
P R IMA R Y R E S E A R CH A R T I C L E

Rapid warming is associated with population decline among
terrestrial birds and mammals globally

Fiona E. B. Spooner1,2 | Richard G. Pearson1 | Robin Freeman2

1Centre of Biodiversity and Environment

Research, University College London,

London, UK

2Institute of Zoology, Zoological Society of

London, London, UK

Correspondence

Fiona E. B. Spooner, Centre of Biodiversity

and Environment Research, University

College London, London WC1H 0AG, UK.

Email: ucfafsp@ucl.ac.uk

Funding information

Natural Environment Research Council

Abstract

Animal populations have undergone substantial declines in recent decades. These

declines have occurred alongside rapid, human‐driven environmental change, includ-

ing climate warming. An association between population declines and environmental

change is well established, yet there has been relatively little analysis of the impor-

tance of the rates of climate warming and its interaction with conversion to anthro-

pogenic land use in causing population declines. Here we present a global

assessment of the impact of rapid climate warming and anthropogenic land use con-

version on 987 populations of 481 species of terrestrial birds and mammals since

1950. We collated spatially referenced population trends of at least 5 years’ dura-
tion from the Living Planet database and used mixed effects models to assess the

association of these trends with observed rates of climate warming, rates of conver-

sion to anthropogenic land use, body mass, and protected area coverage. We found

that declines in population abundance for both birds and mammals are greater in

areas where mean temperature has increased more rapidly, and that this effect is

more pronounced for birds. However, we do not find a strong effect of conversion

to anthropogenic land use, body mass, or protected area coverage. Our results iden-

tify a link between rapid warming and population declines, thus supporting the

notion that rapid climate warming is a global threat to biodiversity.
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1 | INTRODUCTION

Global animal abundance has declined by 58% since 1970 (WWF,

2016). Key drivers of population declines include climate change and

conversion of natural habitat to anthropogenic land uses, both of

which have had major impacts on biological systems (Newbold et al.,

2016; Rosenzweig et al., 2008) and are widely thought to be global

threats to biodiversity (Millennium Ecosystem Assessment, 2005;

Thomas et al., 2004). The response of animal populations to these

rapid environmental changes has not been consistent: some

populations have experienced increasing abundance and expanding

distributions; conversely, other populations have suffered shrinking

abundances and distributions (Frishkoff et al., 2016; La Marca et al.,

2005; Thomas, Franco, & Hill, 2006). Declines in animal populations

result in an erosion of ecosystem function and loss of ecosystem

services (Ehrlich & Daily, 1993; Parmesan & Yohe, 2003; Thomas et

al., 2006; Winfree, Fox, Williams, Reilly, & Cariveau, 2015).

It is well established that species have responded to climate

warming through altitudinal and latitudinal shifts in distribution
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(Parmesan & Yohe, 2003) and with the advancement of phenological

events (Root, Price, Hall, & Schneider, 2003). However, the effect of

climate warming on animal abundance trends has been less well

explored and multispecies studies have thus far been limited to Eur-

ope and North America. Martay et al. (2017) found that climate

could explain significant country‐level population declines in moths

and increases in winged aphids across Great Britain, but found no

group‐wide trends for butterflies, birds or mammals. By contrast, it

has been observed that warm‐adapted butterflies and beetles in cen-

tral Europe and warm‐adapted birds across Europe and North Amer-

ica have had higher population growth rates under climate warming

than those which are cold‐adapted (Bowler et al., 2015; Jiguet et al.,

2010; Stephens et al., 2016). These trends may lead to a future

divergence of population trends, with warm‐adapted species increas-

ing in abundance and cold‐adapted species declining (Gregory et al.,

2009). To our knowledge there has been no previous global multi-

species assessment of the observed impacts of climate warming on

population trends. Furthermore, aforementioned studies have aggre-

gated climate to country or range level, and population data are

often aggregated to species level, which does not allow for popula-

tion level variation in responses to climate warming.

