes are expected to 
lead to health-related impacts and costs, 
including additional deaths, emergency 
room visits and hospitalizations, and a 
lower quality of life. Health impacts are 
expected to vary by location, age, current 
health, and other characteristics of indi- 
viduals and communities. 

Health Effects of Extreme Heat 
Present-day high temperatures (heat) have 
been conclusively linked to a higher risk of 
illness and death, particularly among older 
adults, pregnant women, and children (Ch 14: 
Human Health). A number of studies have repli- 
cated these findings specifically in the North- 
east (see Box 18.3; e.g., Wellenius et al. 2017, 
Bobb et al. 2014, Hondula et al. 2012305,306,307). 
Ambient temperatures and heat-related 
health effects can vary significantly over small 
geographic areas due to local land cover (for 
example, due to the urban heat island effect; 
see Key Message 3) (see also Ch. 5: Land 
Changes, KM 1), topography, and the resilience 
of individuals and communities.307,308 For 

Threats to Human Health 
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example, older or sicker individuals and those 
persons who are without access to air condi- 
tioning, living in older homes, socially isolated, 
or working outdoors are considered particular- 
ly vulnerable to the effects of heat.309,310,311 

 
Annual average temperature over the contigu- 
ous United States has increased by 1.2°F (0.7°C) 
over the last few decades and by 1.8°F (1.0°C) 
relative to the beginning of the last century. 
Recent decades are the warmest in at least 
the past 1,500 years.312 Average annual tem- 
peratures across the Northeast have increased 
from less than 1°F (0.6°C) in West Virginia to 
about 3°F (1.7°C) or more in New England since 
1901.18,19 Although the relative risk of death on 
very hot days is lower today than it was a few 
decades ago, heat-related illness and death 
remain significant public health problems in 
the Northeast.20,21,22,23 For example, a study in 
New York City estimated that in 2013 there 
were 133 excess deaths due to extreme heat.24 

 
Annual average temperature in the contiguous 
United States is expected to increase by an 
additional 2.5°F (1.4°C) over the next few 
decades regardless of future greenhouse gas 
emissions (Ch 2: Climate).50 By 2050, average 
annual temperatures in the Northeast are 
expected to increase by 4.0°F (2.2°C) under the 
lower scenario (RCP4.5) and 5.1°F (2.8°C) under 
the higher scenario (RCP8.5) relative to the 

near present (1975–2005),50 with several more 
days of extreme heat occurring throughout the 
region each year. 

 
These projected increases in temperature  
are expected to lead to substantially more 
premature deaths, hospital admissions, and 
emergency department visits due to heat 
across the Northeast.23,25,26,27,28,29 For example, 
in the Northeast we can expect approximately 
650 more excess deaths per year caused by 
extreme heat by 2050 under either a lower or 
higher scenario (RCP4.5 or RCP8.5) and 960 
(under RCP4.5) to 2,300 (under RCP8.5) more 
excess deaths per year by 2090.29 

 
The risks associated with present-day and pro- 
jected future heat can be minimized by reduc- 
ing greenhouse gas emissions, minimizing 
exposure through urban design, or increasing 
individual and community resilience.23,29,313 For 
example, in the Northeast region, Philadelphia 
and New York City have been leaders in imple- 
menting policies and investing in infrastructure 
aimed at reducing the number of excess deaths 
from extreme heat.314 Compared to the higher 
scenario (RCP8.5), 1,400 premature deaths from 
extreme temperatures could be avoided in the 
Northeast each year by 2090 if global green- 
house gas emissions are consistent with the 
lower scenario (RCP4.5), resulting in $21 billion 
in annual savings (in 2015 dollars).29 

 

 

Box 18.3: Rising Temperatures and Heat-Related Emergency Room Visits in Rhode Island 

Moderate and extreme heat events already pose a health risk today,305,306,315,316 and climate change could in- 
crease this risk. Of note, days of moderate heat occur much more often compared to days of extreme heat, 
such that days of moderate heat may, in aggregate, be associated with a larger number of adverse health 
events.315 Average summertime temperatures are projected to continue to rise through the end of the century, 
raising concern about the public health impact of climate change across Northeast communities. A nationwide 
study projected that some of the largest increases in heat-related mortality would occur in the Northeast region, 
with an additional 50–100 heat-related deaths per year per million people by 2050 and 120–180 additional 
deaths per million people by 2100 under the mid-high scenario (RCP6.0).28 Heat health risks seem to be high- 
est at the start of the warm weather each year317 and among vulnerable populations such as outdoor workers, 

young children, and the elderly. 
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Box 18.3: Rising Temperatures and Heat-Related Emergency Room Visits in Rhode Island, continued 

In the small, coastal northeastern state of Rhode Island (population of about 1 million), maximum daily temperatures in 
the summer have trended upwards over the last 60 years such that Rhode Islanders experienced about three more weeks 
of uncomfortably hot weather over 2015–2016 than in the 1950s (Figure 18.11, left panel). A recent study looking at  visits 
to hospital emergency rooms (ERs) found that the risk of heat-related ER visits increased sharply as maximum daily 
temperatures climbed above 80°F (Figure 18.11, middle panel).26 The researchers projected that with continued climate 
change, Rhode Islanders could experience an additional 400 (6.8% more) heat-related ER visits each year by 2050 and 
up to an additional 1,500 (24.4% more) such visits each year by 2095 under the higher scenario (RCP8.5; Figure 18.11, 
right panel). Importantly, about 1,000 fewer annual heat-related ER visits are projected for the end of the century under 
the lower scenario (RCP4.5) compared to the higher scenario (RCP8.5), representing the potential protective benefit of 
limiting greenhouse gas emissions. Such reductions would also lead to improvements in air pollution and health start- 
ing today.318,319

 

In response to the health threat from heat, local National Weather Service offices issue heat advisories and excessive 
heat warnings when the forecast calls for very hot weather. Based on the results of a study across multiple states,305

 

the National Weather Service Northeast Region updated its heat advisory guidelines to be issued when the heat index 
is forecast to exceed 95°F for any amount of time on two or more days or 100°F for any amount of time on a single day. 
Many communities in the Northeast have implemented plans to respond to these heat alerts to better protect the public’s 
health (for example, with the Centers for Disease Control and Prevention’s Building Resilience Against Climate Effects pro- 
gram), although gaps in knowledge remain.34,314 Uncertainties exist in the estimation of the cumulative impact on health of 
multiple aspects of weather, including heat, drought,320 and heavy precipitation,321,322,323 all of which have potential adverse 
impacts on human health. 

 

Observed and Projected Impacts of Excess Heat 
on Emergency Room Visits in Rhode Island 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.11: This figure shows the observed and projected impacts of excess heat on emergency room visits in Rhode 
Island. (left) In Rhode Island, maximum daily temperatures in the summer have trended upwards over the last 60 years, such 
that residents experienced about three more weeks of health-threatening hot weather over 2015–2016 than in the 1950s. 
(middle) A recent study looking at visits to hospital emergency rooms (ERs) found that the incidence rate of heat-related   
ER visits rose sharply as maximum daily temperatures climbed above 80°F. (right) The study estimates that with continued 
climate change, Rhode Islanders could experience an additional 400 (6.8% more) heat-related ER visits each year by 2050 
and up to an additional 1,500 (24.4% more) such visits each year by 2095 under the higher scenario (RCP8.5). About 1,000 
fewer annual heat-related ER visits are projected for the end of the century under the lower scenario (RCP4.5) compared   
to the higher scenario (RCP8.5), reflecting the estimated health benefits of adhering to a lower greenhouse gas emissions 
scenario. Sources: (left) Brown University; (middle, right) adapted from Kingsley et al. 2016.26 Reproduced from Environmental 
Health Perspectives. 
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Health Effects of Air Pollution, 
Aeroallergens, and Wildfires 
Climate change is increasing the risk of illness 
and death due to higher concentrations of air 
pollutants in many parts of the United States 
(Ch. 13: Air Quality). In the Northeast, climate 
change threatens to reverse improvements 
in air quality that have been achieved over 
the past couple of decades. For example, 
climate change is projected to influence future 
levels of ground-level ozone pollution in the 
Northeast by altering weather conditions and 
impacting emissions from human and natural 
sources.324,325,326 This “climate penalty,” whereby 
reductions in ozone precursor emissions are at 
least partially offset by a changing climate, is 
projected to lead to substantially more ozone 
pollution-related deaths;324,325,327 200–300 more 
excess deaths per year by 2050 compared to 
2000 by one estimate.325 

 
Excess deaths due to ground-level ozone pol- 
lution are projected to increase substantially 
under both lower (RCP4.5) and higher (RCP8.5) 
scenarios.327 Reducing global emissions of 
greenhouse gases from a higher scenario to a 
lower scenario could prevent approximately 
360 deaths per year due to air quality in 2090, 
saving approximately $5.3 billion per year (in 
2015 dollars, undiscounted).327 Moreover, many 
sources of the greenhouse gas emissions that 
contribute to climate change also  contribute 
to degraded air quality today, with adverse 
effects on people’s health. The adverse health 
risks from air pollution can be reduced in the 
present and in the future by addressing these 
common emission sources.319 

 
More frequent and severe wildfires due to cli- 
mate change pose an increasing risk to human 
health through impacts on air quality (Ch. 13: 
Air Quality, KM 2). Wildfire smoke can travel 
hundreds of miles, as occurred in 2015 when 
Canadian wildfire smoke caused air quality 
exceedance days in Baltimore, Maryland.328 

Climate change is also expected to lengthen 
and intensify pollen seasons in parts of the 
United States, potentially leading to additional 
cases of allergic rhinitis (also known as hay 
fever) and allergic asthma episodes (Ch. 13: 
Air Quality, KM 3).29,329 Among individuals with 
allergic asthma, exposure to certain types of 
pollen can result in worsening of symptoms 
leading to increases in allergy medication sales 
and emergency room visits for asthma, as 
already documented in New York City.330 

 
Indoors, climate change is expected to bring 
conditions that foster mold growth, such as 
more dampness, and more frequent power 
outages that impair ventilation. Damp indoor 
conditions and mold are both known to be 
associated with respiratory illnesses including 
asthma symptoms and wheezing.331 When 
damp conditions occur in buildings, rapid 
action could be warranted—remediation in a 
northeastern office building after the develop- 
ment of respiratory or severe non-respiratory 
symptoms by building inhabitants was not 
effective in reducing symptoms.332 

 
Changing Ecosystems and Risk of Vector- 
Borne Disease 
The risk posed by vector-borne diseases (those 
transmitted by disease-carriers  such as fleas, 
ticks, and mosquitoes) such as Lyme disease and 
West Nile virus under a changing climate is also of 
concern in the Northeast region. These diseases, 
specifically tick-related Lyme disease, have been 
linked to climate, particularly with abundant 
late-spring and early-summer moisture. By 
2065–2080,  under the higher scenario (RCP8.5) 
it is projected that the period of elevated risk of 
Lyme disease transmission in the Northeast will 
begin 0.9–2.8 weeks earlier between Maine and 
Pennsylvania, compared to the climate observed 
over 1992–2007).67 Similarly, a recent analysis 
estimates that there would be an additional 490 
cases of West Nile neuroinvasive disease per 
year in the Northeast by 2090 under the higher 
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scenario (RCP8.5) versus 210 additional cases per 
year under the lower scenario (RCP4.5).29 The 
geographic range of suitable habitats for other 
mosquito vectors such as the northern house 
mosquito (Culex pipiens and Culex restuans, 
which transmit West Nile virus) and the Asian 
tiger mosquito (Aedes albopictus, which can 
also transmit West Nile virus and other mos- 
quito-borne diseases) is expected to continue 
shifting northward into New England in the 
next several decades and through the end of the 
century as a result of climate change.333,334 

