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INTRODUCTION

According to the latest meteorological data (IPCC
2007), air temperatures have increased to levels not
seen since atmospheric records began in 1850. For
example, 11 of the 12 yr between 1995 and 2006 were
the warmest on record (Brohan et al. 2006), and global
mean ocean temperatures are thought to be 0.7°C
warmer than at any time in the last 420000 yr (Hoegh-
Guldberg et al. 2007). These warming trends are
expected to increase at accelerated rates (in conjunc-

tion with the continued emission of high levels of CO2).
Approximately 80% of the extra warmth is likely to be
absorbed by the oceans (IPCC 2007) and will result in
thermal expansion, which could produce an 18 to
60 cm rise in sea level by 2100 (Meehl et al. 2005, IPCC
2007). Extreme weather events (e.g. colder winters and
warmer summers) are likely to occur with greater vari-
ability (IPCC 2007) and could combine with other
physical climate factors to drive changes in ocean
chemistry, such as pH decreases of 0.3 to 0.5, which
would be unprecedented in the context of the last 200
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to 300 million yr and could have significant effects
(Harley et al. 2006, Hoegh-Guldberg et al. 2007).
Although the effect of climate change will be global,
there will likely be much variation in impacts at
regional levels. Downscaling of general circulation
models (GCMs) to useful resolution poses a significant
challenge for climate change risk assessments (e.g.
Wilby et al. 2002, effects on biodiversity).

In biological systems, from polar terrestrial to tropi-
cal marine environments, data demonstrate a coherent
pattern of change in accord with those of climate
change (Hughes 2000, Sala et al. 2000, Davis & Shaw
2001, McCarty 2001, Walther et al. 2002, Visser & Both
2005, Hickling et al. 2006), with phenological and spa-
tial shifts recorded and predicted for many species
from invertebrates (Parmesan et al. 1999, Beaugrand et
al. 2002, Davies et al. 2006) to birds (Brown et al. 1999,
Winkler et al. 2002, Butler 2003, Mills 2005, Springer et
al. 2007) and marine mammals (Learmonth et al. 2006,
Robinson et al. 2009, MacLeod 2009, this Theme Sec-
tion). All 7 species of marine turtles are of conservation
concern and are affected by a range of natural and
anthropogenic threats. However, although much effort
has been expended over the last 2 decades to under-
stand and mitigate the threats to marine turtles (Lut-
cavage et al. 1997, Watson et al. 2005), the threat of cli-
mate change on this taxon has, until recently, been
given little attention (Fig. 1; although see seminal
papers by Mrosovsky 1984a and Davenport 1989).

Marine turtles occupy a wide range of different habi-
tat types throughout their life history (Fig. 2), including
temperate and tropical sandy beaches, oceanic frontal
systems and gyres, coastal mangrove forests, neritic
reefs, seagrass beds and other shallow foraging areas
(Musick & Limpus 1997). During their development,
marine turtles may cross entire ocean basins, and
adults and juveniles have been shown to interact with

major oceanic surface currents (Hawkes et al. 2006,
Polovina et al. 2006, Seminoff et al. 2007, Shillinger et
al. 2008). Temperature is of profound importance as an
environmental factor for marine turtles, affecting fea-
tures of their life history from hatchling sex determina-
tion (Yntema & Mrosovsky 1980) to adult distribution
(Spotila & Standora 1985, Seebacher & Franklin 2005).
Other climatic aspects, such as extreme weather
events, precipitation, ocean acidification and sea level
rise also have potential to affect marine turtle popu-
lations. Given current climate change predictions
(reviewed in the IPCC 2007 report), we comprehen-
sively reviewed the literature published on marine
turtles. Here, we report on the data published on
(1) breeding sites, including availability of beach,
selection of nest locations, timing of nesting and incu-
bation conditions; (2) open ocean habitat used by tur-
tles, including hatchlings, juveniles and adults; and
(3) coastal habitats used by turtles, including herbi-
vorous, spongivorous and omnivorous turtles. Finally,
we highlight major gaps that remain in our knowledge
of potential climate change impacts on marine turtles.

MARINE TURTLES AT BREEDING SITES

The beach

In all species of marine turtles, successful reproduc-
tion depends primarily on available terrestrial habitat
(Fig. 3). Female turtles must emerge onto beaches to
lay several clutches of eggs over the course of a nesting
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Fig. 1. Increase in interest in marine turtles and climate
change. Number of published studies per year (resulting from
ISI Web of Science search, 28 January 2009) containing the
search terms ‘marine turtles OR sea turtles’ and ‘climate
change OR global warming’ in the title, abstract or entire 

article. All papers are cited within the review

Fig. 2. Typical life cycle of a marine turtle, adapted from
Musick & Limpus (1997). For schematic purposes the cycle
has been greatly simplified; most adult Cheloniid turtles are
now known to occupy neritic foraging habitats and Dermo-
cheliid turtles oceanic foraging habitats. There may be
greater plasticity in foraging strategies (for example in log-
gerhead, green and olive ridley turtles, see ‘Marine turtles
and the open ocean: adult turtles’). Dashed line indicates 

