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Marine heatwaves under global warming
Thomas L. Frölicher1,2*, Erich M. Fischer3 & Nicolas Gruber4

Marine heatwaves (MHWs) are periods of extreme warm sea surface 
temperature that persist for days to months1 and can extend up to 
thousands of kilometres2. Some of the recently observed marine 
heatwaves revealed the high vulnerability of marine ecosystems3–11 
and fisheries12–14 to such extreme climate events. Yet our knowledge 
about past occurrences15 and the future progression of MHWs is 
very limited. Here we use satellite observations and a suite of Earth 
system model simulations to show that MHWs have already become 
longer-lasting and more frequent, extensive and intense in the 
past few decades, and that this trend will accelerate under further 
global warming. Between 1982 and 2016, we detect a doubling 
in the number of MHW days, and this number is projected to 
further increase on average by a factor of 16 for global warming of  
1.5 degrees Celsius relative to preindustrial levels and by a factor 
of 23 for global warming of 2.0 degrees Celsius. However, current 
national policies for the reduction of global carbon emissions are 
predicted to result in global warming of about 3.5 degrees Celsius 

by the end of the twenty-first century16, for which models project 
an average increase in the probability of MHWs by a factor of 41. At 
this level of warming, MHWs have an average spatial extent that is 
21 times bigger than in preindustrial times, last on average 112 days 
and reach maximum sea surface temperature anomaly intensities 
of 2.5 degrees Celsius. The largest changes are projected to occur in 
the western tropical Pacific and Arctic oceans. Today, 87 per cent of 
MHWs are attributable to human-induced warming, with this ratio 
increasing to nearly 100 per cent under any global warming scenario 
exceeding 2 degrees Celsius. Our results suggest that MHWs will 
become very frequent and extreme under global warming, probably 
pushing marine organisms and ecosystems to the limits of their 
resilience and even beyond, which could cause irreversible changes.

There is mounting evidence that global warming is leading to more 
frequent and intense heatwaves over land, increasing the risk of severe 
and in some cases irreversible impacts17. In comparison, we know 
much less about how heatwaves in the ocean unfold in time and what 
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Fig. 1 | Simulated changes in MHW characteristics for different levels  
of global warming. a, c–f, Results are shown for the global aggregated 
annual mean probability ratio (a), duration (c), maximum intensity (d),  
cumulative mean intensity (e) and fraction of attributable risk (f) of 
MHWs exceeding the 99th preindustrial percentile. b, Ratio of the 
mean spatial extent at global warming conditions to that at 1861–1880 
conditions. In all panels, the simulated MHW characteristics are 
plotted against simulated global mean atmospheric surface temperature 
changes since 1861–1880. The thinner lines represent individual model 

projections, whereas the thicker lines represent multi-model averages 
for the RCP 8.5 and RCP 2.6 scenarios. For all models, the historical 
simulations are merged with the RCP 2.6 and RCP 8.5 simulations. The 
time series are smoothed with a 20-year running mean and the year labels 
represent the central year of two decades. The cumulative CO2 emissions 
(orange; in gigatons of C) corresponding to different global warming 
levels are shown in a, approximated using the RCP 8.5 ensemble average 
(see Methods).
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the associated impacts are. Although there is a rapidly growing litera-
ture on individual events3,5,8,10,12, the underlying drivers and the degree 
to which they can be attributed to global warming10,18 are currently not 
well known. This knowledge gap is of considerable concern given the 
high vulnerability of marine ecosystems and fisheries, but also human 
societies, to such events19.

One of the first documented impacts of an MHW was the 
Mediterranean Sea heatwave event in 2003, which led to extensive mor-
tality of benthic marine communities11. Other prominent examples are 
the record-high ocean warming off the coast of Western Australia in 
early 201120, the 2012 MHW in the northwest Atlantic12, the persis-
tent 2013–2015 extreme warm anomaly of the northeastern Pacific21 
and the 2015/2016 record-warm anomaly across most of the tropical 
and extratropical oceans22. MHWs have caused changes in biological 
production, toxic algal blooms7, regime shifts in reef communities4,8, 
mass coral bleaching9 and mortalities of commercially important fish 
species13, with cascading impacts on economies and societies12.