 
Gastrointestinal Illness from Waterborne and 
Foodborne Contaminants 
Another consequence of climate change is the 
spread of marine toxins and pathogens (Key Mes- 
sage 2). Some of these pathogens pose health risks 
through consumption of contaminated seafood. 
Harmful algal blooms, which can cause paralytic 
shellfish poisoning in humans, have become more 
frequent and longer lasting in the Gulf of Maine.335 

Similarly, pathogenic strains of the waterborne bac- 
teria Vibrio—which are already causing thousands 
of foodborne illnesses per year—have expanded 
northward and have been responsible for increasing 
cases of illness in oyster consumers in the Northeast 
region.336,337,338 

 
Combined sewer systems (where municipal 
wastewater and storm water use the same pipes) 
are particularly common in the Northeast given 
the older infrastructure typical of the region.339 

When runoff from heavy precipitation exceeds 
the capacity of these systems, combined sewer 
overflow containing untreated sewage is released 
into local waterways, potentially impacting the 
quality of water used for recreation or drinking. 
For example, a study in Massachusetts found an 
increased risk of gastrointestinal illness with heavy 
precipitation causing combined sewer overflows.322 

Increased risk of campylobacteriosis and salmonella 
has been documented in Maryland with increased 
heavy precipitation and streamflows.340,341 Moderate 
flooding events are expected to become more 

frequent in most of the Northeast during the 21st 
century because of more intense precipitation 
related to climate change.105,142 This could, therefore, 
increase the frequency of combined sewer overflows 
and waterborne disease. Some cities and towns 
are making substantial investments to reduce or 
eliminate the risks of combined sewer overflows 
(Figure 18.12). 

 
Storm-related power outages can also pose a risk 
of foodborne illness.343 Increased diarrheal illnesses 
from consumption of spoiled food have also been 
documented in New York City in 2003 following a 
power outage that affected millions in the Northeast 
(Ch. 17: Complex Systems, Box 17.5).344 

 

District of Columbia Water and Sewer Authority’s 
Clean Rivers Project 
Figure 18.12: The District of Columbia Water and Sewer 
Authority’s Clean Rivers Project342 aims to reduce combined 
sewer overflows into area waterways. The Clean Rivers 
Project is expected to reduce overflows annually by 96% 
throughout the system and by 98% for the Anacostia River. 
In addition, the project is expected to reduce the chance of 
flooding in the areas it serves from approximately 50% to  
7% in any given year and reduce nitrogen discharged to the 
Chesapeake Bay by approximately 1 million pounds per year. 
Photo credit: Daniel Lobo (CC BY 2.0). 

https://creativecommons.org/licenses/by/2.0/legalcode
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Box 18.4: Role of Public Health 
and Healthcare Sector in 
Resilience and Prevention 
There are numerous examples of how the public 
health and healthcare sectors are preparing for climate 
change and making energy saving changes, as high- 
lighted in the U.S. Department of Health and Human 
Services’ report on enhancing healthcare resilience.345

 

One such example occurred in Greenwich, Connecticut, 
where Greenwich Hospital installed a combined heat 
and power system that conserves energy and provided 
stability in the wake of Superstorm Sandy.346

 

In June 2016, severe flooding in West Virginia resulted 
from a “thousand-year storm”347 and highlighted the 
important role of the healthcare sector in building resil- 
ience to extreme precipitation events. A recent study of 
the event described the role of state and federal govern- 
ment working in partnership with healthcare volunteer 
organizations to effectively mobilize a response in the 
setting of such a disaster.348 It emphasized the critical 
importance of healthcare professionals in providing 
emotional and mental health support to the response 
volunteers and the affected communities, as well as 
a need to increase capacity in these areas.348 See Key 
Message 5 in this chapter and Chapter 14: Human 
Health, Key Message 3 for more information on addi- 
tional adaptation efforts that protect health. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.13: A Red Cross volunteer talks with a 
community resident after the 2016 West Virginia floods. 
Additionally, local medical professionals mobilized to staff 
temporary clinical sites. Photo credit: National Guard 
Bureau Public Affairs. 

Mental Health and Well-Being 
In addition to the adverse impacts on people’s 
physical health, climate change is also asso- 
ciated with adverse impacts on mental health 
(Ch. 14: Human Health, KM 1). Specifically in the 
Northeast region, sea level rise, storm surge, 
and extreme precipitation events associated 
with climate change will contribute to higher 
risk of flooding in both coastal and inland 
areas—particularly in urban areas with large 
amounts of impervious surface that increases 
water runoff. In addition to the risks of physical 
injury, waterborne disease, and healthcare 
service disruption caused by flooding, lasting 
mental health consequences, such as anxiety, 
depression, and post-traumatic stress disorder 
can impact affected communities, as was 
observed in the wake of Superstorm Sandy in 
2012 (Box 18.4).349 Extreme weather events can 
have both immediate, short-term effects, as 
well as longer-term impacts on mental health 
and well-being that can last years after the 
specific event. 

 
Extreme heat can also affect mental health and 
well-being. Higher outdoor temperatures are 
associated with decreases in subtle aspects 
of well-being such as decreased joy and hap- 
piness350 and increased aggression and vio- 
lence.351 Underlying mental health conditions 
and geography also affect vulnerability. For 
example, a study of hospitalization for heat- 
related illness among people with mental 
health disorders showed increased risk in 
rural versus urban areas, possibly due to lower 
availability of mental health services in these 
rural areas.352 

 
Separately, large population changes from cli- 
mate-driven human migration could substantially 
influence both coastal and inland communities 
in the Northeast region (see also Key Messages  
2 and 5).285 The impacts of human migration on 
health and well-being depend on myriad factors, 
including the context of the migration.353 
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Regional Variation in Health Impacts and 
Vulnerability 
Although climate change affects all residents of 
the Northeast region, risks are not experienced 
equally. The impact of climate change on an 
individual depends on the degree of exposure, 
the individual sensitivity to that exposure, and 
the individual or community-level capacity 
to recover (Ch. 14: Human Health, KM 2).354 

Thus, health impacts of climate change will 
vary across people and communities of the 
Northeast region depending on social, socio- 
economic, demographic, and societal factors; 
community adaptation efforts; and underlying 
individual vulnerability (see Key Message 
5) (see also Ch. 28: Adaptation). Particularly 
vulnerable groups include older or socially 
isolated adults, children, low-income commu- 
nities, and communities of color. 

Key Message 5 
 

 
Communities in the Northeast are proac- 
tively planning and implementing actions 
to reduce risks posed by climate change. 
Using decision support tools to develop 
and apply adaptation strategies informs 
both the value of adopting solutions and 
the remaining challenges. Experience 
since the last assessment provides  
a foundation to advance future adap- 
tation efforts. 

 
Communities, towns, cities, counties, states, 
and tribes across the Northeast are engaged 
in efforts to build resilience to environmental 
challenges and adapt to a changing climate. 
Developing and implementing climate 
adaptation strategies in daily practice often 
occur in collaboration with state and federal 
agencies (e.g., New Jersey Climate Adaptation 
Alliance, New York Climate Clearinghouse, 

Massachusetts StormSmart Coasts and Climate 
Action Tool, Rhode Island StormTools, EPA, 
CDC).30,31,32,33,34,355,356 Advances in rural towns, 
cities, and suburban areas include low-cost 
adjustments of existing building codes and 
standards. In coastal areas, partnerships 
among local communities and federal and state 
agencies leverage federal adaptation tools and 
decision support frameworks (the National 
Oceanic and Atmospheric Administration’s 
[NOAA] Digital Coast, the U.S. Geological Sur- 
vey’s [USGS] Coastal Change Hazards Portal, 
New Jersey’s Getting to Resilience). 

 
Increasingly, cities and towns across the 
Northeast region are developing or implement- 
ing plans for adaptation and resilience in the 
face of a changing climate (e.g., EPA 201733). 
These approaches are designed to maintain 
and enhance the everyday life of residents 
and promote economic development. In some 
cities, adaptation planning has been used to 
respond to present and future challenges in 
the built environment. Regional efforts have 
recommended changes in design standards 
when building, replacing, or retrofitting infra- 
structure to account for a changing climate 
(Box 18.5). For example, the Port Authority of 
New York and New Jersey provided guidelines 
for engineers to account for projected changes 
in temperature, precipitation, and sea level rise 
when designing infrastructure assets.357 The 
cities of Philadelphia, Pennsylvania,296 Utica, 
New York,358 and Boston, Massachusetts,295 

promote the use of green infrastructure to 
build resilience, particularly in response to 
flooding risk (Ch. 8: Coastal, Figure 8.2). In 
Jamaica Bay, New York, post–Superstorm San- 
dy efforts have fostered a set of local, regional, 
state, and federal actions that link resilience 
efforts to current climate risk, along with the 
potential for accelerated sea level rise and its 
implications for increased flood frequency (Ch. 
28: Adaptation, KM 1).359 

Adaptation to Climate Change Is 
Underway 
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The issue of water security has emerged from 
vulnerability assessments and cuts across 
urban and rural communities. One example 
is the Washington, DC, metropolitan area’s 
potential use of the Potomac and Occoquan 
estuaries as water supplies and of retired 
quarries as water storage facilities.304 Adaptive 
reservoir operations have been implemented 
in the Northeast and other regions of the 
United States to better manage plausible 
future climate conditions and to meet other 
management goals (Ch. 3: Water, KM 3). Tribal 
nations have also focused on adaptation and 
the vulnerability of their water supplies, based 
on long-standing local values and traditional 
knowledge, including the use of water for 
drinking, habitat for fish and wildlife, agricul- 
ture, and cultural purposes.97,360,361 

 
While resilience efforts have focused on 
microscale adaptations to current climate 

risks, communities are increasingly seeing a 
need for larger-scale adaptation efforts. Wide 
disparities in adaptive capacity exist among 
communities in the region. Larger, often 
better-resourced communities have created 
climate offices and programs, while response 
has lagged in smaller or poorer communities 
that are often more dependent on county- or 
state-level programs and expertise. The move 
from small-scale to larger-scale and more 
transformative adaptation efforts involves 
complex policy transition planning, social and 
economic development, and equity consid- 
erations (Ch. 28: Adaptation, KM 4).362,363 This 
includes attention to community concerns 
about green gentrification—the practice of 
making environmental improvements in urban 
areas—that generally increases property 
values but often also drives out lower- 
income residents.364 

 
 

Box 18.5: Adapting the Northeast’s Cultural Heritage 

A defining characteristic of the Northeast region is its rich, dense record of cultural heritage, marked by historic 
structures, archaeological sites, and cultural landscapes. The ability to preserve this cultural heritage is chal- 
lenged by climate change. National parks and historic sites in the Northeast are already witnessing cultural re- 
source impacts from climate change, and more impacts are expected in the future.236 These cultural resources 
present unique adaptation challenges, and the region is moving forward with planning for future adaptation. 