potential switching between the 2 foraging strategies
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season (Miller 1997). Predicted increases in sea level
(an average of 4.2 mm per year until 2080; Church et
al. 2001, IPCC 2007) have the potential to compromise
availability of nesting beaches, particularly on low-
lying narrow coastal and island beaches (Nicholls
1998, Fish et al. 2005, Baker et al. 2006, Jones et al.
2007, Mazaris et al. 2009) and where coastal develop-
ment prevents landward migration of beaches — also
known as coastal squeeze (Fish et al. 2008). Only these
5 studies have so far examined the potential effect of
sea level rise on marine turtle nesting beaches, of
which 3 (Nicholls 1998, Baker et al. 2006, Jones et al.
2007) used high precision digital elevation models
(DEMs) with simple inundation (‘bathtub’) flooding
models, and a fourth used categorical scoring of the
coincidence of turtle nesting beach with ‘high risk’
beaches (considered low relief, with high wave energy
and more than 1.1 m of beach retreat annually; Daniels
et al. 1993). The fifth study (Mazaris et al. 2009) used
the 2-dimensional Bruun rule to model beach recession
from sea level rise and, consequently, the maximum
number of nests that could be supported (‘carrying
capacity’) on the nesting beach (but see Cooper &
Pilkey 2004). Although the ‘bathtub’ methodology is
potentially overly simplistic, as it does not take into

account the dynamics of the coast (e.g. wind, waves,
tide), it readily produces estimates that are relatively
easy to compute, using data that can be collected using
a GPS unit. A study in the northwestern Hawaiian
Islands (Baker et al. 2006) predicted that up to 40% of
green turtle Chelonia mydas nesting beaches could be
flooded with 0.9 m of sea level rise, while studies in
Barbados (Fish et al. 2008) and Bonaire (Fish et al.
2005) suggested similar losses of hawksbill turtle
Eretmochelys imbricata nesting habitat (means 50%
and 51% decrease, respectively). In the absence of
equipment or software, the simple overlay study by
Daniels et al. (1993) provides a suitable alternative
methodology, albeit with appropriate caveats.

Compounding the threat of sea level rise is the like-
lihood of an increase in fortification of coastal areas to
protect human settlements (using e.g. sea walls,
groynes and other hard sea defences). Such ‘shoreline
protection’ is already in widespread use (for example
in the Caribbean, Burke & Maidens 2004). It effectively
reduces total sandy beach availability (Pilkey & Wright
1988, Kraus & McDougal 1996, Zheng et al. 2007,
Schlacher et al. 2008) and leads to a disproportionate
loss of dry upper inter-tidal beach area (Dugan et al.
2008), and, in some cases, entire beaches (Koike 1996,
Lutcavage et al. 1997, Airoldi et al. 2005). Despite this,
there are no studies to our knowledge that examine the
impact of beach fortification on regional turtle nesting
populations. In some coastal areas, attempts are made
to mitigate beach loss using ‘renourishment,’ in which
transplanted sand is pumped onto the beach to replace
eroded material (Montague 2008); this technique is
used in urbanised coastal areas. However, this issue is
worthy of careful consideration, as the transplanted
material may provide unsuitable incubation conditions
(Crain et al. 1995, Milton et al. 1997, Rumbold et al.
2001, Peterson & Bishop 2005). Other beach-stabilizing
technologies may negatively affect nesting females by
blocking beach access, disorientating turtles, or by
rendering sand inappropriate for nesting (Bouchard et
al. 1998, Brock et al. 2009).

An increase in the proportion of extreme weather
events in the most severe categories, such as hurri-
canes or typhoons, could also occur with changes in
the global climate (Goldenberg et al. 2001, Webster et
al. 2005, IPCC 2007), which may cause significant
loss/erosion of or damage to shorelines. Leslie et al.
(2007) reported that, although the total number of trop-
ical cyclones over the southwest Pacific would stay the
same, the proportion of Category 4 and 5 storms would
increase by 15%, and that their tracks and genesis
regions would move polewards by approximately 2°
latitude over 50 yr (to 2050, but see also Nolan & Rap-
pin 2008). Such storms often make landfall in warm
temperate and tropical areas (Bengtsson 2001, Golden-
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Fig. 3. Breeding and nesting phase of marine turtles. Dotted
grey arrows represent the potential climate variables and
their indirect effects, + or – indicate likely direction of effect
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berg et al. 2001), including those where marine turtles
nest. Five studies have examined the spatio-temporal
coincidence of marine turtle nesting with hurricanes,
cyclones and storms (Martin 1996, Ross 2005, Pike &
Stiner 2007, Prusty et al. 2007, Van Houton & Bass
2007), and they suggest that cyclical loss of nesting
beach, decreased hatching success and hatchling
emergence success could occur with greater fre-
quency. However, susceptibility to storm-related
threats may vary by species (Pike & Stiner 2007), such
that species with lower nest-site fidelity (for example
leatherback turtles Dermochelys coriacea, Witt et al.
2008) would be less vulnerable than those with higher
site fidelity (for example hawksbill turtles, Kamel &
Mrosovsky 2005). At some highly dynamic and inter-
seasonally variable nesting beaches in the Guianas
(Plaziat & Augustinius 2004), turtles are able to main-
tain successful nesting (Girondot & Fretey 1996,
Rivalan et al. 2005, Kelle et al. 2007) despite the fact
that some beaches disappear between nesting years.
Such behavioural flexibility may offer one of the most
promising avenues for adaptation in marine turtles.
Marine turtles are certainly able to colonise new
beaches, with nesting now occurring at recently
formed sites such as volcanic islands (Mrosovsky
2006), at man-made beaches (Hoggard 1991), and at
areas opened after glacial retreats (Encalada et al.
1998, Hamann et al. 2007).Whether turtles can colonise
nesting areas made available, either thermally or geo-
graphically, by climate change remains to be seen.