Previous studies have shown that phenological and latitudinal

shifts are greatest in areas that have experienced most warming

(Chen, Hill, Ohlemüller, Roy, & Thomas, 2011; Rosenzweig et al.,

2008). Natural variability ensures that many populations can accom-

modate and respond to various types of change; however, local

extinction occurs if the rate of climate warming exceeds the maxi-

mum possible rate of adaptive response (the adaptive capacity). To

date, there have been no large‐scale analyses exploring the relation-

ship between the rate of climate warming (as opposed to the magni-

tude of warming) and animal population trends. We hypothesized

that locations which have undergone faster climate warming will be

locations where the threat to biodiversity is greatest and which have

experienced more rapid population declines.

Habitat loss and fragmentation are known to be the primary dri-

vers of biodiversity loss (Millennium Ecosystem Assessment, 2005).

Global studies have shown that the conversion of natural habitat to

anthropogenic land uses leads to local declines in both species rich-

ness and abundance and that these declines are greater where con-

version to anthropogenic land use has been greater (Newbold et al.,

2015). We therefore hypothesized that in areas where conversion to

anthropogenic land use has been most rapid, we will see greater

population declines.

Threats to biodiversity rarely act independently and can often

have exacerbating interactions. In particular, the interaction between

anthropogenic land use conversion and climate warming has been

described as a “deadly anthropogenic cocktail” (Travis, 2003)

because habitat loss reduces the ability of species to adapt to cli-

mate change (for instance by inhibiting range shifts; Brook, Sodhi, &

Bradshaw, 2008; Mantyka‐Pringle, Martin, & Rhodes, 2012; Oliver &

Morecroft, 2014). Little is known about how the interaction between

climate warming and anthropogenic land use conversion varies

across habitats or species (Brook et al., 2008; Eglington & Pearce‐

Higgins, 2012; Oliver & Morecroft, 2014; Root et al., 2003). Thus,

this interaction remains a source of uncertainty when projecting

future biodiversity trends (Sala, 2000). We therefore also hypothe-

sized that there is an interaction between anthropogenic land use

conversion and climate warming, such that the greatest population

declines will occur where there has been both rapid conversion to

anthropogenic land use and climate warming.

We note that there are many other factors which may impact

population trends, not least the positive impact of conservation

effort (Young et al., 2014) or the influence of species intrinsic traits

(Lee & Jetz, 2010). Conservation efforts are often implemented

through the creation and management of protected areas; thus, we

hypothesized that population trends outside of protected areas will

be more likely to be declining than those within them. Additionally,

to account for the effect of species traits we explore the relationship

between population growth rates and body mass, which is a corre-

late of many species traits (Brook et al., 2008; Hilbers et al., 2016).

Recent research has shown there is a significant relationship

between vertebrate body mass and extinction risk, such that heavier

species of birds and mammals are likely to be more at risk of extinc-

tion (Ripple et al., 2017). We therefore hypothesized that larger bod-

ied birds and mammals are more likely to have declining populations.

We present a global study in which we spatially and temporally

link observed changes in abundance for 987 populations of 481 spe-

cies of birds and mammals (from 1950 to 2005) to changes in cli-

mate and land use. The combined historical, spatial and taxonomic

coverage of the study allows the drawing out of generalizable trends

on the impacts of recent anthropogenic environmental change on

observed animal population trends.

2 | MATERIALS AND METHODS

2.1 | Population time series data

We obtained observed population trends from the Living Planet

database (http://www.livingplanetindex.org/data_portal), which con-

tains time series of annual population estimates for over 18,000

vertebrate populations observed during the period 1950–2015.
The time series are collated from the scientific literature, online

databases and gray literature (Collen et al., 2009; McRae, Deinet,

& Freeman, 2017). To be included in the database there must be

at least 2 years of population estimates and survey methods must

be comparable for each year the population is estimated. Detailed

criteria for inclusion in the database are outlined in Loh et al.

(2005).