Here, we detect past changes and assess future ones in different 
MHW characteristics using (i) remotely sensed daily global sea surface 
temperature (SST) data22 covering the period 1982–2016, and (ii) daily 
output from twelve fully coupled global Earth system models (ESMs) 
covering the period 1861–2100 (see Methods). We identify an event as 
an MHW when the SST exceeds its local 99th percentile, as determined 
from daily data from either preindustrial model output or from satellite- 
based observations and model output over the 1982–2016 period. We 
then quantify the annual mean probability ratio (the fraction by which 
the number of MHW days per year has changed), relative change in 
the annual spatial extent (the average area of an individual heatwave), 
maximum annual intensity (maximum exceedance of the 99th percen-
tile), annual mean duration (number of days of exceedance) and annual 
cumulative mean intensity (the product of the duration and the mean 

intensity of exceedance). We analyse three distinct periods: the prein-
dustrial period (Fig. 1), the satellite data taking period (1982–2016; 
Fig. 2) and the future (Figs. 1, 3). We focus on summertime MHWs 
(that is, hottest days of the year), as many biological processes depend 
on the absolute temperature. The definition of MHWs needs to be 
altered, however, when MHWs in colder months can have an impact 
on biological processes23.

In preindustrial times, the ESMs suggest that a typical MHW (with 
reference to preindustrial climatology) lasted 11 days (intermodel 
range, 6–14 days), had an intensity of up to 0.4 °C (0.3–0.5 °C) and 
a cumulative mean intensity of 3 °C d (2–4 °C d) (Fig. 1, Extended 
Data Table 1). MHWs occur coherently with a typical spatial extent 
of 4.2 × 105 km2 (1.2 × 105–7.0 × 105 km2). Under the present-day 
1 °C global warming scenario, these models project a nine-fold (6–12) 
increase in the probability of occurrence of an MHW and a three-
fold (1–3) increase in its spatial extent. Further, they project that the 
duration and the maximum annual and cumulative mean intensity 
have increased to 25 days (15–33 days), 0.8 °C (0.6–1 °C) and 13 °C d 
(8–18 °C d), respectively.

These century-scale changes can be put into perspective by deter-
mining the trend that they imply  over the 35-year period 1982–2016, 
for which we have satellite observations. To this end, we change the 
reference for the definition of MHWs to this period. This has virtu-
ally no impact on trend computation, but affects the magnitude of 
the MHW characteristics. Over these 35 years, the models simulate 
mean changes in the probability ratio and maximum annual intensity 
of +2.0 (1.1–2.8), +0.07 °C (−0.01 °C to 0.15 °C), respectively, and rel-
ative changes in the annual spatial extent of +0.53 (0.17–1.00) (thick 
red lines in Fig. 2). These multi-model mean trends are at the high 
end or outside the range of those expected from internal variability 
(histograms in Fig. 2d–f), which is determined from the preindustrial 

Fig. 2 | Observed and modelled trends in MHW characteristics over 
the satellite data taking period. a–c, The black lines show the observed 
changes in the global aggregated probability ratio (a), maximum annual 
intensity (b) and the ratio of the annual spatial extent at different years to 
that at 1982–2016 conditions (c) of MHWs exceeding the 1982–2016 99th 
percentile. The thick red lines indicate the simulated multi-model mean 
changes and the thin red lines the individual models of MHWs exceeding 
the 1982–2016 99th percentile. The observed global mean SST changes 
since 1982–2016 are shown in a as a black dashed line. d–f, The histograms 
show simulated 35-year trends of MHW characteristics in the preindustrial 

control simulations (see Methods for calculation details). The black and 
red vertical lines show the 35-year observed and simulated trends in 1982–
2016 of MHWs exceeding the 1982–2016 99th percentile, and the blue 
vertical lines show the 99th percentile (labelled as ‘99P’) of the probability 
density distribution of the preindustrial control simulation trends. The 
relative changes in the annual spatial extent are calculated as the ratio 
between the actual mean spatial extent and the average over the 1982–2016 
period. Only simulations following the RCP 8.5 scenario are considered 
here because they best represent observed greenhouse gas emissions  
since 2006.
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control simulations. This indicates that the climate change signal could 
be strong enough to be detected in observations.

