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Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial

and marine ecosystems annually of which anthropogenic activities are respon-

sible for half, 210 Tg N. The majority of the transformations of anthropogenic

Nr are on land (240 Tg N yr21) within soils and vegetation where reduced Nr

contributes most of the input through the use of fertilizer nitrogen in agri-

culture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3
2) in

drainage waters from agricultural land and emissions of trace Nr compounds

to the atmosphere. Emissions, mainly of ammonia (NH3) from land together

with combustion related emissions of nitrogen oxides (NOx), contribute

100 Tg N yr21 to the atmosphere, which are transported between countries

and processed within the atmosphere, generating secondary pollutants,

including ozone and other photochemical oxidants and aerosols, especially

ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching

and riverine transport of NO3 contribute 40–70 Tg N yr21 to coastal waters

and the open ocean, which together with the 30 Tg input to oceans from

atmospheric deposition combine with marine biological nitrogen fixation

(140 Tg N yr21) to double the ocean processing of Nr. Some of the marine Nr

is buried in sediments, the remainder being denitrified back to the atmosphere

as N2 or N2O. The marine processing is of a similar magnitude to that in terres-

trial soils and vegetation, but has a larger fraction of natural origin. The lifetime

of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in

terrestrial ecosystems, with the exception of peatlands (where it can be 102–103

years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well

known but seems to be longer than in terrestrial ecosystems and may represent

an important long-term source of N2O that will respond very slowly to control

measures on the sources of Nr from which it is produced.
1. Introduction
The global nitrogen cycle is central to the biogeochemistry of the Earth, with

large natural flows of nitrogen from the atmosphere into terrestrial and

marine ecosystems through biological nitrogen fixation (BNF), in which the lar-

gely un-reactive molecular nitrogen is reduced to ammonium compounds. The

fixed nitrogen is subsequently transformed into a wide range of amino acids

and oxidized compounds by micro-organisms, and finally returned to the
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atmosphere as molecular nitrogen through microbial denitrifi-

cation in soils, fresh and marine waters and sediments [1]. The

initial fixation steps generate compounds containing reactive

nitrogen (Nr, which includes NH3, NH4, NO, NO2, HNO3,

N2O, HONO, PAN and other organic N compounds) which,

in addition to their role in biological and ecosystem function in

terrestrial and marine ecosystems, also become widely distribu-

ted in the atmosphere and cryosphere as described in papers

within this issue. The presence of Nr in these components of

the Earth system provides a tracer of the biogeochemical cascade

of Nr through the environment as discussed by Galloway et al.
[2]. In the atmosphere, NOx plays a key role in the photochemi-

cal production of ozone and other key oxidants and radical

species [3] and is closely coupled to the oxidizing capacity of

the atmosphere [4]. Similarly, the emission of N2O following

denitrification plays a key role in the radiative balance of the

Earth and in the chemistry of the ozone layer in the stratosphere,

where N2O is destroyed by photolysis [3].

In the absence of human influences, BNF and the pro-

duction of NOx by lightning would be the only sources of

new Nr in the environment.

The supply of Nr is essential for all life forms, and increases

in nitrogen supply have been exploited in agriculture to

increase the yield of crops and provide food for the growing

global human population. It has been estimated that almost

half of the human population at the beginning of the twenty-

first century depends on fertilizer N for their food [5]. The

nitrogen applied in agriculture is derived from atmospheric

sources, but unlike the natural process of N fixation, most agri-

cultural N is fixed industrially by the Haber–Bosch process [6],

the remainder by nitrogen-fixing crops [7]. Nitrogen fixation by

the Haber–Bosch process also provides Nr for other industrial

applications, including explosives. Overall, the fixation of

nitrogen through Haber–Bosch (120 Tg N yr21) in 2010 was

double the natural terrestrial sources of Nr (63 Tg N yr21).

Atmospheric nitrogen is also fixed unintentionally through

human activities, especially during the combustion of fossil

fuels by internal combustion engines, and industrial activity,

including electricity production.

The overall magnitude of anthropogenic relative to natural

sources of fixed nitrogen (210 Tg N yr21 anthropogenic and

203 Tg N yr21 natural) is so large it has doubled the global

cycling of nitrogen over the last century. As nitrogen is a

major nutrient, changes in its supply influence the productivity

of ecosystems and change the competition between species and

biological diversity, [8]. Nitrogen compounds as precursors of

tropospheric ozone [9] and atmospheric particulate material

[10] also degrade air quality. Their effects include increases in

human mortality [11], effects on terrestrial ecosystems

[12,13] and contribute to the radiative forcing of global and

regional climate [4].

There are therefore important consequences of the human

modification of the global nitrogen cycle, with benefits in

food production and costs due to impacts on human health,

biodiversity loss and climate [8].