For each time series, the population count data were logged

(base 10) so that it was possible to compare changes in population

trends irrespective of their size (prior to this, zeros were replaced

with 1% of the mean population count of the time series so that it

was possible to log these values, following Collen et al., 2009). If the

number of population counts within each time series was sufficient

(N > 6) the time series was fit with a Generalized Additive Model

(GAM). GAMs are more flexible than linear models and therefore
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more appropriate for fitting to population trends which can often be

nonlinear (Collen et al., 2009). However, GAMs could not be fit reli-

ably to time series where N < 6 data points, so for these time series

we fit a linear regression. The smoothing parameter of each GAM

was set to N/2, because this was found to be a suitable value for fit-

ting the data well without overfitting to noise (Collen et al., 2009).

The fit of each linear regression or GAM to the population trends

was assessed using R2.

For each time series, we calculated the average logged rate of

population change (λY ), or average lambda:

λy ¼ log10
ny
ny�1

� �
(1)

λY ¼ 1
Y
∑n

0λy (2)

where n is the population estimate of a given year, y, and Y is the

total number of years from the first to last population estimates.

We then filtered the data to only include populations that met

the following five criteria: (a) the location is known (many of the

population trends in the Living Planet database are nationally aggre-

gated so cannot be spatially linked to environmental data); (b) envi-

ronmental data and body mass data were available; (c) time series

span 5 or more years (because longer time series will better reflect

environmental changes); (d) time series had R2 ≥ 0.5 when fit to the

GAM or linear model (to ensure interpolated population estimates

were reasonable); and (e) the population was recorded as being

either inside or outside a protected area (any population recorded as

both inside and outside a protected area was omitted).

After the populations were filtered based on these criteria, there

were 987 remaining populations at 441 unique study sites (Figure 1).

These populations were made up of 416 (42.1%) bird populations

(292 species and 148 locations) and 571 (57.9%) mammal

populations (189 species and 303 locations). This remaining subset

had a mean time series length of 15.6 (±9.2) years and population

estimates for 55.1% of the years within each time series. Values for

missing values were estimated using either log‐linear interpolation or

imputed from the GAMs.

2.2 | Climate data

Global mean temperature data were gathered from the CRU TS v. 3.23

gridded time series (Harris, Jones, Osborn, & Lister, 2014; Figure 1),

which provides monthly observations of land surface mean tempera-

ture at a spatial resolution of 0.5°. Monthly mean temperatures for

the years 1950–2005 were extracted for the location of each

observed population time series. The extracted temperatures were

filtered to include only the years over which population estimates

were available, and an average value was calculated for each year. A

linear regression was then fit to those averages, the slope of which

gives the annual rate of climate warming (RCW) over the period of

observed population estimates.

2.3 | Land use data

Global land use data were gathered from the HYDE database (Klein

Goldewijk, Beusen, Van Drecht, & De Vos, 2011), which provides

decadal (1940–2000 and 2005) grid cell coverage of cropland and

pasture at a spatial resolution of 0.083°. The percentage cover of

cropland and pasture were summed to calculate percentage cover of

anthropogenic land use in each cell. For each population time series,

land use values were extracted for the years covered by the time

series and averaged for a 0.25° × 0.25° grid around the cell contain-

ing each population (Figure 2). This was done to encapsulate land-

scape level change around each population. The decadal values of

F IGURE 1 The points show the distribution and density of population time series used in the analysis. The black and white points signify
bird and mammal populations, respectively, where both taxonomic groups are present the numbers of each are proportionally represented with
a pie chart. 77.4% of the locations have one population. The base layer of the map shows the rate of temperature change, in degrees per year,
between 1950 and 2005, based on analysis of the CRU TS v. 3.23 gridded time series dataset (Harris et al., 2014)
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anthropogenic land use were linearly interpolated to annual values

and from these values the average annual rate of conversion to

anthropogenic land use (RCA) was calculated for each population

time series, where positive values mean an increase in cropland or

pasture cover.