Selecting nesting locations

Although the factors driving the selection of a nest
site on a specific beach are not well understood for
marine turtles (Limpus et al. 1983, Hays et al. 1995,
Mortimer 1990, Wood & Bjorndal 2000, Miller et al.
2003, Kamel & Mrosovsky 2005), several factors may
be influential in the choice of an optimal nesting site
(e.g. low salinity, high humidity, infrequently inun-
dated, well ventilated, with nearshore oceanography
conducive to dispersal of hatchlings into oceanic cur-
rents; Miller 1997, Foley et al. 2006). There should be
sufficient space above the high tide line for nesting to
take place and, for some species and/or locations,
there should be adequate beach vegetation for clutch
shading (Naro-Maciel et al. 1999, van de Merwe et al.
2005, Kamel & Mrosovsky 2006). However, persistence
of a nesting site depends on the successful production
of hatchlings that re-nest later at the same site, so the
success of a particular nesting beach is only revealed
after a period of many years. Adding to the complexity
are species-specific behavioural characteristics of nest
site selection: some species are reported to lay clutches

far above the high tide line, while others prefer to nest
closer to the water line (Mrosovsky 1983, Whitmore &
Dutton 1985, Hays et al. 1995, Kamel & Mrosovsky
2004, 2005). Additionally, as detailed in the previous
section, there appears to be possible inter-specific
variation in responses to rapid changes in beach avail-
ability, width or configuration (see also Mrosovsky
2006, Wetterer et al. 2007).

Although some beaches may be inundated and lost,
one possible result of climate change is an increase in
thermally suitable nesting habitat, both geographically
and temporally. With an increase in mean air, and
therefore beach sand temperatures, previously unsuit-
able habitat, for example beaches at higher latitudes
than current nesting areas, may become suitable for
successful egg incubation. This has apparently oc-
curred in the past, when warmer temperatures in inter-
glacial periods facilitated the expansion of loggerhead
sea turtles Caretta caretta into higher latitudes (Bowen
et al. 1993). It is of note that leatherback turtle nests
are now being recorded at their most northerly in a
decade of monitoring (Rabon et al. 2004). Temporally,
warmer temperatures for a greater number of months
of the year may either extend the nesting season for
some marine turtles and/or facilitate year-round nest-
ing (Pike et al. 2006, Yasuda et al. 2006). However,
data are lacking on how quickly marine turtles would
be able to take advantage of these changes. It has
recently been suggested that although avian spatial
distributions are shifting polewards with changing cli-
mate, their rate of adaptation is slower, and they there-
fore lag behind climate warming by approximately
182 km (Devictor et al. 2008).

Timing of reproduction

Marine turtles are capital breeders (Bonnet et al.
1998) and the different resource requirements for
reproduction of females compared to males may ex-
plain a difference in observed remigration intervals
(the period between reproductive years), which is
thought to be lower for males (Godley et al. 2002a,
Hamann et al. 2003, Schroeder et al. 2003). Environ-
mental conditions in foraging areas may drive prey
availability and resource acquisition and, therefore,
the decision to breed in a given year as well as the tim-
ing of migration to the breeding grounds (Kwan 1994,
Miller 1997, Broderick et al. 2001b, Solow et al. 2002,
Price et al. 2004, Wallace et al. 2006, Saba et al. 2007,
2008, Chaloupka et al. 2008, Reina et al. 2009).

Future climate change could also alter the intra-
annual timing of nesting, such that warmer water tem-
peratures may contribute to an earlier onset of nesting
(by 12 to 18 d 1°C–1 for loggerhead turtles, Hawkes
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2007b, but see Pike in press for green turtles), a
decrease in the inter nesting interval (Sato et al. 1998,
Webster & Cook 2001, Hays et al. 2002, Hamel et al.
2008) and the earlier onset of peak (median) nesting
date (5 to 6 d 1°C–1, Weishampel et al. 2004, Pike et al.
2006). Ultimately, temperature may also affect the
length of the nesting season (for loggerhead turtles:
Pike et al. 2006, Hawkes et al. 2007b). However, the
total clutch frequency per female per season will likely
vary with resources stored from foraging areas
(Chaloupka et al. 2008), which could further compli-
cate interpretation of the patterns of adaptation. These
relationships warrant further investigation and testing
across species and nesting sites, particularly between
populations that nest at equatorial versus temperate
sites and in the warmest and cooler parts of the year.

Incubation conditions and sex ratios

Marine turtle clutches are sensitive to temperature
changes and typically incubate successfully only
between 25 and 35°C (Ackerman 1997, Carthy et al.
2003), with embryos incubating at high temperatures
becoming females and those at lower temperatures
becoming males, and 50% of either sex produced
at the ‘pivotal temperature,’ between 28 to 31°C
(Mrosovsky 1988; Fig. 4b). A mixture of sexes is pro-
duced within a ‘transitional range of temperatures’
(e.g. between approximately 27.5 and 30.5°C in log-
gerhead turtles, Mrosovsky 1988). However, in addi-
tion to diel variations in incubation temperature, egg
placement within a nest may mean that eggs at the top

141

a

27

29

31

Cc Cm Dc Ei Lo

b

0

25

50

75

100

Cc Cm Dc Ei Lo

%
 F

em
al

e
Te

m
p

er
at

ur
e 

(°
C

)

Fig. 4. (a) Lab ( ) and field (s) estimates of pivotal tempera-
tures for loggerhead (Cc), green (Cm), leatherback (Dc),
hawksbill (Ei), olive ridley (Lo) turtles; horizontal bars show
median values; dashed line indicates reference temperature
of 29°C. (b) Primary sex ratios estimated using histology ( ),
incubation duration ( ) and sand or nest temperature ( ) as
reported in peer reviewed literature. Horizontal bars show
median values; dashed horizontal line indicates reference
primary sex ratio of 50% female. Source data for (a) and 