Knowledge of the global nitrogen cycle is incomplete, but

has developed rapidly over the last two decades, with many

new measurements and improved instrumentation, models

and process understanding. Galloway et al. [14] documents a

chronology in the development of the science and shows

major changes in understanding as knowledge has accumu-

lated and the range of processes and compounds involved

has expanded.
This paper describes the global nitrogen cycle at the

beginning of the twenty-first century, and quantifies each of

the major terms in the global budget, separating where poss-

ible the natural fluxes from those created by anthropogenic

activity. In this way, the contemporary magnitudes of natural

and anthropogenic contributions are identified and con-

trasted. The very different sources and chemical properties

of reduced and oxidized forms of nitrogen are also separated,

to illustrate their relative magnitudes.

The overview presents the major fluxes between terres-

trial and marine ecosystems and the atmosphere. The

detailed descriptions of Nr processing within the atmosphere

and terrestrial and marine ecosystems are provided by

companion papers in this issue. The individual papers have

been written independently and where possible cross refer-

ences are made to the common issues, processes and fluxes.

The fluxes used in this global summary are largely those

deduced within each of the sectors (terrestrial, marine, etc.)

presented in the companion papers.
2. Sources of fixed nitrogen
(a) Biological fixation
(i) Terrestrial ecosystems
BNF provides an important reference when quantifying the

importance of human inputs to the global nitrogen cycle, as

this is the primary non-anthropogenic input of Nr [15]. The

quantity from lightning, discussed later, is over an order of

magnitude smaller than any of the estimates of BNF, albeit of

large importance for the formation of ozone in and the main-

tenance of the oxidation capacity of the global atmosphere.

The process of BNF was identified in the late nineteenth cen-

tury and has since become a focus of ecological interest.

There remain important limitations in understanding, includ-

ing why, with such a widespread capability in ecosystems to

fix atmospheric N2, organisms do not fix more N, when the

benefits would provide advantages over competitor organisms

that lack a nitrogen-fixing capability. For many ecosystems,

the availability of Nr in soils clearly down-regulates BNF, so

perhaps the widespread application of Nr on farmland and

deposition to semi-natural land has decreased non-agricultural

BNF (as assumed in [1]). Current knowledge of processes and

controls has not provided unambiguous answers to these

questions. The review in this issue by Vitousek et al. [16] pro-

vides an estimate of annual pre-industrial BNF in terrestrial

ecosystems of 58 Tg N, within a range of 40–100 Tg, and a

discussion of current understanding and limitations. The

uncertainty range is large and reflects the difficulty in

estimating the component terms. The value deduced by Vitou-

sek et al. [16] is smaller than many published estimates,

especially earlier values suggesting pre-industrial BNF in the

range 100–290 Tg N yr21. However, this new calculation is

based on estimates of hydrological losses of nitrogen from ter-

restrial systems and the fraction of nitrogen denitrified in

streams and rivers may be overestimated.

(ii) Marine ecosystems
The nitrogen cycle in the oceans including BNF and denitrifica-

tion is reviewed by Voss et al. [17]. Estimates of both terms

suggest either an excess of denitrification over BNF or an

approximate balance of the two [18]. However, uncertainties in

http://rstb.royalsocietypublishing.org/


Table 1. Global nitrogen fixation prior to human influence on agricultural
BNF and before the industrial revolution.

pre-industrial terrestrial BNF 58 Tg N yr21

marine BNF 140 Tg N yr21

lightning fixation of nitrogen 5 Tg N yr21

total global natural annual sources of Nr 203 Tg N yr21
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the individual terms preclude a clear consensus. The underpin-

ning control mechanism over the balance between BNF and

denitrification at large scales has not been demonstrated, but

phosphorus and iron availability may be important contributors.

Covering three quarters of the Earth’s surface, oceans clearly

dominate the surface area and even relatively small fluxes per

unit area have the potential to make a substantial contribution

to total N fluxes between the atmospheric N2 reservoir and

marine Nr. One of the key uncertainties in the rates of marine

BNF is spatial variability, since these are coupled to the supply

of other nutrients required for the processes, especially phos-

phorus and iron whose supply is spatially variable [19]. Larger

rates of BNF have been suggested for the Atlantic than the Pacific

oceans due to greater nutrient supply [17].

Global marine BNF has been estimated at 125 Tg N annually

[20], with a suggested range of 60–200 Tg N [21]. Other recent

estimates of marine BNF include values of 140 Tg N yr21 from

Canfield et al. [22] and 145 Tg N yr21 from Galloway et al. [1].

It is unclear from the papers how independent the estimates

are and while there are substantial sets of measurements, these

do not appear to be systematic in covering the spatial and tem-

poral scales needed to provide rigorous estimates of variability.

Here, the value for marine BNF argued by Voss [17] of

140 Tg N yr21 (+50) has been adopted in the global budget.

(b) Lightning
In addition to BNF, nitrogen is also fixed naturally as NOx by

lightning, which introduces reactive N to relatively remote

regions of the troposphere.

The process is has been investigated using direct measure-

ments and supported by satellite remote sensing of lightning

activity. Global production has been estimated using avail-

able data and models, but with substantial uncertainties in

part due to difficulties in up-scaling, by Brasseur et al. [23],

who also consider possible effects of climate change on

rates of NOx production from lightning. These authors calcu-

late an increase in NOx production with increasing global

temperature in the range 3–12% per 8K. Estimates of the

overall global source strength vary from 2 to 10 Tg N yr21

[24,25], with the more recent values closer to 5 Tg N annually.