2.4 | Body mass

Adult body mass data for birds and mammals were extracted from

the amniote life‐history database (Myhrvold, Baldridge, Chan, Free-

man, & Ernest, 2015). The body mass values were initially in grams

and were logged (base 10) to normalize them. The values were then

joined by species name to the corresponding Living Planet popula-

tion time series. These body mass (BM) data were included as fixed

effects in the candidate models.

2.5 | Protected areas

To account for the effect of protected areas on animal population

trends we included protected area (PA) coverage as a binary fixed

effect in the models. This information is available in the Living Planet

Database.

2.6 | Linear mixed effects models

We aimed to test the extent to which bird and mammal population

trends could be explained by rates of climate warming and conver-

sion to anthropogenic land use. However, it is likely that there will

be important species‐ and site‐specific effects that could mask the

impacts of climate warming and conversion to anthropogenic land

use. To account for this, we used linear mixed effects models which

allow us to understand the magnitude and direction of the effect

size of explanatory variables on the response variable. The inclusion

of random effects allows for a varying intercept for every grouping

factor, here “species” and “site”, thus allowing for responses that are

specific for species and site. Nineteen competing linear mixed effects

models were constructed for the 987 populations, with the average

logged rate of population change (λY ) as the response variable and

RCW, RCA, an interaction term between RCW and RCA, PA and BM

as explanatory variables (Table 1). Species and study site were

included as random effects in each of the models (Table 1). To facili-

tate comparison of effect size and the relative importance of each

variable, the continuous fixed effects were scaled and centered by

subtracting the mean and dividing by the standard deviation (Bates,

Maechler, Bolker, & Walker, 2015).

F IGURE 2 Illustration of how the rate of conversion to anthropogenic land use was calculated. (a) Example land use cover data for a
population time series (1970–1990), where the white circle depicts the location of the population. Each grid of nine cells represents a decadal
section of the HYDE data, which was cropped to the 0.25° × 0.25° grid surrounding each population. (b) The average value of cropland and
pasture percentage cover for each decadal grid (black circles) and the linearly interpolated annual values (hollow circles). For each population,
we calculated the average annual change in percentage cover of cropland and pasture over the years for which we have population trend data
(for this example population the value would be 1%)
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Where there was no clear best performing model from the selec-

tion of competing models, the top models (where the cumulative

sum of the AIC weights were ≤0.95) were averaged and the coeffi-

cients were taken from this averaged model (Burnham & Anderson,

2002; Daskin & Pringle, 2018). The modeling process was carried

out separately for birds and mammals because the life‐history char-

acteristics of these two taxonomic groups differ enough for us to

expect that they will have different responses to environmental

change.

All analyses were carried out using the statistical software R (R

Core Team, 2015). The plyr (Wickham, 2011), taRifx (Friedman,

2014), mgcv (Wood, 2011), and zoo (Zeileis & Grothendieck, 2005)

packages were used to format the population trend data. The

GISOperations (Newbold, 2016), raster (Hijmans, 2016), doParallel

(Microsoft Corporation & Weston 2015), and reshape2 (Wickham,

2007) packages were used to format and extract the environmental

data. The linear mixed effects modeling was undertaken using the

lme4 (Bates et al., 2015) and MuMIn (Barton, 2016) packages.

3 | RESULTS

The mixed effects models reveal a strong association between

rapidly warming climates and declines in populations for both birds

and mammals (Figure 3). This association is more than twice as

strong in birds than in mammals.

In our analysis of the impact of RCA and RCW on bird and mam-

mal populations, we find (particularly in mammals) a variety of poten-

tial models with no clear “best” model. We therefore took a model

averaging approach, combining all models within a 95% confidence

set (Burnham & Anderson, 2002; Daskin & Pringle, 2018). We feel

that this is a more conservative approach and, given the variability in

potential effects within our analysis, more appropriate here. We

have also explored using a ΔAIC <6, which is also recommended in

the literature (Burnham & Anderson, 2002), and the difference in our

results is negligible (e.g., difference in all coefficients <6.5% see Sup-

porting Information Appendix S1).