 
Superstorm Sandy caused substantial damage to coastal New York Harbor parks, including Gateway Nation- 
al Recreation Area and Statue of Liberty National Monument, where buildings and the landscape surround- 
ing the statue and on Ellis Island were impacted and the museum collections were threatened by the loss of 
climate control systems that were flooded.370,371 Sea level rise amplifies the impacts of storm events such as 
Superstorm Sandy, and the parks are using recovery as an opportunity to rebuild with more resilience to future 
storms.371,372,373 Heating and electrical systems in historic buildings have been elevated from basement levels. 
Design changes, such as using non-mold-growing materials and other engineering solutions, have been made 
while maintaining the buildings’ historic character. Following the storm, Gateway National Recreation Area add- 
ed climate change vulnerability to their planning process for prioritizing historic structures between preserve, 
stabilize, or ruin. The recreation area has been implementing these priorities as part of the recovery process, 
providing examples of climate adaptation implementation.359,374 The human community on Rockaways peninsu- 
la also responded to Sandy by using urban forestry and agricultural practices to recover and to buffer against 
the impact of future storms (see Building Resiliency at the Rockaways 360 tour375). 
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Decision Support Tools and Adaptation 
Actions 
While adaptation is progressing in a variety of 
forms in the Northeast region, many efforts 
have focused on assessing risks and developing 
decision support tools. Many of these assess- 
ments and tools have proven useful for specific 
purposes. Structured decision-making is where 
decision-makers engage at the outset to define 
a problem, objectives, alternative management 
actions, and the consequences and tradeoffs 
of such actions—before making any decisions. 
It is being increasingly applied to design 
management plans, determine research needs, 
and allocate resources to preserve habitat and 
resources throughout the region.151,365,366,367 

There has been little attention devoted to 
evaluating and communicating the suitability 
and robustness of the many tools that are now 
available. Efforts to evaluate decision support 
tools and processes in a rigorous scientific 
manner would help stakeholders choose the 

best tools to answer particular questions under 
specific circumstances. 

 
One significant advancement that communities 
and infrastructure managers have made in 
recent years has been the development of 
risk, impact, and adaptation indicators, as 
well as monitoring systems to measure and 
understand climate change and its impacts.15 

In recognizing the economic impacts of infra- 
structure service loss and disruption, govern- 
ment agencies have begun adaptation analyses 
to identify those infrastructure elements 
most critical for regional economic resilience 
during climate-related disruptions, as well as 
to identify communities most exposed to acute 
and chronic climate risks.45,368,369 

 
Resource managers, community leaders, and 
other stakeholders are altering the manage- 
ment of coastal areas and resources in the 
context of climate change (Boxes 18.6 and 18.7). 

 
Box 18.6: Building Resilience in the Chesapeake Bay Watershed 

The Chesapeake Bay watershed is experiencing stronger and more frequent storms, an increase in heavy 
precipitation events, increasing bay water temperatures, and a rise in sea level. These trends vary throughout 
the watershed and over time but are expected to continue over the next century under all scenarios considered. 
The trends are altering both the ecosystems and mainland and island communities of the Chesapeake Bay 
watershed. Achieving watershed goals would require changes in policies, programs, and/or projects to achieve 
restoration, sustainability, conservation, and protection goals for the entire system. 

 
To gain a better understanding of the likely impacts of climate change, as well as potential management solu- 
tions for the watershed, the 2014 Chesapeake Bay Watershed Agreement committed the NOAA Chesapeake 
Bay Program (CBP) Partnership to take action to “increase the resiliency of the Chesapeake Bay watershed, in- 
cluding its living resources, habitats, public infrastructure and communities, to withstand adverse impacts from 
changing environmental and climate conditions.” This new Bay Agreement goal builds on the 2010 Total Max- 
imum Daily Load (TMDL) documentation and 2009 Presidential Executive Order 13508376,377 that called for an 
assessment of the impacts of a changing climate on the Chesapeake Bay’s water quality and living resources. To 
achieve this goal and regulatory mandates, the CBP Partnership is undertaking efforts to monitor and assess 
trends and likely impacts of changing climatic and sea level conditions on the Chesapeake Bay ecosystem and 
to pursue, design, and construct restoration and protection projects to enhance resilience. The CBP Climate 
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For example, research in Delaware is exploring 
the use of seashore mallow as a transitional 
salt-tolerant crop because of gradual wetland 
migration onto agricultural lands as sea levels 
rise.379 Commercial and recreational fisheries 
and tourism depend upon living marine 
resources. Climate adaptation in ocean fisher- 
ies will entail coping and long-term planning 
responses at multiple levels of communities, 
industry, and management systems.380 Fishers 
have traditionally switched species as needed 
based on ecosystem or market conditions; this 
will continue to be an important adaptation 
option, but it is increasingly constrained by 
regulatory approaches in fisheries.155,178,179,202 

Longer-term planning for climate adaptation 
has included state commissions to evaluate 
ocean acidification threats,381,382 federal efforts 
to articulate science strategies,383,384,385 species 
vulnerability assessments,143,186 coupled social– 
ecological vulnerability assessments for fishing 
communities,45 and planning for the potential 
inland migration of coastal populations due to 
sea level rise.386 

 
The winter recreation industry has long con- 
sidered snowmaking an adaptation to climate 
change.387 Snowmaking improvements should 
assist with the viability of some Northeast 

ski areas,117 while new tourism opportu- 
nities emerge.388 

 
In order to sustain and advance these and 
other planned efforts towards climate change 
adaptation and resilience, decision-makers 
in the Northeast need to be aware of existing 
constraints and emerging issues. Constraints 
from the management, economic, and social 
context are highly uncertain.389 These efforts 
have faced a variety of barriers and limitations, 
including lack of funding and jurisdictional and 
legal constraints.390,391 In many cases, adapta- 
tion has been limited to coping responses that 
address short-term needs and are feasible 
within the current institutional context, 
whereas longer-term, more transformative 
efforts will likely require complex policy transi- 
tion planning and frameworks that can address 
social and economic equality.363 The need for 
solutions that support industry and community 
flexibility in responding to climate-related 
changes has also been recognized.45,178 

 
Earth’s changing climate is one of several 
stressors on human and natural systems, and it 
can work to exacerbate existing vulnerabilities 
and inequalities. Implementing resilience 
planning and climate change adaptation in 

Box 18.6: Building Resilience in the Chesapeake Bay Watershed, continued 

Resiliency Workgroup’s Management Strategy recognizes that it is important to build community and institutional 
capacity and to develop analytical capability to build cross-science disciplinary knowledge and better understanding 
of societal responses. A significant activity now underway is geared towards the midpoint assessment of progress 
towards the 2025 Chesapeake Bay TMDL goal for water quality standard attainment. As part of the TMDL midpoint 
assessment, the CBP Partnership has developed tools and procedures to quantify the effects of climate change on 
watershed flows and pollutant loads, storm intensity, increased estuarine temperatures, sea level rise, and ecosystem 
influences, including loss of tidal wetland attenuation with sea level rise. Current modeling efforts are underway to 
assess potential climate change impacts under a range of projected climate change outcomes for 2025 and 2050.378

 

Addressing climate change within the context of established watershed planning and regulatory efforts is extremely 
complex and requires sound climate science, climate assessments, modeling, policy development, and stakeholder 
engagement (Ch. 28: Adaptation, Figure 28.1). The CBP Partnership is tackling this challenge on all of these fronts, 
with priority directed to understanding what is needed to achieve the 2025 nutrient reduction goals and the best man- 

agement practices required to achieve climate-resilient rehabilitation goals. 
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Box 18.7: Science for Balancing Wildlife and Human Needs in the Face of Sea Level Rise 

Policymakers, agencies, and natural resource manag- 
ers are under increasing pressure to manage coastal 
areas to meet social, economic, and natural resource 
demands, particularly as sea levels rise. Scientific knowl- 
edge of coastal processes and habitat use can support 
decision-makers as they balance these often-conflicting 
human and ecological needs. In collaboration with a wide 
network of natural resource professionals from state and 
federal agencies (including the U.S. Fish and Wildlife Ser- 
vice and National Park Service) and private conservation 
organizations, a research team from the U.S. Geological 
Survey (USGS) is conducting research and developing 
tools to identify suitable coastal habitats for species of 
concern, such as the piping plover (Charadrius melodus)— 
an ecologically important species with low population 
numbers—under a variety of sea level rise scenarios. 

The multidisciplinary USGS team uses historical and 
current habitat availability and coastal characteristics to 
develop models that forecast likely future habitat from 
Maine to North Carolina.392,393 The collaborative partners, 
both researchers and managers, are critical to the pro- 
gram: they aid in data collection efforts through the “iPlo- 
ver” smartphone application394 and help scientists focus 
research on specific management questions. Because 
these shorebirds favor sandy beaches that overwash 
frequently during storms, the resulting habitat maps also 
define current and future areas of high hazard exposure 
for humans and infrastructure. 

Land-use planners can use results to determine optimal 
locations for constructing recreational facilities that min- 
imize impacts on sensitive habitats and have a low prob- 
ability of being overwashed. Alternatively, results can help 
resource managers proactively protect the highest-quality 

 
Figure 18.14: (a, b) These photographs show suitable 
piping plover habitat for (c) rearing chicks along the U.S. 
Atlantic coast. Photo credits: (a, b) Sara Zeigler, U.S. 
Geological Survey; (c) Josh Seibel, U.S. Fish and Wildlife 
Service. 

habitats to meet near- and long-term conservation goals and, in so doing, increase beach access for users by reducing 
human–bird conflicts and improving the certainty of beach availability for recreational use. 
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order to preserve the cultural, economic, and 
natural heritage of the Northeast would require 
ongoing collaboration among tribal, rural, 
and urban communities as well as municipal, 
state, tribal, and federal agencies. The number 
and scope of existing adaptation plans in the 
Northeast show that many people in the region 
consider this heritage to be important. 
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Traceable Accounts 
Process Description 
It is understood that authors for a regional assessment must have scientific and regional credibil- 
ity in the topical areas. Each author must also be willing and interested in serving in this capacity. 
Author selection for the Northeast chapter proceeded as follows: 

First, the U.S. Global Change Research Program (USGCRP) released a Call for Public Nominations. 
Interested scientists were either nominated or self-nominated and their names placed into a 
database. The concurrent USGCRP Call for Public Nominations also solicited scientists to serve 
as chapter leads. Both lists were reviewed by the USGCRP with input from the coordinating lead 
author (CLA) and from the National Climate Assessment (NCA) Steering Committee. All regional 
chapter lead (CL) authors were selected by the USGCRP at the same time. The CLA and CL then 
convened to review the author nominations list as a “first cut” in identifying potential chapter 
authors for this chapter. Using their knowledge of the Northeast’s landscape and challenges, the 
CLA and CL used the list of national chapter topics that would be most relevant for the region. 
That topical list was associated with scientific expertise and a subset of the author list. 