(b) are in Table 1

Pivotal temperatures Primary sex ratios

Loggerhead Georges et al. (1994), Kaska et al. (1998),
Limpus (1985), Marcovaldi et al. (1997),
Mrosovsky (1988), Mrosovsky et al.
(2002), Yntema & Mrosovsky (1982)

Baptistotte et al. (1999), Chu et al. (2008), Godley et al. (2001a,b),
Hanson et al. (1998), Hawkes et al. (2007), Houghton & Hays
(2001), Kaska et al. (1998, 2006), Marcovaldi et al. (1997),
Mrosovsky & Provancha (1992), Mrosovsky et al. (1984b), Oz et
al. (2004), Rees & Margaritoulis (2004), Schmid et al. (2008),
Zbinden et al. (2007)

Green Broderick et al. (2000), De Ocampo &
Jaojoco (1998), Godfrey & Mrosovsky
(2006), Godley et al. (2002c), Leh et 
al. (1985), Miller & Limpus (1981), 
Standora & Spotila (1985)

Booth & Freeman (2006), Broderick et al. (2000), Casale et al.
(2000), De Ocampo & Jaojoco (1998), Godfrey et al. (1996), 
Kaska et al. (1998), Spotila et al. (1987)

Leatherback Binckley et al. (1998), Chan & Liew 
(1995), Chevalier et al. (1999)

Binckley et al. (1998), Chan & Liew (1995), Godfrey et al. (1996),
Houghton et al. (2007), Rimblot-Baly et al. (1985)

Hawksbill Dobbs et al. (in press), Godfrey et al.
(1999), Mrosovsky & Provancha (1992)

Glen & Mrosovsky (2004), Godfrey et al. (1999), Kamel &
Mrosovsky (2006), Mrosovsky et al. (1992), Wibbels et al. (1999)

Olive ridley McCoy et al. (1983), Mohanty-Hejmadi 
& Dimond (1986), Wibbels et al. (1998)

Table 1. Literature sources of pivotal temperatures and primary sex ratios for loggerhead, green, leatherback, hawksbill, and 
olive ridley turtles
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of a nest experience temperatures a degree or more
warmer than eggs at the bottom (e.g. 1.4°C for logger-
head turtles, Kaska et al. 1998) and thus possibly lead
to mixed sex ratios. The thermal properties of the turtle
nesting beach itself will also contribute to incubation
temperatures and are determined by a variety of fac-
tors, including physical (sand grain size, composition,
albedo; Hays et al. 2001, Reece et al. 2002), climatic
(Godfrey et al. 1996, Matsuzawa et al. 2002, Houghton
et al. 2007) temporal (rainy vs. dry season; Godfrey et
al. 1996), and geographic (tropical vs. subtropical) fea-
tures, which together can have a profound influence
on the embryonic development of marine turtles
(Naro-Maciel et al. 1999). Predicted increases in tem-
perature in the future could affect primary sex ratios
(Mrosovsky et al. 1984a, Janzen 1994, Davenport 1997,
Glen & Mrosovsky 2004, Hatase & Sakamoto 2004,
Hawkes et al. 2007c) as well as survivorship of clutches
(Miller 1985, Broderick et al. 2001a, Godley et al.
2001a, Hamann et al. 2007, Hawkes et al. 2007b).

Despite studies on the sex ratio production of logger-
head, green, leatherback and hawksbill turtles, major
gaps remain in our understanding of primary sex ratios
of marine turtles (Fig. 4b). Sex ratio production can
change within and across seasons (Mrosovsky et al.
1984a,b, Godfrey et al. 1996); however, not all existing
long-term datasets on primary sex ratios have been
published in the peer-reviewed literature. Most exist-
ing estimates of primary sex ratios for nesting beaches,
for example in the Mediterranean (Broderick et al.
2000, 2001a, Godley et al. 2001a,b, Oz et al. 2004,
Zbinden et al. 2007), North America (Mrosovsky &
Provancha 1992, Hanson et al. 1998, Hawkes et al.
2007b) and South America (Marcovaldi et al. 1997,
Baptistotte et al. 1999, Godfrey et al. 1999) rely at least
in part on indirect indices of sex ratio. For example,
Godley et al. (2001b) recorded nest incubation dura-
tions over a 5 yr period and used previously published
data relating incubation duration to sex ratio to esti-
mate the proportion of female hatchlings (see also
Marcovaldi et al. 1997, Godfrey et al. 1999, Oz et al.
2004, Hawkes et al. 2007b, Zbinden et al. 2007). The
advantage of this method, validated by Mrosovsky et
al. (1999), is that incubation durations are normally
readily available from most turtle nesting projects, and
could therefore be used in future work to give a wider
estimate of primary sex ratios. However, as noted in
Mrosovsky et al. (1999), values can be inaccurate by as
much as 10% and must therefore be used with appro-
priate caution. Other studies have used beach air
(Hays et al. 2003, Hawkes et al. 2007b) or sand temper-
ature (Mrosovsky et al. 1992, Baptistotte et al. 1999,
Casale et al. 2000, Rees & Margaritoulis 2004, Kamel &
Mrosovsky 2006) to reconstruct likely incubation tem-
peratures with which to estimate sex ratios using pub-

lished conversion curves (e.g. hawksbill turtles:
Mrosovsky et al. 1992; green turtles: Kaska et al. 1998;
loggerhead turtles: Mrosovsky et al. 2002). Since these
studies require only a small amount of relatively inex-
pensive equipment (temperature recording loggers)
and little specialist knowledge or software, this tech-
nique offers a viable approach for sex ratio estimation.
However, it should be noted that these studies use cor-
relative approaches to derive estimates and that, to our
knowledge, no analyses of the potential error inherent
in this approach exist. In addition, the majority of stud-
ies do not take into account the threshold range of
temperatures (TRT; in which a mixture of sexes are
produced), which may be an important metric in
assessing resilience to climate warming (Hulin et al.
2009). Future work should address this to validate the
method for estimation of sex ratios for greater numbers
of nesting rookeries. Finally, other studies record the
temperature of the nest itself and use validated conver-
sion curves (detailed in Table 1) to estimate sex ratio
(Mrosovsky & Provancha 1992, Hanson et al. 1998,
Kaska et al. 1998, Broderick et al. 2000, Godley et al.
2001b, Houghton & Hays 2001, Glen & Mrosovsky
2004, Booth & Freeman 2006, Houghton et al. 2007,
Schmid et al. 2008).