The top‐performing models (based on ≤0.95 sum of Akaike

weights) can be found in Table 2, with the full table of results in

Supporting Information Table S1 (Supporting Information

Appendix S2). All the explanatory variables feature within these top

models, suggesting that each of these variables contribute to

explaining the variation in observed population trends.

In both the bird and mammal sets of competing models, we

found that all the models containing RCW were within the top per-

forming models, comprised of those where the cumulative sum of

the Akaike weights was ≤0.95. This suggests that these models are

all useful and that RCW is the most important variable for explaining

variation in both bird and mammal population trends.

Within the bird results, there are two models where ΔAIC <2

(highlighted in Table 2). The top performing model, in terms of AIC,

is made up of RCW and PA, followed by the model with only RCW.

The top performing model explains a large amount of the variation

in avian population trends: 8.2% is explained with the fixed effects

(marginal R2) and 78.6% is explained by the fixed and random effects

(conditional R2). This highlights the clear importance of these two

variables in explaining bird population trends, which is also reflected

in their relatively large effect sizes. We find that populations within

protected areas tend to have less negative growth rates than popula-

tions outside of protected areas.

Within the mammal results there are six models where ΔAIC <2,

between them containing each of the explanatory variables. This

suggests that there are several quite different models that have a

similar ability to explain variation in mammal population trends. The

results for mammal populations are more complex than for bird pop-

ulations; however, RCW is clearly an important variable, as evi-

denced by its presence in each of the six best models, its high

relative variable importance (RVI) score of 0.95, and its large effect

size. We found that the interaction term (RCW:RCA) was also an

important variable in explaining population trends. This means that

mammal populations that have experienced both high RCW and

RCA tend to have more negative population growth rates. We also

find that although the confidence intervals overlap zero larger bod-

ied mammals tend to have less negative population growth rates.

The highest ranked model within the mammal data, in terms of AIC,

was the model which contained, RCA, RCW, RCW:RCA, and body

mass. The fixed effects of this model explain 2.8% (marginal R2) of

TABLE 1 Parameters used in linear mixed effects models

Parameter Description Type of effect

Species name Species binomial, included to account for species specific responses Random intercept

Study site Unique ID based on the coordinates of populations from Living Planet database, included to

account for site‐specific effects

Random intercept

Rate of climate warming

(RCW)

The rate of change in mean temperature per year, over the length of the population time series Fixed

Rate of conversion to

anthropogenic land use (RCA)

The rate of change in percentage cover of cropland and pasture per year, over the length

of the time series

Fixed

Body mass (BM) Logged (base 10) body mass (g) of birds and mammals Fixed

Inside protected area (PA) A binary variable recording whether each population is inside or outside a protected area Fixed
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the variation in mammal population trends and 44.0% is explained

with both the fixed and random effects (conditional R2).

If we relax the criterion that R2 for the linear regressions or

GAMs must be >0.5 for a population to be included in the study

(see Section 2), then the number of populations included in the anal-

ysis increases by 87% (total of 883 bird populations and 966 mam-

mal populations) and the results of the mixed effects models remain

similar (Supporting Information Appendix S4). This suggests our find-

ings are not only limited to the subset of the populations used in

the primary analysis but are also more broadly applicable across

observed bird and mammal population trends. We also explored the

effect of the heterogeneous distribution of population trends (for

details see Supporting Information Appendix S5).

There is less of a clear correlation between population trend and

either body mass or RCA. The 95% confidence intervals of the coef-

ficients for these variables overlap zero, meaning that across all the

populations the effects of body mass and RCA can be both positive

and negative. However, we can use these results to draw out trends

in the data as they reflect the spread of the coefficients. For exam-

ple, most mammal population trends tend to increase with body

mass, whereas the bird population trends are more evenly dis-

tributed around zero (Figure 3).