The corresponding 35-year trends in the satellite observations (thick 
black lines in Fig. 2d–f) are of similar magnitudes as the simulated ones 
(red lines in Fig. 2d–f). The observations reveal a significant increase 
in the probability ratio (+1.29 ± 0.28 per 35 years; P < 0.01 using a 
two-sided t-test), maximum intensity (+0.15 ± 0.05 °C per 35 years; 
P < 0.01) and spatial extent (+0.66 ± 0.13 per 35 years; P < 0.01) (thick 
black lines in Fig. 2). These observed trends are statistically significantly 
outside the model-based estimate of trend variability arising from inter-
nal variability, but are within the simulated intermodel uncertainty for 
trends arising from simulations that include anthropogenic forcing 
(thin red lines in Fig. 2d–f). Assuming that the model-based estimate 
of internal variability is accurate, we can conclude with high confidence 

that the observed trends in the MHW days, maximum intensity and 
spatial extent of MHWs are largely caused by long-term ocean warm-
ing. Support for this conclusion comes from the fact that SST variations 
have also a large effect on the year-to-year variability of the different 
MHW characteristics. The observed temporal evolution of the annual 
mean SST (black dashed line in Fig. 2a) has strong correlations with 
the probability ratio (r2 = 0.66 for global SST and probability ratio) and 
the spatial extent (r2 = 0.65) of MHWs, but relatively weak correlation 
with their maximal intensity (r2 = 0.36).

The satellite records allow us also to assess the characteristics of  
the modelled MHWs, allowing us to establish confidence levels for 
the projections. The modelled spatial pattern in the probability ratio, 
maximum intensity and the frequency distribution of the spatial extent 
of MHWs are comparable to the observed ones over the satellite data 
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Fig. 3 | Regional changes in probability of MHW days for different 
global warming levels. a–d, Changes in the probability of MHW days 
exceeding the preindustrial 99th percentile for a global warming level of 
1 °C (a), 2 °C (b) and 3.5 °C (c). To show that the occurrence of MHWs is 
mainly driven by a simple shift of the whole temperature distribution, in d 
we have added the local annual SST change that is consistent with a 3.5 °C 
global warming to the preindustrial SST distribution. e–h, Changes are 
regionally aggregated over the western Pacific warm pool (e), the Arctic 
Ocean at >75° N (f), large marine ecosystems (g) and the Southern Ocean 
at 45° S–65° S (h). Box plots indicate the multi-model mean, minimum 
and maximum changes in probability, and their colour indicates the value 

of the probability ratio, using the same colour coding as for a–d. Black 
bars represent the multi-model minimum and maximum of the global 
averaged probability changes. In d, the western Pacific warm pool region 
is highlighted by a purple solid contour and the large marine ecosystems 
are shown with black contours adjacent to the continents in coastal waters. 
The grey contours in a–d highlight pattern structures. The large marine 
ecosystems provide 95% of the world’s annual marine fishery yields30 
and have been developed to enable ecosystem-based marine resource 
management within ecologically bounded transnational areas.  
The maps were created using the NCAR Command Language  
(https://www.ncl.ucar.edu).
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taking period (Extended Data Figs. 1, 2), giving us confidence in the 
corresponding projections. By contrast, the duration, cumulative mean 
intensity and absolute spatial extent of the MHWs are less well captured 
by the models, with substantial biases in the corresponding patterns 
(Extended Data Figs. 1, 2). This indicates that we need to be more 
careful when interpreting the modelled changes of these characteristics.

For the future and all ocean basins, the ESMs project more  
frequent, extensive, intense and longer-lasting MHWs (Fig. 1a–e, Fig. 3, 
Extended Data Tables 1, 2 and Extended Data Fig. 3) (here the refer-
ence period is set back to preindustrial times). The magnitude of these 
changes scales with the global mean temperature and the cumulative 
CO2 emissions that drive this global warming (Fig. 1). This scaling 
is independent of the warming path, that is, it does not depend on 
whether a particular warming is reached sooner (RCP 8.5, high- 
emission scenario; see Methods) or later (RCP 2.6, low-emission  
scenario compatible with the Paris Agreement). It also does not depend 
on the reference period, as the use of the satellite reference period 
would only shift this curve slightly to the left (Extended Data Fig. 4a). 
This allows us to assess the future projections in terms of warming 
levels rather than the time when this warming is reached.