Relatively few studies have used direct estimation of
sex ratio by histologically examining the gonads of a
selection of hatchlings from each nest (Mrosovsky
1984a,b, Rimblot et al. 1985, Spotila et al. 1987,
Mrosovsky & Provancha 1992, Chan & Liew 1995, God-
frey et al. 1996, Binckley et al. 1998, De Ocampo & Jao-
joco 1998, Kaska et al. 1998, Mrosovsky et al. 1999,
Kaska et al. 2006, Schmid et al. 2008). While direct ap-
proaches should be accurate, there are 2 major draw-
backs: (1) lethal sampling of hatchlings must normally be
carried out under special permit and requires careful
ethical assessment and specialist skills, and (2) variation
of sex ratio response to incubation temperature between
individuals and populations is not yet fully understood
(see Mrosovsky 1994 for more discussion). Therefore,
although indirect approaches are known to have inher-
ent inaccuracies and may leave room for improvement
(Ewert et al. 2005, Delmas et al. 2008), they offer
approaches that can be used by most nesting beach
projects, regardless of budget or specialist knowledge.
Regional validations of each method need to be carried
out, as they are largely lacking from the published liter-
ature but will enormously facilitate a rapid assessment of
sex ratios and, thereby, the risk of feminisation through
the warming effects of climate change.

It is unclear whether marine turtles will (or can)
adapt either behaviourally or physiologically to altered
incubation conditions to counter potential feminization
associated with warmer temperatures. At the individ-
ual level, the physiological mechanism by which tem-
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perature affects sexual differentiation could change,
specifically with alterations to the pivotal and/or tran-
sitional range of temperatures (Hulin & Guillon 2007).
However, evidence seems to suggest this is unlikely —
reported pivotal temperatures across species and pop-
ulations are relatively conserved (Fig. 4a). Individuals
could also adapt behaviourally by choosing nest loca-
tions that are cooler (e.g. in the shade of vegetation, in
rainy seasons, at higher latitudes) or by nesting earlier
or later during cooler periods of the season. This could
help to maintain production of mixed sex ratios, con-
tributing to population viability (Doody et al. 2004,
Zbinden et al. 2007, but see Schwanz & Janzen 2008).
Since warmer water temperatures in near-shore nest-
ing areas are known to affect the onset and periodicity
of nesting (Sato et al. 1998, Weishampel et al. 2004), a
mechanism may already exist for this strategy, at least
for loggerhead turtles. At the population level, sex
ratio skew may be ameliorated by smaller nesting pop-
ulations at extremes of nesting ranges producing more
balanced hatchling sex ratios (e.g. in North Carolina,
USA, and Espirito Santo, Brazil, for loggerheads in the
West Atlantic; Baptistotte et al. 1999, Hawkes et al.
2007b), such that ratios are in effect balanced across
the population (Hulin & Guillon 2007). On the other
hand, the capacity for marine turtles to quickly adapt
is questionable; as a group, they are long-lived, late
maturing (Avise et al. 1992, Zug et al. 2002) and have
evolved with a climate changing at a much slower rate
than projections suggest for the next 100 yr (Hamann
et al. 2007). In addition, many populations of marine

turtles have been documented at relictual levels com-
pared to the historical past (McClenachan et al. 2006,
Bell et al. 2007) and may therefore have limited capac-
ity for selection on key traits. Available evidence sug-
gests that the genetic capacity for marine turtle adap-
tation may be lower than for other vertebrates (Avise et
al. 1992, FitzSimmons et al. 1999).

Temperature also drives incubation duration, such
that incubation duration is inversely correlated with in-
cubation temperature (Mrosovsky et al. 1999, Mat-
suzawa et al. 2002), so warmer nests incubate on the
beach for a shorter period. Shifts in phenology and
range of other species due to climate effects (Root et al.
2003) may alter the type, abundance and behaviour of
predators and may therefore also affect the number of
surviving hatchlings (Hamann et al. 2007). Finally, tem-
perature has been shown to influence hatchling pheno-
type, where size and locomotor performance vary with
i n c u b a t i o n conditions (Booth & Astill 2001, Booth et
al. 2004, Booth 2006, Hamann et al. 2007) so that hatch-
lings produced at warmer temperatures may be smaller
and swim faster, and have faster growth rates (Du & Ji
2003, Glen et al. 2003, Deeming 2004). The fitness con-
sequences of these traits are, however, untested.