4 | DISCUSSION

Our results reveal a strong association between rapid climate warm-

ing and declines of bird and mammal populations globally, showing

that population declines have been greatest in areas that have expe-

rienced most rapid warming. The averaged model suggests that an

increase in the rate of climate warming by one standard deviation

(birds = 0.072°C per year, mammals = 0.079°C per year) leads to

more severe annual average population declines of 5.1% for birds

and 2.0% for mammals (Figure 3). Although these rates are higher

than the projected rates of warming under more pessimistic future

scenarios (e.g., RCP 8.5, Riahi et al., 2011) we note that these pro-

jections are global averages and that within these projections there

F IGURE 3 The distribution of the coefficients of the average models for bird and mammal populations. Circles show the estimated
coefficient values for each variable and solid lines show the 2.5%–97.5% confidence intervals. As the data were scaled and centered prior to
modeling the intercept shows the distribution of modeled annual population growth rates outside of protected areas and with mean values for
RCA, RCW, and body mass (as the center of these values, when scaled, is now zero). Another consequence of scaling and centering the data is
that the coefficients show the change in annual population growth rate given a one standard deviation increase in each explanatory variable.
For example, for bird populations, an increase in the rate of mean temperature change of 0.07°C per year would lead to an average annual
population decline of 5.09%. Confidence intervals that do not overlap with zero reveal a signal of either a positive or negative effect of a
variable. Confidence intervals that overlap with zero show that within the averaged model an increase in a given variable has a mixture of both
positive and negative effect sizes on the rate of population change across different populations
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will be regions, such as the Arctic (AMAP, 2017), which are likely to

experience the higher rates of warming found within these models.

Under this scenario (RCP 8.5) we would expect to see a 3.85%–
4.65% annual population decline in bird populations and 1.46%–
1.76% annual population decline in mammal populations (for details

see Supporting Information Appendix S3). If the rate of climate

warming continues to increase then we can expect greater bird and

mammal population declines, these losses will be greatest at loca-

tions which experience most rapid climate warming (Supporting

Information Figure S3). These findings echo aspects of previous glo-

bal studies which suggest that future climate change will lead to

large range contractions and increased species extinction risk (Jetz,

Wilcove, & Dobson, 2007; Thomas et al., 2004). We found the

impact of rapid climate warming to be more pronounced for bird

populations than mammal populations (Figure 3). This may be

because climate change can lead to the desynchronization of bird

breeding season and the peak resource availability (Keogan et al.,

2018; Stevenson & Bryant, 2000; Visser, Both, & Lambrechts, 2004),

whereas the seasonality of breeding in mammals is more flexible

(Boutin & Lane, 2014). We note there are geographical differences

in the representation of birds and mammals (Figure 1). Within the

dataset there are populations of both classes in all continents except

Antarctica; however, mammal populations dominate in Africa (59%

of populations, 43% of sites) and bird populations in Europe (26% of

populations, 45% of sites). This may contribute to the differences

we see between the two groups in their response to RCW. It is also

important to recognize that there is spatial bias in the dataset, with

relatively few sites in tropical forest habitat, particularly in South

America and Southeast Asia. The RCW in tropical forests is relatively

low (Corlett, 2011); however, species thermal niches tend to be nar-

rower in the tropics meaning that the magnitude of their response

to climate warming may be greater (Freeman & Class Freeman,

2014). We do not expect that the addition of sites from these

regions would substantially change our conclusions, but further data

will be required to test this.

The interaction between RCA and RCW was an important vari-

able in explaining mammal population trends, where it had a similar

effect size to RCW (Table 2B). This suggests that mammal popula-

tions are likely to have suffered greater declines in areas where

there has been both climate warming and rapid conversion to

anthropogenic land use. We do not find an effect of the interaction

between RCA and RCW for bird populations, this may be because

the interaction is complex and context specific (Kampichler, van

Turnhout, Devictor, & van der Jeugd, 2012); for example, logging

and increased temperatures can lead to a decrease in transpiration

and less rainfall (Bagley, Desai, Harding, Snyder, & Foley, 2014),

which may be devastating for many populations due to the drying of

fuels and increased chance of fire and, or drought (Malhi et al.,

2008). However, conversion to agriculture and warmer breeding sea-

son temperatures may be beneficial to populations of warm‐adapted
generalist species (Karp et al., 2018; Pearce‐Higgins, Eglington, Mar-

tay, & Chamberlain, 2015). Additionally, it may be that historical land

use change, which would not be captured by RCA, has altered the

landscape so profoundly that it inhibits future movement of species

thus restricting their ability to adapt to climate change (Benning,

LaPointe, Atkinson, & Vitousek, 2002).