For 3.5 °C warming, the probability of occurrence of an MHW is 41 
times (intermodel range, 36–45 times) higher than in preindustrial 
times (Fig. 1a, Extended Data Table 2). In other words, a one-in-a-
hundred-days event at preindustrial levels is projected to become a 
one-in-three-days event at this level of global warming. The spatial 
extent of the annual mean is projected to become 21 (15–29) times 
larger, its duration to increase to 112 days (92–129 days), and its maxi-
mum intensity to rise to 2.5 °C (2.1–2.9 °C) (Fig. 1b–d, Extended Data 
Table 1). The projected increase in maximum intensity is smaller than 
the increase in global mean temperature owing to the substantially 
lower rate of warming by the surface ocean compared to land. The 
increase in the duration and intensity also leads to a strong increase in 
the cumulative mean intensity of MHWs of 164 °C d (126–214 °C d) 
(Fig. 1e, Extended Data Table 1).

These large increases in the different MHW characteristics are sub-
stantially reduced if warming is kept below 2 °C, or even below 1.5 °C. 
The probability of occurrence for an MHW under the 1.5 °C warming 
scenario is only 40% of that under 3.5 °C warming. The relative change 
in the spatial extent of a typical MHW would be 25%, the duration 35% 
and the maximum intensity 45% of those at 3.5 °C.

The probability of MHWs is projected to increase almost every-
where, and the increase is largest in the tropics and the Arctic Ocean 
and smallest in the Southern Ocean (Fig. 3). The main reason for the 
large changes in probability in the tropics, and especially in the western 
Pacific warm pool, is the small variations in SST in these areas, both 
seasonally and from year to year24. As a result, the same changes in 
annual mean SST lead to much larger changes in the probability of 
exceeding the 99th percentile. The same applies to the Arctic Ocean, 
where SST variations below year-round sea ice are very small25. This is 
in contrast to the Southern Ocean, where surface waters are projected to 
stay relatively cool, and therefore the probability ratio does not increase 
much under all warming levels. The projected increase in the probabil-
ity of MHWs in the coastal large marine ecosystems (indicated as black 
coastal regions in Fig. 3d) has similar magnitude to the global increase 
under 2 °C warming.

Because of the large increase in the probability ratio with warming, 
the simulated fraction of attributable risk—that is, the anthropogenic 
contribution to the probability of an event—reaches 0.87 (0.78–0.91) 
already under a present-day level of 1 °C warming (Fig. 1f, Extended 
Data Table 2). This implies (under the assumption that the models sim-
ulate naturally occurring MHWs with fidelity) that 87% of the currently 
occurring MHWs (defined relative to preindustrial conditions) can be 
attributed to global warming. Because this warming is primarily driven 
by anthropogenic emissions of greenhouse gases26, there is a direct 
link between human action and the simulated increase in MHWs; this 
supports our conclusion drawn from the satellite data. Clearly, any spe-
cific MHW event still arises from the natural variability in the climate 

system, but the present-day level of global warming has substantially 
increased the odds of an MHW to occur. The simulated fraction of 
attributable risk approaches unity (0.94–0.97) already at 2 °C, implying 
that essentially all MHWs are due to anthropogenic warming at this or 
higher levels of warming.

The changes in the occurrence of MHWs are mainly driven by the 
global-scale shift in mean SSTs. We demonstrate this by adding the sim-
ulated spatial warming pattern that is consistent with a global warming 
of 3.5 °C to the results from the preindustrial control run (Fig. 3d). 
This yields probability ratio values and patterns that are similar to the 
results from the transient simulations. It also implies that changing the 
reference period would not change the relationship between the differ-
ent MHW characteristics and the amount of warming (Extended Data 
Fig. 4a). A notable exception is the northern Arctic Ocean, where the 
SST remains close to freezing temperature during boreal winter months 
even under the RCP 8.5 scenario25. This slightly damps the increase in 
the probability ratio that would be expected from a global-scale shift 
in the mean SST.

An important assumption in our analyses is that the employed ESMs 
simulate MHWs in a sufficiently realistic manner. We consider our 
results for the probability ratio, maximum intensity and the relative 
changes in the spatial extent of MHWs to be robust, especially given 
the good agreement with observations (Fig. 2 and Extended Data 
Fig. 1) and the relatively small intermodel spread in MHW projections. 
However, the simulated MHWs last generally longer and are spatially 
more extensive than observed ones (Extended Data Fig. 1, 2), which is 
probably caused by the relatively coarse resolution of the ESMs. High-
resolution coupled models are needed to resolve mesoscale processes 
in the atmosphere and the ocean that may be critical to improve the 
representation of the duration and spatial extent of MHWs. In addition, 
the conclusion that global warming will lead to a strong increase in all 
MHW characteristics does not depend on how an MHW is defined 
(Extended Data Fig. 5), but the quantitative results of MHWs can vary 
substantially with that definition.