MARINE TURTLES AND THE OPEN OCEAN

Hatchling and juvenile turtles

Hatchling and small juvenile marine turtles of all
species likely suffer high levels of predation in the sea
(Gyuris 1994). During the post emergence swim frenzy
(Wyneken & Salmon 1992), hatchlings are subject to
predation from a range of avian and fish predators.
The swim frenzy generally lasts for 2 to 3 d, at which
time hatchlings are thought to become associated with
floating matter at frontal systems of major ocean cur-
rents (Witherington 2002), where they may derive
some protection. However, there is evidence that the
phenology and spatial distribution of many bird and
fish species is changing with the climate (Carscadden
et al. 1997, Root et al. 2003, Lehikoinen et al. 2004,
Sims et al. 2004), which may include predators of
hatchling or juvenile marine turtles. Although the
direction and magnitude is difficult to estimate, the rel-
ative type or intensity of predation on hatchling turtles
could change (Fig. 5). During the swim frenzy, hatch-
lings have been shown to swim in directions that
should entrain them in local surface currents (Loh-
mann & Lohmann 2003, 2006), facilitating their move-
ments across ocean basins, and currents may also be
influential in the distribution of juvenile turtles (Bolten
2003, Witt et al. 2007b). Under future predicted scenar-
ios of climate change, with changes in temperature
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Fig. 5. Oceanic-developmental phase of marine turtles.
Recruitment to adult foraging areas occurs at varying dura-
tions (x yr) after development. Dotted grey arrows represent
the potential climate variables and their indirect effects, + or – 

indicates direction of effect
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and freshwater input at the poles, thermohaline circu-
lation patterns are expected to change in intensity and
direction (Rahmstorf 1997, Stocker & Schmittner 1997).
The consequence of such changes for hatchling turtles
are unknown and difficult to estimate, but may mean
that developing turtles do not disperse as widely or to
the same areas as at present (Hamann et al. 2007). This
may have important energetic consequences for hatch-
lings no longer able to rely on passive transport in sur-
face currents for migration.

The factors that determine the duration of the
pelagic developmental phase for juvenile marine tur-
tles are not known, but are likely affected by a combi-
nation of food availability, growth rates, ambient tem-
perature and surface currents (Bolten & Balazs 1995).
Changes to the pelagic community concurrent with
patterns of climate change have been demonstrated
(Greve et al. 2001, Beaugrand et al. 2002, Hays et al.
2005), and they may alter the available prey for juve-
nile turtles, leading to potential trophic mismatch
(Edwards & Richardson 2004). Ultimately, if resources
are more or less abundant than at present, the current
mean period between hatching and recruitment to
larger juvenile/adult foraging areas could change
(Verity et al. 2002). The direction and magnitude of this
change is hard to quantify with currently available
data; the response of marine turtle growth rates and
the productivity of oceanic areas with warmer temper-
atures could be markedly different and likely react at
different time scales.

Adult turtles

Adult leatherback sea turtles (Eckert 2006, McMa-
hon & Hays 2006, Witt et al. 2007a) and some popula-
tions of adult Cheloniid turtles (loggerhead turtles:
Hatase et al. 2002a, 2007, Hawkes et al. 2006, McClel-
lan & Read 2007; green turtles: Hatase et al. 2006,
Seminoff et al. 2007; and olive ridley turtles Lepi-
dochelys olivacea: Polovina et al. 2004, Whiting et al.
2007) forage in the open ocean off the continental shelf
(Fig. 2). Generally, such turtles have broad ranges,
from hundreds to thousands of km2 (Hays et al. 2004,
Hawkes et al. 2006). It is conceivable that such large
ranges could mitigate negative climate effects on for-
aging area, but this remains untested.

Sea surface temperature (SST) is possibly the most
important determinant of Cheloniid turtle distribution
(Milton & Lutz 2003). The influence of sea surface cur-
rents on migratory movements of marine turtles (and
hence their distribution) is not yet well understood, but
may also be important (Luschi et al. 2003a,b, Gaspar et
al. 2006, Hawkes et al. 2006, Bailey et al. 2008, Lam-
bardi et al. 2008, Shillinger et al. 2008). Likewise,

water temperature and current patterns will be impor-
tant determinants of the availability of suitable prey for
these turtle populations, particularly near major frontal
zones where some of these turtle forage. Changes to
major surface currents, such as the Gulf Stream, under
future climate scenarios (Rahmstorf 1997, 1999,
Stocker & Schmittner 1997) may therefore have pro-
found effects.

Dermocheliid turtles

The main prey of leatherback turtles are soft-bodied
jellyfish and medusae (Bjorndal 1997, Davenport 1998,
James & Herman 2001), which are known to respond
sensitively to changes in climate (Beaugrand et al.
2002, Edwards & Richardson 2004), peaking in abun-
dance earlier in the year and possibly in larger num-
bers (Mills 2001, Hays et al. 2005). In addition, McMa-
hon & Hays (2006) showed that the potential range of
occupation by leatherback turtles, based on satellite
telemetry and remotely sensed data, has moved
300 km north in the last 17 yr (see also James et al.
2006). Thus, it is possible that climate change could
benefit this species in the Atlantic. Foraging conditions
in the oceanic zone may affect how often females can
return to breed (Saba et al. 2007, Reina et al. 2009)
and, therefore, govern lifetime reproductive success.
The Pacific Ocean currently exhibits a higher degree
of climatic variability than the Atlantic or Indian
Oceans (Saba et al. 2008, Chavez et al. 2003). Tropical
Pacific circulation patterns have already been docu-
mented as being affected by climatic changes (Vecchi
et al. 2006), with disruption of upwellings and likely
reduced productivity in the region, which are vital for
jellyfish occurrence. For the declining Pacific leather-
back populations (Sarti-Martinez et al. 2007), this
effect of climate change could be significant.