We did not find RCA to be an important variable when acting in

isolation for either birds or mammals. The lack of a clear effect of

RCA on bird populations may be because a large proportion (54.8%)

are within protected areas and we find that bird populations within

protected areas tend to have higher population growth rates than

those outside. Within our dataset, 60.3% of bird populations are

made up of generalist species (here defined as having suitable habi-

tat in more than one IUCN Level 1 habitat class), which may be

more resilient to changing landscapes than specialist species. Addi-

tionally, conversion to agriculture does not uniformly disadvantage

all bird species; for example, dry‐adapted tropical species may have

higher abundance in agricultural landscapes (Karp et al., 2018). How-

ever, we note that the “winners” of conversion to agriculture tend

to be in the minority (McKinney & Lockwood, 1999). As previously

mentioned, there are comparatively few population trends from

tropical forests. These areas are rich in biodiversity but also heavily

threatened by conversion to anthropogenic land use (Wright, 2005).

It may be that we would detect a larger effect size for RCA if there

were more population trend data from tropical forests.

We do not find PA to be an important predictor for mammal

population growth rates; however, we note that 84.6% of the mam-

mal populations are from inside protected areas, making it difficult

to capture the effect of protected areas. We also note that other

studies have shown the evidence of protected areas successfully

conserving species populations is thus far inconclusive (Geldmann et

al., 2013). Additionally, the effects of converting to anthropogenic

land use are more likely to be detected at fine spatial resolutions

(Heikkinen, Luoto, Virkkala, Pearson, & Körber, 2007; Pearson &

Dawson, 2003), yet here we used relatively coarse resolution land

use data. The coarse resolution of our data may be why we were

unable to identify a clear effect of increasing anthropogenic land use

on population trends at a global scale, despite it being a well‐known

driver of biodiversity loss (Millennium Ecosystem Assessment, 2005).

The global effect of increased anthropogenic land use on populations

has been identified in other global studies, such as the PREDICTS

project (Newbold et al., 2015), where finer resolution measures of

local land use change were available.

Body mass was not an important predictor of population growth

rates for bird populations. This may be because while greater extinc-

tion risk is positively linked with increased body mass (Ripple et al.,

2017), population declines, particularly of common species may not

be captured by extinction risk criteria (Inger et al., 2015). Within

mammal populations we found that smaller bodied species were

more likely to have declining populations than larger bodied species,

although the confidence intervals overlap with zero, so we must be

cautious with the interpretation of this result. However, we note

that when a less restricted set of population trends are included (see

Supporting Information Appendix S4), the confidence intervals

around this result are tighter and no longer overlap with zero,

although the effect size is not large. This finding goes against our

4528 | SPOONER ET AL.



hypothesis that larger bodied mammals would be more likely to have

declining population trends and is contrary to the finding that larger

mammals have higher extinction risk (Ripple et al., 2017). This may

be because our mammal data are dominated by populations within

east African protected areas, where larger mammals may receive

greater attention and conservation effort which could mean their

populations are buffered (Barnes et al., 2016). We also explored the

inclusion of other species traits, but we did not find important

effects (for details see Supporting Information Appendix S6).

We find that populations facing greater rates of climate warming

are more likely to be declining at a faster rate. However, our analy-

ses do not account for several additional factors, such as species

exploitation, pollution, and disease, which may help to further

explain the degree of variability in population trends. Nevertheless,

we provide evidence that populations facing high rates of climate

warming tend to be in decline. Deepening our understanding of the

processes that underlie the associations discussed here will be criti-

cal for developing improved assessments of species’ vulnerability to

climate warming (e.g., Pacifici, Foden, & Visconti, 2015).
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