An increase in MHWs will probably increase the risk of severe, 
pervasive and long-lasting impacts on marine organisms8, especially 
on those with reduced mobility and high vulnerability, such as coral 
reefs, and those living at low latitudes, where many marine species live 
close to their upper thermal limits27. However, the responses of marine 
organisms and ecosystems to MHWs can be variable and difficult to 
predict owing to species- and system-specific responses28,29. Therefore, 
better understanding of the response of marine organisms and eco-
systems to MHWs and extreme events in other stressors is urgently 
needed to assess the full risk for marine organisms and ecosystems 
under global warming.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
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Methods
We analyse daily SST and surface atmospheric temperature data from simulations 
(using the first ensemble member, r1i1p1) of twelve coupled ESMs that were con-
sidered in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) 
and for which the output necessary to analyse changes in daily SST was available  
(Extended Data Table 3). All model simulations were run over the historical 1861–
2005 period and over the 2006–2100 period, following both a high-emission sce-
nario (RCP 8.5; RCP, representative concentration pathway) and a low-emission 
scenario compatible with the Paris Agreement (RCP 2.6).

In addition, we use the National Oceanic and Atmospheric Administration’s ¼° 
daily optimum interpolation SST dataset22,31 version 2.0, obtained by the Advanced 
Very High Resolution Radiometer and covering the period 1 January 1982 to  
31 December 2016 (www.ncdc.noaa.gov/oisst/; accessed on 6 July 2017). The 
dataset combines observations from different platforms, such as satellites, ships 
and buoys, and includes bias adjustment of satellite and ship observations to 
compensate for platform differences and sensor biases. For comparison with the 
coarse-resolution models, the 0.25° × 0.25° satellite data were regridded daily onto 
a regular 1° × 1° grid by averaging over the 1°-grid cells before calculating the 
characteristics of the MHW.

We define an event as an MHW when the daily SST exceeds the 99th percentile 
(a one-in-a-hundred-days event). We test the sensitivity of the results by also using 
the 90th (a one-in-ten-days event), the 99.9th (a one-in-2.74-years event) and 
the 99.99th (a one-in-27.4-years event) percentiles (Extended Data Fig. 5). The 
percentiles are calculated for each grid cell from multi-centennial preindustrial 
control simulations (most simulations are for 500 years or longer). This ensures 
that even the local 99.99th percentile is well defined. The same preindustrial con-
trol simulation is used to define the reference global mean temperature relative 
to which the warming targets are computed. Changing the reference period to 
present-day (that is, 2007–2026; ±10 years centred on today) would just shift the 
values on the x axis in all panels of Fig. 1, but would not change the relationship 
between the different MHW characteristics and the amount of global warming 
(Extended Data Fig. 4a). Because some models have constant year-round SSTs 
in a few grid cells under sea ice in the preindustrial control simulations, grid cells 
in which the average yearly number of MHWs over the entire control simulation 
deviates by more than 5% from the theoretical number (for example, 3.65 days for 
the 99th percentile) are masked out. For the analysis of atmospheric heatwaves 
over land, we use the same definition as for MHWs. For analysis over the satellite 
data taking period, we use the entire 1982–2016 period as the baseline period for 
both the models and the satellite data.

The usage of a percentile-based threshold allows the quantification of MHWs 
across locations that differ in variability. An absolute threshold would only be 
relevant in terms of impacts in some regions but not in others. By using per-
centile-based characteristics, no assumption is made regarding the underlying 
probability temperature distribution, and potential model-observation biases in 
the mean and higher-order statistical moments of the probability temperature 
distribution are implicitly taken into account. This increases our confidence in 
the simulated probability ratio, but the simulated spatial extent and duration (and 
intensity) of MHWs may still differ from observations. Our definition differs 
from that proposed by Hobday et al.2, who define an MHW by using a much 
lower seasonally varying percentile threshold (90th rather than 99th), but impose 
a duration of at least five days. Relative to the results obtained with our definition, 
the definition of Hobday et al. would lead to an increase of the number of heat-
wave days, including the cold seasons, because the vast majority of our heatwaves 
last longer than five days. However, using their definition would not change our 
conclusion about the robust increase in all MHW metrics under global warming, 
because this result is essentially insensitive to the percentile threshold that we 
choose (Extended Data Fig. 5).