In the second phase, the CLA and CL used both the list of nominees as well as other scientists 
from around the region to build an author team that was representative of the Northeast’s geog- 
raphy, institutional affiliation (federal agencies and academic and research institutions), depth of 
subject matter expertise, and knowledge of selected regional topics. Eleven authors were thus 
identified by December 2016, and the twelfth author was invited in April 2017 to better represent 
tribal knowledge in the chapter. 

Lastly, the authors were contacted by the CL to determine their level of interest and willingness  
to serve as experts on the region’s topics of water resources, agriculture and natural resources, 
oceans and marine ecosystems, coastal issues, health, and the built environment and urban issues. 

On the due diligence of determining the region’s topical areas of focus 
The first two drafts of the Northeast chapter were structured around the themes of water 
resources, agriculture and natural resources, oceans and marine ecosystems, coastal issues, 
health, and the built environment and urban issues. During the USGCRP-sponsored Regional 
Engagement Workshop held in Boston on February 10, 2017, feedback was solicited from approx- 
imately 150 online participants (comprising transportation officials, coastal managers, urban 
planners, city managers, fisheries managers, forest managers, state officials, and others) around 
the Northeast and other parts of the United States, on both the content of these topical areas   
and important focal areas for the region. Additional inputs were solicited from other in-person 
meetings such as the ICNet workshop and American Association of Geographers meetings, both 
held in April 2017. All feedback was then compiled with the lessons learned from the USGCRP 
CLA-CL meeting in Washington, DC, also held in April 2017. On April 28, 2017, the author team met 
in Burlington, Vermont, and reworked the chapter’s structure around the risk-based framing of 
interest to 1) changing seasonality, 2) coastal/ocean resources, 3) rural communities and liveli- 
hoods, 4) urban interconnectedness, and 5) adaptation. 
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Key Message 1 
 

The seasonality of the Northeast is central to the region’s sense of place and is an important 
driver of rural economies. Less distinct seasons with milder winter and earlier spring conditions 
(very high confidence) are already altering ecosystems and environments (high confidence) 
in ways that adversely impact tourism (very high confidence), farming (high confidence), and 
forestry (medium confidence). The region’s rural industries and livelihoods are at risk from 
further changes to forests, wildlife, snowpack, and streamflow (likely). 

 
Description of evidence base 
Multiple lines of evidence show that changes in  seasonal  temperature  and  precipitation  cycles 
have been observed in the Northeast.3,4,109,110,124,154,158 Projected increases in winter air temperatures 
under lower and higher scenarios (RCP4.5 and RCP8.5)3,4 will result in shorter and milder cold 
seasons, a longer frost-free season,3 and decreased regional snow cover and earlier snow- 
melt.108,109,110,395,396,397 Observed seasonal changes to streamflows in response to increased winter 
precipitation, changes in snow hydrology,112,138,139,140 and an earlier but prolonged transition into 
spring68 are projected to continue.105 

These changes are affecting a number of plant and animal species throughout the region, includ- 
ing earlier bloom times and leaf-out,71,73,158 spawning,164 migration,84,166,398 and insect emergence,74 as 
well as longer growing seasons,72 delayed senescence, and enhanced leaf color change.103 Milder 
winters will likely contribute to the range expansion of wildlife and insect species,399 increase 
the size of certain herbivore populations78 and their exposure to parasitism,81,82 and increase the 
vulnerability of an array of plant and animal species to change.66,103,143 

Warmer winters will likely contribute to declining yields for specialty crops35 and fewer operation- 
al days for logging88 and snow-dependent recreation.115,116,118 Excess moisture is the leading cause 
of crop loss in the Northeast,35 and the observed increase in precipitation amount, intensity, and 
persistence is projected to continue under both lower and higher scenarios.3,4,124,125 

Major uncertainties 

Warmer fall temperatures affect senescence, fruit ripening, migration, and hibernation, but are 
less well studied in the region98 and must be considered alongside other climatic factors such as 
drought. Projections for summer rainfall in the Northeast are uncertain,4 but evaporative demand 
for surface moisture is expected to increase with projected increases in summer temperatures.3,4 

Water use is highest during the warm season;141,400 how much this will affect water availability for 
agricultural use depends on the frequency and intensity of drought during the growing season.302 

Description of confidence and likelihood 

There is high confidence that the combined effects of increasing winter and early-spring tem- 
peratures and increasing winter precipitation (very high confidence) are changing aquatic and 
terrestrial habitats and affecting the species adapted to them. The impact of changing seasonal 
temperature, moisture conditions, and habitats will vary geographically and impact interactions 

Changing Seasons Affect Rural Ecosystems, Environments, and Economies 
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among species. It is likely that some will not adapt. There is high confidence that over the next 
century, some species will decline while other species introduced to the region thrive as condi- 
tions change. There is high confidence that increased precipitation in early spring will negatively 
impact farming, but the response of vegetation to future changes in seasonal temperature and 
moisture conditions depends on plant hardiness for medium confidence in the level of risk to 
specialty crops and forestry. A reduction in the length of the snow season by mid-century is highly 
likely under lower and higher scenarios, with very high confidence that the winter recreation 
industry will be negatively impacted by the end of the century under lower and higher scenarios 
(RCP4.5 and RCP8.5). 

Key Message 2 
 

The Northeast’s coast and ocean support commerce, tourism, and recreation that are important to 
the region’s economy and way of life. Warmer ocean temperatures, sea level rise, and ocean 
acidification (high confidence) threaten these services (likely). The adaptive capacity of marine 
ecosystems and coastal communities will influence ecological and socioeconomic outcomes as 
climate risks increase (high confidence). 

 
Description of evidence base 
Warming rates on the Northeast Shelf have been higher than experienced in other ocean regions,39 

and climate projections indicate that warming in this region will continue to exceed rates expect- 
ed in other ocean regions.48,49 Multiple lines of research have shown that changes in ocean tem- 
peratures and acidification have resulted in distribution,7,8,10 productivity,39,173,191,401 and phenology 
shifts155,158,163,164,166 in marine populations. These shifts have impacted marine fisheries and prompted 
industry adaptations to changes.155,176,200 

Research also shows that sea level rise has been12,46,205,206 and will be higher in the Northeast with 
respect to the rest of the United States12,249,250,251 due largely to vertical land movement,207,208,209 

varying atmospheric shifts and ocean dynamics,210,211,212,213,215,252 and ice mass loss from the polar 
regions.214 High tide flooding has increased216,402 and will continue to increase,403 and storm surges 
due to stronger and more frequent hurricanes50,254,255 have been and will be amplified by sea level 
rise.217,220,221,289 Climate-related coastal impacts on the landscape include greater potential for  
coastal flooding, erosion, overwash, barrier island breaching and disaggregation, and marsh con- 
version to open water,12,216,223,226,256,257,258,259,263,279,404 which will directly affect the ability of ecosystems 
to sustain many of the services they provide. Changes to salt marshes in response to sea level rise 
have already been observed in some coastal settings in the region, although their impacts are site 
specific and variable.265,266,267,268,269,270,271,405 Studies quantifying sea level rise impacts on other types  
of coastal settings (such as beaches) in the region are more limited; however, there is consensus   
on what impacts under higher rates of relative sea level rise might look like due to geologic history 
and modern analogs elsewhere (such as the Louisiana coast).12,226,404 Although probabilistically low, 
worst-case sea level rise projections that account for ice sheet collapse47,406 would result in sea   
level rise rates far beyond the rates at which natural systems are likely able to adapt,274,275,280 affect- 
ing not only ecosystems function and services but also likely substantially changing the coastal 
landscape largely through inundation.223 

Changing Coastal and Ocean Habitats, Ecosystem Services, and Livelihoods 
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Major uncertainties 

Although work to value coastal and marine ecosystems services is still evolving,6,41,281 changes to 
coastal ecosystem services will depend largely on the adaptability of the coastal landscape, direct 
hits from storms, and rate of sea level rise, which have identified uncertainties. Lower sea level 
rise rates are more probable, though the timing of ice sheet collapse407 and the variability of ocean 
dynamics are still not well understood210,211,215 and will dramatically affect the rate of rise.47,406 It 
is also difficult to anticipate how humans will contend with changes along the coast389 and how 
adjacent natural settings will respond. Furthermore, specific tipping points for many coastal 
ecosystems are still not well resolved275,277,280 and vary due to site-specific conditions224,274 

The Northeast Shelf is sensitive to ocean acidification, and many fisheries in the region are depen- 
dent on shell-forming organisms.181,182,186 However, few studies that have investigated the impacts 
of ocean acidification on species biology and ecology used native populations from the region182 

or tested the effects at acidification levels expected over the next 20–40 years.143 Moreover, there 
are limited studies that consider the effects of climate change in conjunction with multiple other 
stressors that affect marine populations.39,40,178,408 Limited understanding of the adaptive capacity 
of species to environmental changes presents major uncertainties in ecosystem responses to 
climate change.143,409 How humans will respond to changes in ecosystems is also not well known, 
yet these decisions will shape how marine industries and coastal communities are affected by 
climate change.45 

Description of confidence and likelihood 

Warming ocean temperatures (high confidence), acidification (high confidence), and sea level rise 
(very high confidence) will alter coastal and ocean ecosystems (likely) and threaten the ecosystems 
services provided by the coasts and oceans (likely) in the Northeast. There is high confidence 
that ocean temperatures have caused shifts in the distribution, productivity, and phenology of 
marine species and very high confidence that high tide flooding and storm surge impacts are   
being amplified by sea level rise. Because much will depend on how humans choose to address or 
adapt to these problems, and as there is considerable uncertainty over the extent to which many 
of these coastal systems will be able to adapt, there is medium confidence in the level of risk to 
traditions and livelihoods. It is likely that under higher scenarios, sea level rise will significantly 
alter the coastal landscape, and rising temperatures and acidification will affect marine popula- 
tions and fisheries. 

Key Message 3 
 

The Northeast’s urban centers and their interconnections are regional and national hubs 
for cultural and economic activity. Major negative impacts on critical infrastructure, urban 
economies, and nationally significant historic sites are already occurring and will become more 
common with a changing climate. (High Confidence) 

Maintaining Urban Areas and Communities and Their Interconnectedness 
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Description of evidence base 
The urban built environment and related supply and management systems are at increased risk of 
disruption from a variety of increasing climate risks. These risks emerge from accelerated sea level 
rise as well as increased frequency of coastal and estuarine flooding, intense precipitation events, 
urban heating and heat waves, and drought. 