Cheloniid turtles

The diet of pelagic loggerhead turtles and green tur-
tles nesting in the Japanese archipelago has been
examined using stable isotope analysis and is hypoth-
esised to consist of epipelagic prey items (Hatase et al.
2002b, 2006). Likewise, the diet of oceanic olive ridley
turtles is known to consist largely of pyrosomes and
salps (Polovina et al. 2004) and other surface-associ-
ated organisms. Consequently, due to the nature of
their foraging strategy, these turtles are probably fairly
opportunistic with a wider dietary range than is known
for many neritic Cheloniid species (see next section),
which could confer greater adaptive ability than that of
populations with narrower dietary ranges.
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Marine turtles in coastal in-water habitats

Most adult populations of Cheloniid marine turtles
occupy coastal habitats along the continental shelf
(Bjorndal 1997; Fig. 2) where temperatures, surface
currents and foraging depths are suitable for energeti-
cally efficient foraging. Of these factors, temperature
probably best explains marine turtle occurrence, since
all Cheloniid species are ectothermic and tempera-
tures below 10°C can induce ‘cold stunning’ (Milton &
Lutz 2003), a condition that can be lethal. Some popu-
lations of loggerhead turtles make seasonal latitudinal
migrations to forage in waters inhabitable only on a
seasonal basis (Shoop & Kenney 1992, Plotkin &
Spotila 2002, Dodd & Byles 2003, Schroeder et al. 2003,
Ferraroli et al. 2004, Houghton & Hays 2006, Hawkes
et al. 2007a), returning to warmer areas in winter to
enter ‘hibernation’ (Godley et al. 2002b, Hochscheid et
al. 2005, 2007, Broderick et al. 2007, Hawkes et al.
2007a). In Australia, green turtles have been observed
to forage in water temperatures as low as 15°C (Read
et al. 1996). As the climate changes, however, these
seasonal habitats may become less predictable in time
and space (Robinson et al. 2009), and migrations
between the two may become mismatched with likely
environmental cues (e.g. photoperiod). However, ris-
ing temperatures may actually increase the availability
of suitable foraging habitat for many Cheloniid species
and, therefore, their total range, although species dif-
ferences in fidelity to ‘home ranges’ (Renaud & Car-
penter 1994, Broderick et al. 2007) may make this pat-
tern harder to recognise.

Herbivorous turtles

Green turtles are thought to be largely herbivorous
(but see Seminoff et al. 2002) and are known to be
important regulators of sea grass pasture productivity
and biomass in coastal marine habitats (Thayer et al.
1984, Williams 1988, Moran & Bjorndal 2005, 2007,
Kuiper-Linley et al. 2007). Changes in SST, along with
sediment disturbance, altered penetration of ultra vio-
let light, eutrophication and acidification of coastal
waters (Sabine et al. 2004, Hall Spencer et al. 2008),
which are all possible under climate change scenarios,
have been shown to cause changes in the distribution
and types of macroalgal species present in coastal
habitats (Lapointe 1999, Bjork et al. 2008), leading to a
regime shift towards seagrass-dominated communities
(Harley et al. 2006, Hall Spencer et al. 2008). Such an
effect could be beneficial for green turtles, populations
of which have been documented to increase for several
index sites (Chaloupka & Limpus 2001, Balazs &
Chaloupka 2004, Broderick et al. 2006, Chaloupka et

al. 2008). However, it should be noted that seagrasses
themselves could ultimately be negatively affected by
increased temperatures, salinities and other stress fac-
tors; this could alter growth rates, physiology and dis-
tribution (Short & Neckles 1999, Bjork et al. 2008,
Ehlers et al. 2008). In addition, increased runoff due to
increased precipitation and ‘blow out’ events, where
seagrass pastures are effectively cleared by storm
surges, may become more widespread with increasing
severity of extreme weather events. Such events have
been shown to alter habitat heterogeneity and grazing
dynamics for parrot fish species (Macia & Robinson
2005) and could also influence grazing green turtles.
The potential for ecosystem-wide effects of alteration
of either this fundamental and valuable habitat type
(seagrass pastures, Ehlers et al. 2008) or keystone
predator pressure (green turtles) through climate
change is evident (Hamann et al. 2007), but the direc-
tion and magnitude of change is, as yet, difficult to pre-
dict. Some populations of green turtles appear to spe-
cialize in the consumption of algae (Bjorndal 1997) and
mangroves (Limpus & Limpus 2000). It is unknown
how quickly green turtles may be able to adapt their
foraging behaviour to changing availability of sea-
grasses or algae; previous research has suggested that
microbial flora of intestinal tracts of green turtles are
specialized for either seagrasses or algae (Bjorndal
1980, Fuentes et al. 2006).

Spongivorous turtles

The majority of the diet of hawksbill turtles at some
sites is thought to consist of just a few species of
sponges (Meylan 1988, Leon & Bjorndal 2002). Like
herbivorous green turtles, hawksbill turtles may play a
key role in maintaining habitat health by grazing on
coral competitors (Hill 1998, Leon & Bjorndal 2002),
thereby maintaining reef biodiversity. While this nar-
row dietary range in itself may confer some disadvan-
tage in coping with a future changing climate, it is not
known how sponges may react to climate change
effects. Some larger hawksbill turtles may forage deep
in the ‘sponge belt’ (at 80 to 120 m depth, Ghiold et al.
1994, Blumenthal et al. 2008), which may be buffered
from climate fluctuations. Equally important may be
the effect of coral bleaching (Hoegh-Guldberg 1999,
Vincent 2004, Barton & Casey 2005, Gardner et al.
2005, Mora 2007), which can alter reef competition
dynamics to a stable state dominated by macroalgae
(Hughes 1994, Mumby et al. 2007). The relative abun-
dance of sponges under these alternate stable states,
however, is not well understood, but the possibility
remains that an increase in sponge abundance could
result, which may be beneficial for hawksbill turtles.
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Increases in hawksbill nesting numbers in some areas
(Garduno-Andrade et al. 1999, Richardson et al. 2006,
Beggs et al. 2007, Marcovaldi et al. 2007) despite con-
cerns related to reef health (Gardner et al. 2005) could,
in part, be reflective of increased forage availability
and warrants further investigation. In addition, alter-
ations in the phenology of plankton abundance (Beau-
grand et al. 2002) could potentially disrupt trophic
relationships for filter feeding species, such as
sponges. Further, ocean acidification (Hall Spencer et
al. 2008) could reduce the ability of reefs to calcify and
grow (Hoegh-Guldberg et al. 2007), which may further
compromise the competitive ability of corals and have
effects on reef dynamics. The dietary breadth of
hawksbill turtles is as yet understudied.