For each MHW, we calculate a series of characteristics, such as the duration 
(in days; number of days of percentile threshold exceedance), the maximum 
intensity (in °C; maximum SST anomaly with respect to the percentile thresh-
old over the duration of the heatwave), the spatial extent (in km2), the cumu-
lative mean intensity (in °C d; the mean intensity multiplied with the duration  
of an event), and the probability ratio, PR = P1/P0, where P1 is the probability 
of exceeding a relative threshold at any given point in time (for example, today)  
and P0 the probability of exceeding that threshold during the preindustrial control 
or satellite climatological period. The cumulative mean intensity may indicate  
the integrated impact of an MHW on an organism’s health—a similar measure,  
the degree heating days or weeks, is commonly used to identify areas where sub-
stantial coral bleaching is likely to occur32. We then calculate annual statistics, 
including the number of MHW days per year, the changes in the annual averaged 
spatial extent of an MHW relative to 1861–1880 or the satellite climatological 
period, the annual mean duration of single contiguous MHW events in a given 
year, the maximum annual intensity, the annual mean cumulative mean inten-
sity and the annual mean fraction of attributable risk (FAR = 1 − P0/P1)10,18,33–36. 

Because the observed global warming primarily results from human influence,  
we can attribute the changes in the occurrence of MHWs to human-induced  
global warming33. The FAR was initially introduced to represent a fraction of the 
probability of individual observed events33,37. Here, we extend the FAR framework 
to the global scale34,38,39 to represent the probability for a class of events exceeding 
a certain threshold over the globe. For a given MHW, the probability ratio can 
be interpreted as a change in the odds of the occurrence of local SST anomalies 
exceeding a certain local threshold. The regional or global aggregated probability 
ratio expresses a change in the global occurrence of SST anomalies exceeding local 
thresholds.

We calculate the MHW properties by using slightly different frameworks. 
The probability ratio, maximum intensity, duration, cumulative mean intensity 
and FAR are defined when local (grid-cell) SST exceeds the local 99th percentile 
and where adjacent grid cells can have different values. The intensity and dura-
tion refers to the properties of a contiguous event, but the probability ratio refers 
to MHW days per year, regardless of how they are distributed across different 
events. For the spatial extent, we aggregate adjacent grid cells that are above the 
99th percentile together to form a single event. To calculate the spatial extent of 
individual MHWs, we isolate the individual MHWs per day using the function 
skimage.measure.label of the Python image processing tool scikit-image. The global 
estimate of these characteristics is calculated with an area-weighted average across 
all ocean grid points in each year from 1861 to 2100. All MHW characteristics are 
calculated on the native model grid, which differs in resolution across the models, 
but multi-model means and globally aggregated characteristics are calculated and 
shown on a regular 1° × 1° grid.

We usually express the changes in MHW characteristics as changes for par-
ticular global warming levels (that is, 1 °C, 2 °C and 3.5 °C). These global warming 
levels are calculated for each model and scenario individually by subtracting the 
simulated global annual mean atmospheric surface temperature, averaged over 
the 20-year period centred around the year when the respective global warming 
level is reached, from the simulated global mean atmospheric surface temperature 
averaged over the 1861–1880 period.

The cumulative CO2 emissions corresponding to the different global warming 
levels (orange ticks on horizontal axis in Fig. 1a) are approximated using calculated 
cumulative CO2 emissions from the RCP 8.5 average of eight models for which 
necessary data were available (Extended Data Table 3). This means that 500 Gt C 
corresponds to 1.6 °C, 1,000 Gt C to 2.8 °C, 1,500 Gt C to 4.0 °C and 2,000 Gt C 
to 4.9 °C. No uncertainties are assigned to these values. We note that these eight 
models as a class have a relatively low transient climate response to cumulative 
carbon emissions, and therefore cumulative carbon emission estimates for a certain 
global warming level are relatively large40.