Coastal flooding can lead to adverse health consequences, loss of life, and damaged property and 
infrastructure.368 Much of the region’s major industries and cities are located along the coast, with    
88% of the region’s population and 68% of the regional gross domestic product.260 High tide flood-     
ing is also increasingly problematic and costly.47 Rising sea level and amplified storm events can 
increase the magnitude and geographic size of a coastal flood event. The frequency of dangerous 
coastal flooding in the Northeast would more than triple with 2 feet of sea level rise.93  In Boston,        
the areal extent of a 1% (1 in 100 chance of occurring in  any  given  year)  flood  is  expected  to 
increase multifold in many coastal neighborhoods.295 However,  there will likely be notable variabil-   
ity across coastal locations. Using the 2014 U.S. National Climate Assessment’s Intermediate-High 
scenario for sea level rise (a  global rise of 1.2 meters by 2100), the median number of flood events     
per year for the Northeast is projected to increase from 1 event per year experienced today to 5     
events by 2030 and 25 events by 2045, with significant variation within the region.410 

Intense precipitation events can lead to riverine and street-level flooding affecting urban 
environments. Over recent decades, the Northeast has experienced an increase of intense precip- 
itation events, particularly in the spring and fall.411 From 1958 to 2016, the number of heaviest 1% 
precipitation events (that is, an event that has a 1% chance of occurring in any given year) in the 
Northeast has increased by 55%.58 A recent study suggests that this trend began rather abruptly 
after 1996, though uniformly across the region.411 

Urban heating and heat waves threaten the health of the urban population and the integrity of the 
urban landscape. Due to the urban heat island effect, summer surface temperatures across North- 
east cities were an average of 13°F to 16°F (7°C to 9°C) warmer than surrounding rural areas over 
a three-year period, 2003 to 2005.412 This is of concern, as rising temperatures increase heat- and 
pollution-related mortality while also stressing energy demands across the urban environment.413 

However, the degree of urban heat island intensity varies across cities depending on local factors 
such as whether the city is coastal or inland.414 Recent analysis of mortality in major cities of 
the Northeast suggests that the region could experience an additional 2,300 deaths per year by 
2090 from extreme heat under RCP8.5 (compared to an estimated 970 deaths per year under the 
lower scenario, RCP4.5) compared to 1989–2000.29 Another study that considered 1,692 cities 
around the world suggested that without mitigation, total economic costs associated with climate 
change could be 2.6 times higher due to the warmer temperatures in urban versus extra-urban 
environments.415 

 
Changes in temperature and precipitation can have dramatic impacts on urban water supply 
available for municipal and industrial uses. Under a higher scenario (RCP8.5), the Northeast is 
projected to experience cumulative losses of $730 million (discounted at 3% in 2015 dollars) due to 
water supply shortfalls for the period 2015 to 2099.29 Under a lower scenario (RCP4.5), the North- 
east is projected to sustain losses of $510 million (discounted at 3% in 2015 dollars).29 The losses are 
largely projected for the more southern and coastal areas in the region. 
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Major uncertainties 

Projecting changes in urban pollution and air quality under a changing climate is challenging 
given the associated complex chemistry and underlying factors that influence it. For example, fine 
particulates (PM2.5; that is, particles with a diameter of or less than 2.5 micrometers) are affected 
by cloud processes and precipitation, amongst other meteorological processes, leading to consid- 
erable uncertainty in the geographic distribution and overall trend in both modeling analysis and 
the literature.29 Land use can also play an unexpected role, such as planting trees as a mitigation 
option that may lead to increases in volatile organic compounds (VOCs), which, in a VOC-limited 
environment that can exist in some urban areas such as New York City, may increase ozone con- 
centrations (however, it is noted that most of the Northeast region is limited by the availability of 
nitrogen oxides).327 

 
Interdependencies among infrastructure sectors can lead to unexpected and amplified conse- 
quences in response to extreme weather events. However, it is unclear how society may choose 
to invest in the built environment, possibly strengthening urban infrastructure to plausible 
future conditions. 

Description of confidence and likelihood 

There is high confidence that weather-related impacts on urban centers already experienced today 
will become more common under a changing climate. For the Northeast, sea level rise is projected 
to occur at a faster rate than the global average, potentially increasing the impact of moderate and 
severe coastal flooding.47 

 
By the end of the century and under a higher scenario (RCP8.5), Coupled Model Intercomparison 
Project Phase 5 (CMIP5) models suggest that annual average temperatures will increase by more 
than 9°F (16°C) for much of the region (2071–2100 compared to 1976–2005), while precipitation is 
projected to increase, particularly during winter and spring.50 

 
Extreme events that impact urban environments have been observed to increase over much of 
the United States and are projected to continue to intensify. There is high confidence that heavy 
precipitation events have increased in intensity and frequency since 1901, with the largest increase 
in the Northeast, a trend projected to continue.50 There is very high confidence that extreme heat 
events are increasing across most regions worldwide, a trend very likely to continue.50 Extreme 
precipitation from tropical cyclones has not demonstrated a clear observed trend but is expected 
to increase in the future.50,253 Research has suggested that the number of tropical cyclones will 
overall increase with future warming.416 However, this finding is contradicted by results using a 
high-resolution dynamical downscaling study under a lower scenario (RCP4.5), which suggests 
overall reduction in frequency of tropical cyclones but an increase in the occurrence of storms of 
Saffir–Simpson categories 4 and 5.50 
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Key Message 4 

 

 

 

 
Changing climate threatens the health and well-being of people in the Northeast through more 
extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise 
(very high confidence). These environmental changes are expected to lead to health-related 
impacts and costs, including additional deaths, emergency room visits and hospitalizations, 
and a lower quality of life (very high confidence). Health impacts are expected to vary by 
location, age, current health, and other characteristics of individuals and communities (very high 
confidence). 

 
Description of evidence base 
Extreme storms and temperatures, overall warmer temperatures, degradation of air and water 
quality, and sea level rise are all associated with adverse health outcomes from heat,20,21,22,23,305,306,307 

poor air quality,324,325,326 disease-transmitting vectors,67,333,334 contaminated food and water,322,340,341,344 

harmful algal blooms,335 and traumatic stress or health service disruption.17,349 The underlying 
susceptibility of populations determines whether or not there are health impacts from an expo- 
sure and the severity of such impacts.307,308 

Major uncertainties 

Uncertainty remains in projections of the magnitude of future changes in particulate matter, 
humidity, and wildfires and how these changes may influence health risks. For example, 
health effects of future extreme heat may be exacerbated by future changes in absolute or 
relative humidity. 

Health impacts are ultimately determined by not just the environmental hazard but also the 
amount of exposure, size and underlying susceptibility of the exposed population, and other 
factors such as health insurance coverage and access to timely healthcare services. In project- 
ing future health risks, researchers acknowledge these challenges and use different analytic 
approaches to address this uncertainty or note it as a limitation.23,28,326 

In addition, there is a paucity of literature that considers the joint or cumulative impacts on 
health of multiple climatic hazards. Additional areas where the literature base is limited include 
specific health impacts related to different types of climate-related migration, the impact of 
climatic factors on mental health, and the specific timing and geographic range of shifting dis- 
ease-carrying vectors. 

Description of confidence and likelihood 

There is very high confidence that extreme weather, warmer temperatures, degradation of air and 
water quality, and sea level rise threaten the health and well-being of people in the Northeast. 
There is very high confidence that these climate-related environmental changes will lead to addi- 
tional adverse health-related impacts and costs, including premature deaths, more emergency 
department visits and hospitalizations, and lower quality of life. There is very high confidence that 
climate-related health impacts will vary by location, age, current health, and other characteristics 
of individuals and communities. 

Threats to Human Health 
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Communities in the Northeast are proactively planning (high confidence) and implementing 
(medium confidence) actions to reduce risks posed by climate change. Using decision support 
tools to develop and apply adaptation strategies informs both the value of adopting solutions 
and the remaining challenges (high confidence). Experience since the last assessment provides a 
foundation to advance future adaptation efforts (high confidence). 

 
Description of evidence base 
Reports on climate adaptation and resilience planning have been published by city, state, and 
tribal governments and by regional and federal agencies in the Northeast. Examples include the 
Interstate Commission on the Potomac River Basin (for the Washington, DC, metropolitan area),304 

Boston,295 the Port Authority of New York and New Jersey,357 the St. Regis Mohawk Tribe,360 the 
U.S. Army Corps of Engineers,368 the State of Maine,381 and southeastern Connecticut.417 Structured 
decision-making is being applied to design management plans, determine research needs, and 
allocate resources365 to preserve habitat and resources throughout the region.151,366,367 

Major uncertainties 

The percentage of communities in the Northeast that are planning for climate adaptation and 
resilience and the percentage of those using decision support tools are not known. More case 
studies would be needed to evaluate the effectiveness of adaptation actions. 

Description of confidence and likelihood 

There is high confidence that there are communities in the Northeast undertaking planning efforts 
to reduce risks posed from climate change and medium confidence that they are implementing 
climate adaptation. There is high confidence that decision support tools are informative and  
medium confidence that these communities are using decision support tools to find solutions for 
adaptation that are workable. There is high confidence that early adoption is occurring in some 
communities and that this provides a foundation for future efforts. This Key Message does not 
address trends into the future, and therefore likelihood is not applicable. 

Adaptation to Climate Change Is Underway 
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Key Message 1 Red mangrove in Titusville, Florida 
 

 
Many southeastern cities are particularly vulnerable to climate change compared to 
cities in other regions, with expected impacts to infrastructure and human health. The 
vibrancy and viability of these metropolitan areas, including the people and critical 
regional resources located in them, are increasingly at risk due to heat, flooding, and 
vector-borne disease brought about by a changing climate. Many of these urban areas 
are rapidly growing and offer opportunities to adopt effective adaptation efforts to 
prevent future negative impacts of climate change. 

 
Key Message 2 

 

The Southeast’s coastal plain and inland low-lying regions support a rapidly growing 
population, a tourism economy, critical industries, and important cultural resources that 
are highly vulnerable to climate change impacts. The combined effects of changing 
extreme rainfall events and sea level rise are already increasing flood frequencies, which 
impacts property values and infrastructure viability, particularly in coastal cities. Without 
significant adaptation measures, these regions are projected to experience daily high 
tide flooding by the end of the century. 

Urban Infrastructure and Health Risks 

Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 
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Increasing Flood Risks in Coastal and Low-Lying Regions 
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Key Message 3 
 

The Southeast’s diverse natural systems, which provide many benefits to society, will 
be transformed by climate change. Changing winter temperature extremes, wildfire 
patterns, sea levels, hurricanes, floods, droughts, and warming ocean temperatures 
are expected to redistribute species and greatly modify ecosystems. As a result, the 
ecological resources that people depend on for livelihood, protection, and well-being 
are increasingly at risk, and future generations can expect to experience and interact 
with natural systems that are much different than those that we see today. 

Key Message 4 
 

Rural communities are integral to the Southeast’s cultural heritage and to the strong 
agricultural and forest products industries across the region. More frequent extreme 
heat episodes and changing seasonal climates are projected to increase exposure- 
linked health impacts and economic vulnerabilities in the agricultural, timber, and 
manufacturing sectors. By the end of the century, over one-half billion labor hours could 
be lost from extreme heat-related impacts. Such changes would negatively impact the 
region’s labor-intensive agricultural industry and compound existing social stresses in 
rural areas related to limited local community capabilities and associated with rural 
demography, occupations, earnings, literacy, and poverty incidence. Reduction of 
existing stresses can increase resilience. 