Omnivorous turtles

For the majority of loggerhead, Kemp’s ridley, olive
ridley and flatback Natator depressus turtle popula-
tions that have been studied in coastal waters, known
prey species consist of a variety of benthic dwelling
invertebrates (Bjorndal 1997). These omnivorous tur-
tles likely consume a wider variety of prey types than
either green or hawksbill turtles (Bjorndal 1997).
Although profound changes to benthic communities,
including trophic uncoupling, are likely under warmer
climate conditions (Sims et al. 2001, Schiel et al. 2004,
Perry et al. 2005), omnivorous species are probably
less likely to suffer prey shortage than species with
narrow or specific diets. This may already be evident
in the seasonality and numbers of turtles nesting annu-
ally at key sites; Broderick et al. (2001b) showed that
inter-annual variability in nesting numbers was
greater for herbivorous green turtles than omnivorous
loggerheads. However, Chaloupka et al. (2008)
showed that, for the northwestern Pacific, there were
lower numbers of nesting loggerhead turtles when the
mean annual sea surface temperatures in the core for-
aging ground in the preceding year were higher.

Research priorities and knowledge gaps

Overall, climate change could supersede current
documented threats posed to marine turtle populations
(e.g. bycatch in fisheries: Lewison et al. 2004; habitat
destruction: Myers & Ottensmeyer 2005; pollution:
Derraik 2002). Longitudinal data, describing nesting
and foraging behaviour, exist for various species and
should be integrated with climate change information
to increase our understanding of the likely effects of
climate change. In particular, we suggest 4 key
research areas that should be addressed:

(1) How will climate change affect the ecology of key
habitats on which turtles are thought to depend (e.g.
sea grass pastures for green turtles, coral reef systems
for hawksbill turtles)? How will these changes affect
population dynamics of marine turtles?

(2) What is the potential for marine turtles to mitigate
the effects of increasing air and sea temperatures and
cope with loss of current nesting beaches by nesting at
alternative, but suitable sites? What other behaviours
could be adapted within the time scale of individual
life spans?

(3) What is the current primary sex ratio of females to
males from which to measure future, climate-induced
changes, what are secondary sex ratios and how many
males are necessary to maintain a fertile and produc-
tive population (and to what extent can manipulation
of sex ratios produce successful results — Girondot et
al. 1998)? What degree of plasticity for adaptation
exists within the physiological mechanism of tempera-
ture-sensitive sex determination?

(4) How will climate change affect turtles at sea in
terms of their distribution (range shifts), behaviour
(phenology) and dietary breadth? How will this differ
for turtle species and what levels of potential resilience
might this confer?

An increased understanding of these ecological
effects of climate change on marine turtles would
inform conservation and management practices and
may be key in supporting mitigation work (e.g. protec-
tion and preservation of key nesting or feeding sites;
Brooke 2008, Robinson et al. 2009). Meanwhile, con-
servation strategies at turtle rookeries should focus on
the managed retreat and preservation of coastlines
used by marine turtles, as well as the particular protec-
tion of nesting beaches thought to produce male hatch-
lings. Increased impacts on marine turtles from climate
change in the future may require more active manage-
ment measures, such as creating cooler egg incubation
temperatures (e.g. by sprinkling water on incubating
nests, Naro-Maciel et al. 1999), actively relocating
clutches to cooler beaches (Shaver 2005), and com-
pletely reducing all other anthropogenic threats (Lut-
cavage et al. 1997).

CONCLUSION

The 7 extant species of marine turtle have survived
paleo-climatic regimes including dramatic tempera-
ture fluctuations (Hamann et al. 2007), but the mecha-
nisms and speed with which they have coped in the
past is not known. It is likely that many current nesting
beaches, migratory routes and foraging grounds are
radically different to even 10000 yr ago (FitzSimmons
et al. 1999, Hamann et al. 2007). However, future cli-
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mate change is anticipated to occur at unprecedented
rates and the resilience with which marine turtles may
be able to cope with the predicted change is uncertain.
Ultimately, if turtles cannot adapt to the effects of cli-
mate change through combination of physiological
and behavioural mechanisms, they could face local to
widespread extirpation without zealous management.
Turtles migrate and forage over huge spatial scales,
which may also confer greater resilience and adaptive
capacity to the negative effects of climate change.
Despite the small number of marine turtle species,
their life history is challenging to study. Consequently,
supporting data are few with which to predict the
likely results of future changing climate with any con-
fidence. Longitudinal data sets describing marine tur-
tle distribution, nesting (including all reproductive
parameters addressed in this review), and foraging
should be integrated across populations with increas-
ingly reliable empirical and modelled climate informa-
tion to work towards assessments of adaptive capacity
and resilience of marine turtles to climate change
(Williams et al. 2008).
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