To test whether the observed multi-decadal trends over the satellite data taking 
period are different from what would be expected from internal variability, we 
compare the observed global aggregated trends in the probability ratio, maximum 
intensity and spatial extent with the probability density function of 35-year-long 
trends derived from the 12 multi-century control simulations of the different ESMs. 
In total, we calculated 6,460 35-year trends.

We also used a ten-member ensemble simulation of the NCAR-DOE CESM 
model34 to show that internal variability may induce uncertainty at the local level, 
but plays a negligible role in explaining the global changes in the different MHW 
characteristics, as all ten realizations yield very similar results (Extended Data 
Fig. 4). We also show that our simulated changes in the MHW characteristics do 
not depend on the choice of calculation method for the climatological 99th percen-
tiles. In fact, the simulated changes in the MHW characteristics are similar when 
determining the local 99th percentiles from a simulation of the GFDL ESM2M 
model forced with observed solar and volcanic boundary conditions but with 
greenhouse gases and aerosols concentration set to preindustrial levels (Extended 
Data Fig. 6). Only the NCAR-DOE CESM and GFDL ESM2M models provide the 
daily output necessary to analyse the sensitivity of the results to internal variability 
and to the calculation of the climatological baseline period.

We used the western equatorial Pacific biome definition of Fay and McKinley41 
to highlight the western Pacific warm pool region in Fig. 3. The biogeographical 
biomes in ref. 41 are defined by distinct SSTs, maximum mixed-layer depths and 
summer chlorophyll concentrations, and capture patterns of large-scale biogeo-
chemical function at the basin scales.

Under any level of warming, MHWs are projected to occur much more fre-
quently than land-based heatwaves (Extended Data Table 2). The probability of 
MHW days is about 1.6 times higher than that for land-based heatwave days under 
2 °C global warming, even though the global SSTs are projected to increase by 
only 0.55 °C per degree of surface air temperature warming over land (Extended 
Data Fig. 7). The larger increase in the probability ratio is obtained because the 
temperature variability over land is much larger than over the ocean19, leading to 
a smaller signal-to-noise ratio. This is evidenced by the 8.0 °C difference between 
the 99th percentile and the annual mean air temperature averaged over the global 
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land surface at preindustrial times, which is much larger than the 3.7 °C difference 
over the ocean.

In general, the probability ratio, and therefore also the FAR, increase the most 
for very rare extremes (Extended Data Table 2); that is, they increase much more 
if MHWs are defined with more extreme preindustrial percentile thresholds 
(Extended Data Fig. 5). For example, the probability ratio is 9 (intermodal range, 
6–12) for moderate MHWs (defined with the 99th preindustrial percentile) and 
141 (47–296) for the rarest MHWs (99.99th preindustrial percentile) under 1 °C 
global warming.
Code availability. The code used to produce the figures in this paper is available 
from the corresponding author upon request.
Data availability. The CMIP5 data used for this study can be accessed at http://
pcmdi9.llnl.gov/ and the satellite SST observations can be accessed at www.ncdc.
noaa.gov/oisst/. Other datasets generated during the current study are available 
from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Observed and simulated MHW characteristics 
exceeding the 1982–2016 99th percentile, averaged over the 1982–2016 
period. a, b, Differences between the 99th percentile in SST and the 
annual mean SST. c, d, Annual mean duration of MHWs. e, f, Maximum 
annual intensity of MHWs. g, h, Annual cumulative mean intensity of 

MHWs. Satellite-derived patterns (a, c, e, g) and CMIP5 multi-model 
mean patterns (b, d, f, h). The black contours in all panels highlight the 
pattern structures. The spatial correlation between the CMIP5 multi-
model mean and the satellite-based estimates is r2 = 0.80 for a and b,  
r2 = 0.15 for c and d, r2 = 0.43 for e and f, and r2 = 0.18 for g and h.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 2 | Spatial extent of observed and simulated MHWs 
over the satellite data taking period. a, Histogram of the spatial extent 
of satellite-observed MHWs above the climatological (1982–2016) 99th 
percentile for the 1982–1998 (blue) and 1999–2016 (red) period. b, The 
spatial pattern of the MHW with the largest extent in the satellite data 
taking period (1982–2016), which occurred on 2 September 2015 in the 
North Pacific and was associated with the ‘the Blob’21. It had a spatial 
extent of about twice the area of the United States (that is, 1.85 × 107 km2). 
Shown are SST anomalies above the 1982–2016 climatological 99th 
percentile on 2 September 2015. The colour bar shows degrees Celsius. 
c, Comparison between satellite-based observations (black line) and 
simulations (red histogram) of the spatial extent of MHWs above the 
climatological 99th percentile over the 1982–2016 period. The number of 
MHWs (y axis) is normalized with the total number of MHWs. Deeper red 
colour indicates a greater number of overlapping models.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 3 | Simulated multi-model mean changes in 
different MHW characteristics exceeding the preindustrial 99th 
percentile since preindustrial times for different global warming levels. 
a–l, Changes in the maximum annual intensity (a, d, g, j), annual mean 