 
Executive Summary 

 

The Southeast 
includes vast 
expanses of coastal 
and inland low-lying 
areas, the southern 
portion of the Appa- 
lachian Mountains, 
numerous high- 
growth metropolitan 
areas, and large rural 
expanses. These 

beaches and bayous, fields and forests, and 
cities and small towns are all at risk from a 
changing climate. While some climate change 
impacts, such as sea level rise and extreme 
downpours, are being acutely felt now, others, 
like increasing exposure to dangerous high 

temperatures, humidity, and new local diseas- 
es, are expected to become more significant  
in the coming decades. While all regional 
residents and communities are potentially at 
risk for some impacts, some communities or 
populations are at greater risk due to their 
locations, services available to them, and 
economic situations. 

 
Observed warming since the mid-20th century 
has been uneven in the Southeast region, with 
average daily minimum temperatures increasing 
three times faster than average daily maximum 
temperatures. The number of extreme rainfall 
events is increasing. Climate model simulations 
of future conditions project increases in both 
temperature and extreme precipitation. 

Natural Ecosystems Will Be Transformed 

Economic and Health Risks for Rural Communities 
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Trends towards a more urbanized and denser 
Southeast are expected to continue, creating 
new climate vulnerabilities. Cities across the 
Southeast are experiencing more and longer 
summer heat waves. Vector-borne diseases 
pose a greater risk in cities than in rural areas 
because of higher population densities and 
other human factors, and the major urban 
centers in the Southeast are already impacted 
by poor air quality during warmer months. 
Increasing precipitation and extreme weather 
events will likely impact roads, freight rail, and 
passenger rail, which will likely have cascading 
effects across the region. Infrastructure related 
to drinking water and wastewater treatment 
also has the potential to be compromised by 
climate-related events. Increases in extreme 
rainfall events and high tide coastal floods 
due to future climate change will impact the 
quality of life of permanent residents as well 
as tourists visiting the low-lying and coastal 
regions of the Southeast. Sea level rise is 
contributing to increased coastal flooding in 
the Southeast, and high tide flooding already 
poses daily risks to businesses, neighborhoods, 
infrastructure, transportation, and ecosystems 
in the region.1,2 There have been numerous 
instances of intense rainfall events that have 
had devastating impacts on inland communi- 
ties in recent years. 

 
The ecological resources that people depend 
on for livelihoods, protection, and well-being 
are increasingly at risk from the impacts of 
climate change. Sea level rise will result in the 
rapid conversion of coastal, terrestrial, and 
freshwater ecosystems to tidal saline habitats. 
Reductions in the frequency and intensity of 
cold winter temperature extremes are already 
allowing tropical and subtropical species to 

move northward and replace more temperate 
species. Warmer winter temperatures are also 
expected to facilitate the northward movement 
of problematic invasive species, which could 
transform natural systems north of their 
current distribution. In the future, rising tem- 
peratures and increases in the duration and 
intensity of drought are expected to increase 
wildfire occurrence and also reduce the effec- 
tiveness of prescribed fire practices.3,4,5,6 

 
Many in rural communities are maintaining 
connections to traditional livelihoods and 
relying on natural resources that are inherently 
vulnerable to climate changes. Climate trends 
and possible climate futures show patterns  
that are already impacting—and are projected 
to further impact—rural sectors, from agricul- 
ture and forestry to human health and labor 
productivity. Future temperature increases 
are projected to pose challenges to human 
health. Increases in  temperatures,  water 
stress, freeze-free days, drought, and wildfire 
risks, together with changing conditions for 
invasive species and the movement of diseases, 
create a number of potential risks for existing 
agricultural systems.7 Rural communities tend 
to be more vulnerable to these changes due 
to factors such as demography, occupations, 
earnings, literacy, and poverty incidence.8,9,10 

In fact, a recent economic study using a higher 
scenario (RCP8.5)11 suggests that the southern 
and midwestern populations are likely to suffer 
the largest losses from future climate changes 
in the United States. Climate change tends to 
compound existing vulnerabilities and exacer- 
bate existing inequities. Already poor regions, 
including those found in the Southeast, are 
expected to continue incurring greater losses 
than elsewhere in the United States. 
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Historical Changes in Hot Days and Warm Nights 
 

Sixty-one percent of major Southeast cities are exhibiting some aspects of worsening heat waves, which is a higher percentage 
than any other region of the country.12 Hot days and warm nights together impact human comfort and health and result in the 
need for increased cooling efforts. Agriculture is also impacted by a lack of nighttime cooling. Variability and change in (top)  
the annual number of hot days and (bottom) warm nights are shown. The bar charts show averages over the region by decade 
for 1900–2016, while the maps show the trends for 1950–2016 for individual weather stations. Average summer temperatures 
during the most recent 10 years have been the warmest on record, with very large increases in nighttime temperatures and 
more modest increases in daytime temperatures, as indicated by contrasting changes in hot days and warm nights. (top left) The 
annual number of hot days (maximum temperature above 95°F) has been lower since 1960 than the average during the first half 
of the 20th century; (top right) trends in hot days since 1950 are generally downward except along the south Atlantic coast and in 
Florida due to high numbers during the 1950s but have been slightly upward since 1960, following a gradual increase in average 
daytime maximum temperatures during that time. (bottom left) Conversely, the number of warm nights (minimum temperature 
above 75°F) has doubled on average compared to the first half of the 20th century and (bottom right) locally has increased at 
most stations. From Figure 19.1 (Sources: NOAA NCEI and CICS-NC). 



19 | Southeast 

739 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 

Historical Change in Heavy Precipitation 
 

The figure shows variability and change in (left) the annual number of days with precipitation greater than 3 inches (1900–2016) 
averaged over the Southeast by decade and (right) individual station trends (1950–2016). The number of days with heavy precipitation 
has increased at most stations, particularly since the 1980s. From Figure 19.3 (Sources: NOAA NCEI and CICS-NC) 
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Background 

Throughout the southeastern United  States, 
the impacts of sea level rise, increasing tem- 
peratures, extreme heat events, heavy precipi- 
tation, and decreased water availability contin- 
ue to have numerous consequences for human 
health, the built environment, and the natural 
world. This assessment builds on the above 
concerns described in the Third National Cli- 
mate Assessment (NCA3) and includes impacts 
to urban and rural landscapes as well as natural 
systems. The impacts from these changes are 
becoming visible as 1) flooding increases stress 
on infrastructure, ecosystems, and populations; 
2) warming temperatures affect human health 
and bring about temporal and geographic shifts 
in the natural environment and landscapes; and 
3) wildfires and growing wildfire risk create 
challenges for natural resource managers and 
impacted communities. 

 
The Southeast includes vast expanses of coast- 
al and inland low-lying areas, the southern (and 
highest) portion of the Appalachian Mountains, 
numerous high-growth metropolitan areas, 
and large rural expanses. Embedded in these 
land- and seascapes is a rich cultural history 
developed over generations by the many com- 
munities that call this region home. However, 
these beaches and bayous, fields and forests, 
and cities and small towns are all at risk from a 
changing climate. These risks vary in type and 
magnitude from place to place, and while some 
climate change impacts, such as sea level rise 
and extreme downpours, are being acutely felt 
now, others, like increasing exposure to dan- 
gerously high temperatures—often accompa- 
nied by high humidity—and new local diseases, 
are expected to become more significant in the 
coming decades. While all regional residents 
and communities are potentially at risk for 
some impacts, some communities or popula- 
tions are at greater risk due to their locations, 
services available, and economic situations. In 

fact, a recent economic study using a higher 
scenario (RCP8.5)11 suggests that the southern 
and midwestern populations are likely to 
suffer the largest losses from projected climate 
changes in the United States. According to the 
article, “[b]ecause losses are largest in regions 
that are already poorer on average, climate 
change tends to increase preexisting inequality 
in the United States.”11 Understanding the 
demographic and socioeconomic composition 
of racial and ethnic groups in the region is 
important, because these characteristics are 
associated with health risk factors, disease 
prevalence, and access to care, which in turn 
may influence the degree of impact from 
climate-related threats. 

 
Historical Climate and Possible Future 
Climates 
The Southeast region experienced high annual 
average temperatures in the 1920s and 1930s, 
followed by cooler temperatures until the 
1970s. Since then, annual average temperatures 
have warmed to levels above the 1930s; the 
decade of the 2010s through 2017 has been 
warmer than any previous decade (App 5: FAQs, 
Figure A5.14), both for average daily maximum 
and average daily minimum temperature. 
Seasonal warming has varied. The decade of 
the 2010s through 2017 is the warmest in all 
seasons for average daily minimum tempera- 
ture and in winter and spring for average daily 
maximum temperature. However, for average 
daily maximum temperature, the summers of 
the 1930s and 1950s and the falls of the 1930s 
were warmer on average. The southeastern 
United States is one of the few regions in 
the world that has experienced little overall 
warming of daily maximum temperatures 
since 1900. The reasons for this have been the 
subject of much research, and hypothesized 
causes include both human and natural 
influences.13,14,15,16,17 However, since the early 
1960s, the Southeast has been warming at a 
similar rate as the rest of the United States (Ch. 



19 | Southeast 

741 U.S. Global Change Research Program Fourth National Climate Assessment 

 

 

 

2: Climate, Figure 2.4). During the 2010s, the 
number of nights with minimum temperatures 
greater than 75°F was nearly double the long- 
term average for 1901–1960 (Figure 19.1), while 
the length of the freeze-free season was nearly 
1.5 weeks greater than any other period in the 
historical record (Figure 19.2). These increases 
were widespread across the region and can 
have important effects on both humans and the 

natural environment.18 By contrast, the number 
of days above 95°F has been lower since 1960 
compared to the pre-1960 period, with the 
highest numbers occurring in the 1930s and 
1950s, both periods of severe drought (Figure 
19.1). The differing trends in hot days and 
warm nights reflect the seasonal differences 
in average daily maximum and average daily 
minimum temperature trends. 

Historical Changes in Hot Days and Warm Nights 
 

Figure 19.1: Sixty-one percent of major Southeast cities are exhibiting some aspects of worsening heat waves, which is a 
higher percentage than any other region of the country.12 Hot days and warm nights together impact human comfort and health 
and result in the need for increased cooling efforts. Agriculture is also impacted by a lack of nighttime cooling. Variability and 
change in (top) the annual number of hot days and (bottom) warm nights are shown. The bar charts show averages over the 
region by decade for 1900–2016, while the maps show the trends for 1950–2016 for individual weather stations. Average 
summer temperatures during the most recent 10 years have been the warmest on record, with very large increases in nighttime 
temperatures and more modest increases in daytime temperatures, as indicated by contrasting changes in hot days and warm 
nights. (top left) The annual number of hot days (maximum temperature above 95°F) has been lower since 1960 than the 
average during the first half of the 20th century; (top right) trends in hot days since 1950 are generally downward except along 
the south Atlantic coast and in Florida due to high numbers during the 1950s but have been slightly upward since 1960, following 
a gradual increase in average daytime maximum temperatures during that time. (bottom left) Conversely, the number of warm 
nights (minimum temperature above 75°F) has doubled on average compared to the first half of the 20th century and (bottom 
right) locally has increased at most stations. Sources: NOAA NCEI and CICS-NC. 
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Historical Change in Freeze-Free Season Length 
 

Figure 19.2: The figure shows the variability and change in the length of the freeze-free season. (left) The bar chart shows 
differences in the length of the freeze-free season by decade (1900–2016) as compared to the long-term average for the 
Southeast. (right) The map shows trends over 1950–2016 for individual weather stations. The length of the freeze-free season 
has increased at most stations, particularly since the 1980s. Sources: NOAA NCEI and CICS-NC. 