duration (b, e, h, k) and annual cumulative mean intensity (c, f, i, l) of 
MHWs for global warming of 1 °C (a–c), 1.5 °C (d–f), 2 °C (g–i) and  
3.5 °C (j–l). The black contours highlight the pattern of changes.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 4 | Simulated changes in different MHW 
characteristics exceeding the preindustrial 99th percentile. The data 
were obtained from a 10-member ensemble simulation with NCAR-DOE  
CESM34. a–d, The probability ratio (a), annual mean duration (b), 
maximum annual intensity (c) and annual cumulative mean intensity (d)  
of MHWs. The black lines show the individual ensemble members. The 
red line in a shows the probability ratio versus global warming for a 

reference period that is defined as the 99th percentile over the 2007–2026 
period, obtained using all ten ensemble members. The ensemble members 
are initialized from different starting points (ocean, sea ice, land and 
atmosphere) in the preindustrial control simulation. The simulations 
follow the RCP 8.5 scenario over the 21st century. The time series are 
smoothed with a 20-year running mean.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 5 | Simulated changes in MHW characteristics for 
different global warming levels and different extreme thresholds.  
a, c–e, Global annual mean probability ratio (a; logarithmic scale), 
duration (c), maximum intensity (d) and cumulative mean intensity (e) of 
MHWs versus different extreme thresholds for different changes in global 

mean surface air temperature. b, Changes in the ratio of the mean spatial 
extent of MHWs between global warming conditions and 1861–1880 
conditions. Simulations following only the RCP 8.5 scenario are shown. 
The shaded areas indicate the maximum range simulated by the CMIP5 
models.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 6 | Comparison between simulated changes in 
MHW characteristics exceeding the 99th percentile from a natural-
forcing simulation and from a preindustrial control simulation using 
GFDL ESM2M forced with the RCP 8.5 scenario over the 21st century. 
a–d, The probability ratio (a), annual mean duration (b), maximum 
annual intensity (c) and annual cumulative mean intensity (d) of MHWs. 

The red line shows the simulated changes exceeding the 99th percentile 
from a natural-forcing simulation of GFDL ESM2M forced with observed 
solar and volcanic boundary conditions, but with greenhouse gases and 
aerosol concentrations set to preindustrial. The black line shows the 
simulated changes exceeding the preindustrial 99th percentile. The time 
series are smoothed with a 20-year running mean.
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Extended Data Fig. 7 | Simulated changes in global SST as a function 
of global surface air temperature over land. The light red and blue lines 
represent individual model projections, whereas the dark red and blue 

lines represent multi-model averages for the RCP 8.5 (red) and RCP 2.6 
(blue) scenarios. The time series are smoothed with a 20-year running 
mean. The grey dashed 1:1 line is shown for reference.
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Extended Data Table 1 | Simulated changes in the annual mean spatial extent of MHWs relative to preindustrial times, and simulated 
annual mean duration, maximum and cumulative mean intensity of MHWs exceeding the preindustrial 99th percentile for different global 
warming levels

Multi-model mean estimates are shown and the associated minimum and maximum model estimates are given in parentheses.
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Extended Data Table 2 | Simulated probability ratio and fraction of attributable risk estimates averaged over the ocean and over land for 
different global warming levels and for different preindustrial percentile thresholds (99th and 99.99th)

Values are multi-model means, and minimum and maximum model estimates are shown in parentheses.
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Extended Data Table 3 | Global climate models used in this study

The numbers indicate the length of the control simulation analysed.
*Models used to calculate the diagnosed cumulative carbon emissions shown in Fig. 1a.
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