 

Historical Change in Heavy Precipitation 

Figure 19.3: The figure shows variability and change in (left) the annual number of days with precipitation greater than 3 inches 
(1900–2016) averaged over the Southeast by decade and (right) individual station trends (1950–2016). The numbers of days 
with heavy precipitation has increased at most stations, particularly since the 1980s. Sources: NOAA NCEI and CICS-NC. 

 
The number of extreme rainfall events is increas- 
ing. For example, the number of days with 3 or 
more inches of precipitation has been historically 
high over the past 25 years, with the 1990s, 2000s, 
and 2010s ranking as the decades with the 1st, 
3rd, and 2nd highest number of events, respec- 
tively (Figure 19.3). More than 70% of precipitation 
recording locations show upward trends since 
1950, although there are downward trends at 
many stations along and southeast of the Appala- 
chian Mountains and in Florida (Figure 19.3). 

Climate model simulations of future conditions 
project increases in temperature and extreme 
precipitation for both lower and higher sce- 
narios (RCP4.5 and RCP8.5; see Figure 19.5).13,19 

After the middle of the 21st century, however, 
the projected increases are lower for the lower 
scenario (RCP4.5). Much larger changes are 
simulated by the late 21st century under the 
higher scenario (RCP8.5), which most closely 
tracks with our current consumption of fossil 
fuels. Under the higher scenario, nighttime 
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minimum temperatures above 75°F and 
daytime maximum temperatures above 95°F 
become the summer norm and nights above 
80°F and days above 100°F, now relatively 
rare occurrences, become commonplace. 
Cooling degree days (a measure of the need 
for air conditioning [cooling] based on daily 
average temperatures rising above a standard 
temperature—often 65°F) nearly double, while 
heating degree days (a measure of the need for 
heating) decrease by over a third (Figure 19.22). 
The freeze-free season lengthens by  more than 
a month, and the frequency of freezing 
temperatures decreases substantially.20,21 

Key Message 1 
 

Many southeastern cities are particularly 
vulnerable to climate change compared 
to cities in other regions, with expected 
impacts to infrastructure and human 
health. The vibrancy and viability of these 
metropolitan areas, including the people 
and critical regional resources located 
in them, are increasingly at risk due to 
heat, flooding, and vector-borne disease 
brought about by a changing climate. 
Many of these urban areas are rapidly 
growing and offer opportunities to adopt 
effective adaptation efforts to prevent fu- 
ture negative impacts of climate change. 

Rapid Population Shifts and Climate Impacts 
on Urban Areas 
While the Southeast is historically known for 
having a rural nature, a drastic shift toward a 
more urbanized region is underway. The South- 
east contains many of the fastest-growing urban 
areas in the country, including a dozen of the top 
20 fastest-growing metropolitan areas (by per- 
centage) in 2016.22 Metropolitan Atlanta has been 
swiftly growing, adding 69,200 residents in just 
one year.23 At the same time, many rural counties 
in the South are losing population.24 These trends 
towards a more urbanized and dense Southeast 
are expected to continue, creating new climate 
vulnerabilities but also opportunities to adapt as 
capacity and resources increase in cities (Ch. 17: 
Complex Systems). In particular, coastal cities 
in the Southeast face multiple climate risks, and 
many planning efforts are underway in these 
cities. Adaptation, mitigation, and planning efforts 
are emphasizing “co-benefits” (positive benefits 
related to the reduction of greenhouse gases or 
implementation of adaptation efforts) to help 
boost the economy while protecting people and 
infrastructure. 

 
Increasing Heat 
Cities across the Southeast are experiencing 
more and longer summer heat waves. Nation- 
ally, there are only five large cities that have 
increasing trends exceeding the national 
average for all aspects of heat waves (timing, 
frequency, intensity, and duration), and three 
of these cities are in the Southeast region— 
Birmingham, New Orleans, and Raleigh. 
Sixty-one percent of major Southeast cities 
are exhibiting some aspects of worsening 
heat waves, which is a higher percentage than 
any other region of the country.12 The urban 
heat island effect (cities that are warmer than 
surrounding rural areas, especially at night) 
adds to the impact of heat waves in cities (Ch. 
5: Land Changes, KM 1). Southeastern cities 
including Memphis and Raleigh have a particu- 
larly high future heat risk.25 

Urban Infrastructure and 
Health Risks 
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The number of days with high minimum 
temperatures (nighttime temperatures that 
stay above 75ºF) has been increasing across 
the Southeast (Figure 19.1), and this trend is 
projected to intensify, with some areas experi- 
encing more than 100 additional warm nights 
per year by the end of the century (Figures 
19.4 and 19.5). Exposure to high nighttime 
minimum temperatures reduces the ability 
of some people to recover from high daytime 
temperatures, resulting in heat-related illness 

and death.26 This effect is particularly pro- 
nounced in cities, many of which have urban 
heat islands that already cause elevated night- 
time temperatures.27 Cities are taking steps 
to prevent negative health impacts from heat. 
For example, the Louisville, Kentucky, metro 
government conducted an urban heat manage- 
ment study and installed 145,000 square feet of 
cool roofs as part of their goal to lessen the risk 
of climate change impacts.28 

 
 

Historical Number of Warm Nights 
 

Figure 19.4: The map shows the historical number of warm nights (days with minimum temperatures above 75°F) per year in the 
Southeast, based on model simulations averaged over the period 1976–2005. Sources: NOAA NCEI and CICS-NC. 
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Projected Number of Warm Nights 
 

Figure 19.5: The maps show the projected number of warm nights (days with minimum temperatures above 75°F) per year in 
the Southeast for the mid-21st century (left; 2036–2065) and the late 21st century (right; 2070–2099) under a higher scenario 
(RCP8.5; top row) and a lower scenario (RCP4.5; bottom row). These warm nights currently occur only a few times per year 
across most of the region (Figure 19.4) but are expected to become common events across much of the Southeast under a 
higher scenario. Increases in the number of warm nights adversely affect agriculture and reduce the ability of some people to 
recover from high daytime temperatures. With more heat waves expected, there will likely be a higher risk for more heat-related 
illness and deaths. Sources: NOAA NCEI and CICS-NC. 

Vector-Borne Disease 
The transmission of vector-borne diseases, 
which are spread by the bite of an animal such 
as a mosquito or tick, is complex and depends 
on a number of factors, including weather and 
climate, vegetation, animal host populations, 
and human activities (Ch. 14: Human Health, 
KM 1). Climate change is likely to modify the 
seasonality, distribution, and prevalence of 
vector-borne diseases in the Southeast.29 

Vector-borne diseases pose a greater risk in 
cities than in rural areas because of higher 
population densities and other human factors 
(for example, pools of standing water in man- 
made structures, such as tires or buckets, are 

breeding grounds for some species of mosqui- 
toes). Climatic conditions are currently suitable 
for adult mosquitoes of the species Aedes 
aegypti, which can spread dengue, chikungun- 
ya, and Zika viruses, across most of the South- 
east from July through September (Figure 19.6), 
and cities in South Florida already have suitable 
conditions for year-round mosquito activity. 
The Southeast is the region of the country with 
the most favorable conditions for this mosquito 
and thus faces the greatest threat from diseas- 
es the mosquito carries.30 Climate change is 
expected to make conditions more suitable for 
transmission of certain vector-borne diseases, 
including year-round transmission in southern 
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Florida. Summer increases in dengue cases are 
expected across every state in the Southeast. 
Despite warming, low winter temperatures 
may prevent permanent year-round establish- 
ment of the virus across the region.31 Strategies 
such as management of urban wetlands have 
resulted in lower dengue fever risk in Puerto 
Rico.32 Similar adaptation strategies have the 
potential to limit vector-borne disease in 
southeastern cities, particularly those cities 
with characteristics similar to Caribbean cities 
that have already implemented vector control 
strategies (Ch. 20: U.S. Caribbean).33,34 The 
Southeast is also the region with the greatest 
projected increase in cases of West Nile neuro- 
invasive disease under both a lower and higher 
scenario (RCP4.5 and RCP8.5).35,36 

 
Air Quality and Human Health 
Poor air quality directly impacts human health, 
resulting in respiratory disease and other 
ailments. In the Southeast, poor air quality can 
result from emissions (mostly from vehicles 
and power plants), wildfires, and allergens 
such as pollen. The major urban centers in the 
Southeast are already impacted by poor air 
quality during warmer months. The Southeast 
has more days with stagnant air masses 
than other regions of the country (40% of 
summer days) and higher levels of fine (small) 
particulate matter (PM2.5), which cause heart 
and lung disease.37 There is mixed evidence on 
the future health impacts of these pollutants. 
Ozone concentrations would be expected to 
increase under higher temperatures; however, 
a variety of factors complicate projections (Ch. 
13: Air Quality, KM 1). There are many possible 
future wind and cloud cover conditions for the 
Southeast as well as the potential for continued 
shifts in land-use patterns, demographics and 
population geography, and vehicle and power 
plant emissions standards. Increases in pre- 
cipitation and shifts in wind trajectories may 
reduce future health impacts of ground level 
ozone in the Southeast,35 but warmer and drier 

Potential Abundance of 
Disease-Carrying Mosquito 

 

Figure 19.6: The map shows current suitability for the Aedes 
aegypti mosquito in July in 50 different cities. Aedes aegypti 
mosquitoes can spread several important diseases, including 
dengue fever, chikungunya, and Zika fever. The Southeast is 
the region of the country with the greatest potential mosquito 
activity. Warming temperatures have the potential to expand 
mosquito habitat and disease risk. Source: adapted from 
Monaghan et al. 2016.30 

 

autumns are expected to result in a lengthen- 
ing of the period of ozone exposure.38 Warmer 
August temperatures in the Southeast from 
1988 to 2011 were associated with increased 
human sensitivity to ground-level ozone.39 

 
The fast growth rate of urban areas in the 
Southeast contributes to aeroallergens, which 
are known to cause and exacerbate respiratory 
diseases such as asthma. Urban areas have 
higher concentrations of CO2, which causes 
allergenic plants, such as ragweed, to grow 
faster and produce more pollen than in rural 
areas.40 Continued rising temperatures and 
atmospheric CO2 levels are projected to further 
contribute to aeroallergens in cities (Ch. 13: Air 
Quality, KM 3). 
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Infrastructure 
Infrastructure, particularly roads, bridges, 
coastal properties, and urban drainage, is 
vulnerable to climate change and climate- 
related events (see Key Message 2) (see also 
Ch. 3: Water, KM 2; Ch. 11: Urban, KM 2; Ch. 
12: Transportation, KM 1).41 By 2050, the 
Southeast is the region expected to have the 
most vulnerable bridges.35 An extreme weather 
vulnerability assessment conducted by the 
Tennessee Department of Transportation 
found that the urban areas of Memphis and 
Nashville had the most at-risk transportation 
infrastructure in the state.42 Increasing precip- 
itation and extreme weather events will likely 
impact roads, freight rail, and passenger rail, 
especially in Memphis, which will likely have 
cascading effects across the region.43 Transit 
infrastructure, such as the rail lines of the 
Metropolitan Atlanta Rapid Transit Authority 
(MARTA), are also at risk. As a result, MARTA 
has begun to identify vulnerable assets and 
prioritize improvements to develop a more 
resilient system.44 

 
Many cities across the Southeast  are  planning 
for the impacts sea level rise is likely to have on 
their infrastructure (see Case Study  “Charles- 
ton, South Carolina, Begins Planning and 
Reinvesting” and Key Message 2). Flood events  
in Charleston, South Carolina, have been 
increasing, and by 2045 the city is projected to 
face nearly 180 tidal floods (flooding in coastal 
areas at high tide) per year, as compared to 11 
floods per year in 2014.45 These floods affect 
tourism, transportation, and the economy as a 
whole. The city has responded by making phys- 
ical modifications, developing a more robust 
disaster response plan, and improving planning 
and monitoring prior to flood events. 

Infrastructure related to drinking water 
treatment and wastewater treatment may be 
compromised by climate-related events (Ch. 
3: Water, KM 2). Water utilities across the 
Southeast are preparing for these impacts. 
Tampa Bay Water, the largest wholesale 
water utility in the Southeast, is coordinating 
with groups including the Florida Water and 
Climate Alliance to study the impact of climate 
change on its ability to provide clean water 
in the future.46,47 Spartanburg Water, in South 
Carolina, is reinforcing the ability of the utility 
to “cope with, and recover from disruption, 
trends and variability in order to maintain 
services.”48 Similarly, the Seminole Tribe of 
Florida, which provides drinking and waste- 
water services, assessed flooding and sea level 
rise threats to their water infrastructure and 
developed potential adaptation measures.49 The 
development of “green” water infrastructure 
(using natural hydrologic features to manage 
water and provide environmental and commu- 
nity benefits), such as the strategies promoted 
in the City of Atlanta Climate Action Plan, is 
one way to adapt to future water management 
needs. Implementation of these strategies has 
already resulted in a reduction in water con- 
sumption in the city of Atlanta, relieving strain 
on the water utility and increasing resilience.50 

 
There are still gaps in knowledge regarding 
the potential effects of climate change on 
cities across the Southeast. Cross-disciplinary 
groups such as the Georgia Climate Project 
(http://www.georgiaclimateproject.org) are 
developing research roadmaps that can help to 
prioritize research and action with relevance 
to policymakers, practitioners, and scientists. 

http://www.georgiaclimateproject.org/
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Key Message 2 
 
 

The Southeast’s coastal plain and in- 
land low-lying regions support a rapidly 
growing population, a tourism economy, 
critical industries, and important cultural 
resources that are highly vulnerable to 
climate change impacts. The combined 
effects of changing extreme rainfall 
events and sea level rise are already 
increasing flood frequencies, which im- 
pacts property values and infrastructure 
viability, particularly in coastal cities. 
Without significant adaptation measures, 
these regions are projected to experi- 
ence daily high tide flooding by the end 
of the century. 

Sea Level Rise Is Contributing to Increased 
Coastal Flooding in the Southeast 
Average global sea level (or global mean sea 
level; GMSL) has risen about 8–9 inches since 
1880, with about 3 inches of that rise occurring 
since 1990.51,52 This recent increase in the rate  
of rise is projected to accelerate in the future 
due to continuing temperature increases and 
additional melting of land ice.51 This recent 
global rate increase, combined with the local 
effects of vertical land motion (sinking) and 
oceanographic effects such as changing 
ocean currents, has caused some areas in the 
Southeast to experience even  higher  local 
rates of sea level rise than the global aver- 
age.53,54,55,56,57,58,59 Analyses at National Oceanic 
and Atmospheric Administration (NOAA) tide 
gauges show as much as 1 to 3 feet of local 
relative sea level rise in the past 100 years 
in low-lying areas of the Southeast.54,59 This 
recent rise in local relative sea level has caused 
normal high tides to reach critical levels 
that result in flooding in many coastal areas 
in the region. 

Monthly and seasonal fluctuations in high tide 
levels are caused by a combination of astro- 
nomical factors (sun and moon gravitational 
attraction) and non-astronomical factors such 
as geomorphology (landscape of the area), as 
well as meteorological (weather) conditions. 
The highest tides of the year are generally  
the perigean, or spring, tides, which occur 
when the moon is full or new and is closest to 
the Earth. These perigean tides, also known 
as “king tides,” occur twice a year and in 
many cities are causing what has been called 
“nuisance” or “recurrent” flooding (referred to 
herein as high tide flooding). These floods can 
cause problems ranging from inconvenient to 
life changing. While the challenges brought on 
by rising perigean tides are diverse, important 
examples include increasingly frequent road 
closures, excessive water in storm water 
management systems, and deterioration of 
infrastructure such as roads and rail from salt- 
water. NOAA’s National Weather Service (NWS) 
issues coastal flood advisories and warnings 
when water levels at tide gauges are expected 
to exceed flood thresholds. These thresholds 
correspond to discrete water levels relative to 
NOAA tide gauges. 

 
Recent analyses of historical water levels at 
many NOAA tide gauges has shown an increase 
in the number of times that these warning 
thresholds were exceeded compared to the 
past. Annual occurrences of high tide coastal 
flooding have increased 5- to 10-fold since 
the 1960s in several low-lying coastal cities 
in the Southeast (Figure 19.7).51,60 In 2015, 
several Southeast coastal cities experienced 
all-time records of coastal flooding occur- 
rences, including Wilmington, NC (90 days), 
Charleston, SC (38 days), Mayport, FL (19 days), 
Miami, FL (18 days), Key West, FL (14 days), and 
Fernandina Beach, FL (7 days). These flooding 
occurrences increased more than 50% in 2015 
compared to 2014.58 In 2016, three all-time 
records were either tied (14 days at Key West, 

Increasing Flood Risks in Coastal 
and Low-Lying Regions 
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FL) or broken (50 days at Charleston, SC, and 
38 days at Savannah, GA). The Miami area 
nearly matched the 2015 record of 18 days.61 

This increase in high tide flooding frequency 
is directly tied to sea level rise. For example, 
in Norfolk, Virginia, local relative sea level rise 
has led to a fourfold increase in the probability 
of exceeding NWS thresholds compared to 
the 1960s (Figure 19.8). High tide flooding is 
now posing daily risks to businesses, neigh- 
borhoods, infrastructure, transportation, and 
ecosystems in the Southeast.1,2 

 
Global sea level is very likely to rise by 0.3–0.6 
feet by 2030, 0.5–1.2 feet by 2050,  and  1.0–4.3 
feet by 2100 under a range of scenarios  from 
very low (RCP2.6) to high (RCP8.5),51,52,62 which 
would result in increases in both the depth and 
frequency of coastal flooding (Figure 19.7).51 

Under higher emissions scenarios (RCP8.5), 
global sea level rise exceeding 8 feet (and even 
higher in the Southeast) by  2100  cannot  be 
ruled out.51 By 2050, many Southeast cities are 
projected to experience more than 30 days of 
high tide flooding regardless of scenario.63 In 
addition, more  extreme  coastal  flood  events 
are also projected to increase in frequency 
and duration.60 For example, water levels that 
currently have a 1% chance of occurring each 
year (known as a 100-year event) will be more 
frequent with sea level rise. This increase 
in flood frequency suggests the need to 
consider revising flood study techniques and 
standards that are currently used to design and 
build coastal infrastructure. 

 
Higher sea levels will cause the storm surges 
from tropical storms to travel farther inland 
than in the past, impacting more coastal 
properties. The combined impacts of sea level 
rise and storm surge in the Southeast have the 

potential to cost up to $60 billion each year 
in 2050 and up to $99 billion in 2090 under a 
higher scenario (RCP8.5).35 Even under a lower 
scenario (RCP4.5), projected damages are $56 
and $79 billion in 2050 and 2090, respectively 
(in 2015 dollars, undiscounted).35 Florida alone 
is estimated to have a 1-in-20 chance of having 
more than $346 billion (in 2011 dollars) in 
property value (8.7%) below average sea level 
by 2100 under a higher scenario (RCP8.5).64 

An assessment by the Florida Department of 
Health determined that 590,000 people in 
South Florida face “extreme” or “high” risk from 
sea level rise, with 125,000 people living in 
these areas identified as socially vulnerable and 
55,000 classified as medically vulnerable.65 In 
addition to causing direct injury, storm surge 
and related flooding can impact transportation 
infrastructure by blocking or flooding roads 
and affecting access to healthcare facilities (Ch. 
12: Transportation, KM 1). Marine transporta- 
tion can be impacted as well. Large ports in 
the Southeast, such as Charleston, Savannah, 
and Jacksonville, and the rails and roads that 
link to them, are particularly vulnerable to 
both coastal flooding and sea level rise (Ch. 
12: Transportation, KM 1; Ch. 8: Coastal, KM 1). 
The Port of Jacksonville provides raw material 
for industries, food, clothes, and essential 
goods to Puerto Rico, thus impacting the U.S. 
Caribbean region, as well (Ch. 20: U.S. Carib- 
bean, KM 3). It is estimated that with a meter 
(about 3.3 feet) of sea level rise, the Southeast 
would lose over 13,000 recorded historic and 
prehistoric archaeological sites and more than 
1,000 locations currently eligible for inclusion 
on the National Register of Historic Places.66 

This includes many historic buildings and 
forts in cities like Charleston, Savannah, and 
St. Augustine. 
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Annual Number of High Tide Flooding Days 
 

Figure 19.7: The figure shows the annual number of days experiencing high tide floods based on observations for 1960–2016 
for Fort Pulaski, near Savannah, Georgia (black), and projected increases in the number of annual flood events based on four 
future scenarios: a continuation of the current relative sea level trend (gray) and the Intermediate-Low (dark blue), Intermediate 
(light blue), and Extreme (red) sea level rise scenarios. See Sweet et al. (2017)51 and Appendix 3: Data & Scenarios for additional 
information on projection and trend data. Source: adapted from Sweet and Park 2014.63 

 
 
 

Range of Daily Highest Water Levels in Norfolk, Virginia 
 

Figure 19.8: The curves in this figure show a range of daily Mean Higher High Water (MHHW) levels in Norfolk, Virginia (Sewells 
Point), for the 1960s and 2010s. Local sea level rise has shifted the curve closer to the point where high tide flooding begins 
(based on warning thresholds established by the National Weather Service). This shows why many more high tide flood events 
occur now than they did in the past (increase of 6 flood days per year). Source: adapted from Sweet et al. 2017.52 