For this review a value of 5 Tg N yr21 has been adopted.

(c) Global natural sources of reactive nitrogen
The global natural sources of Nr total 203 Tg N (+50

Tg N yr21), comprising approximately one-third from terres-

trial ecosystems and two-thirds from marine ecosystems,

with just 2.4 per cent from lightning (table 1). The uncertainty

in each of the estimated components is very large, reflecting the

difficulty in up-scaling from the available data and the lack of

global scale measurements to constrain the values. The marine

fixation is the largest contributor to BNF but the factor of two

difference between marine and terrestrial is larger than many

earlier estimates due to the smaller estimate of terrestrial BNF.

(d) Anthropogenic nitrogen fixation
Anthropogenic fixation of nitrogen compounds, while uncertain,

is better known than natural fixation, in part because the source

sectors have been subject to more extensive measurements and

have also been subject to greater scientific scrutiny, with regular

monitoring of some large industrial sources. The gases created

are the oxidized nitrogen compounds NO and NO2 from
transport and industry, biomass combustion and reduced

nitrogen as NH3 from the Haber–Bosch process (figure 1).

Organic nitrogen compounds, for example as amines, are

widely present in the environment and the quantities may be

substantial, as discussed by Cape et al. [26] and Jickells et al.
[27]. However, there is no evidence that these compounds

represent additional Nr, which is therefore derived from the

natural or anthropogenic BNF or industrial sources of NH3

or NOx. The compounds and processes involved in emission

of organic nitrogen and their fluxes into the atmosphere are

not known in sufficient detail to enable the up-scaling for

regional or global estimates of their source strength. Thus

an important contribution to anthropogenic emissions of Nr

may be missing from the global Nr budgets constructed to

date, including the one presented here, but these compounds

are unlikely to represent additional primary sources of Nr.

(i) Biological nitrogen fixation in cropland
Nitrogen-fixing agricultural crops also contribute substantial

quantities of Nr to soils. In a recent detailed review of agricul-

tural BNF, Herridge et al. [28] compiled data from direct

measurements of BNF from a range of agricultural systems

globally and up-scaled annual nitrogen fixation rates using

land-use and cropping data to calculate a global total. The cur-

rent global BNF from agricultural crops and grazed savannahs

estimated by Herridge is 50–70 Tg N yr21. For the purpose of

summarizing the data, a central value of 60 Tg N yr21 as the

global annual Nr flux for BNF in cropland has been used in

this review. The value of BNF for cropland is very close to

the pre-industrial BNF and is indistinguishable within the cur-

rent range of uncertainty.

It is helpful to separate the oxidized and reduced sources of

Nr, as these are produced by very different sources and have

effects and pathways through the environment which also differ.

(ii) Oxidized nitrogen
The main process creating oxidized Nr compounds is com-

bustion within internal combustion engines and industrial

power plants, especially for electricity supply. It is important

to distinguish between the creation of Nr and emission to the

atmosphere. The focus in this section is on the creation of Nr

but the subject of most research in this field has been on emis-

sions to the atmosphere, as this is the driver of many of the

environmental issues involving NOx. The compounds gener-

ated are mainly NO and NO2, which arise from oxidation of

atmospheric N2, and there is an additional contribution from

nitrogen compounds in the fuel, derived from sequestration

at the time the organic deposits were laid down [3]. Biomass

burning represents an important global contribution of Nr to

the atmosphere, but this is primarily from nitrogen in the fuel

and does not represent new Nr fixation. Emissions of NOx

have been extensively measured both directly from sources

http://rstb.royalsocietypublishing.org/
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Figure 1. Global nitrogen fixation, natural and anthropogenic in both oxidized and reduced forms through combustion, biological fixation, lightning and fertilizer
and industrial production through the Haber – Bosch process for 2010. The arrows indicate a transfer from the atmospheric N2 reservoir to terrestrial and marine
ecosystems, regardless of the subsequent fate of the Nr. Green arrows represent natural sources, purple arrows represent anthropogenic sources.

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20130164

4

 on October 15, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
and also derived from satellite remote sensing to estimate

global biomass emissions [29].

Emissions of nitric oxide (NO) from soils also contribute sig-

nificantly to atmospheric emissions, but this is not an additional

source of Nr as it results from the microbial transformations of

existing Nr in soil, through nitrification and denitrification

[30,31]. The processes leading to soil emissions are discussed

by Butterbach-Bahl et al. [32] and Pilegaard [33]; while emission

rates per unit land area are small (5–50 ng NO-N m22 s21) rela-

tive to combustion sources, the emissions occur over large areas

of the global agricultural landscapes.

Recent reviews of global emissions show a surprising agree-

ment in the overall magnitude of NOx emissions but larger

differences in specific source contributions, as discussed by

Granier et al. [34] and Isaksen et al. [4]. Estimates of global

NOx production and emissions from van Vuuren et al. [35]

show values for the year 2000 of approximately 40 Tg N yr21

of which 30 Tg N yr21 is new Nr, the remainder being Nr in

fuel and in biomass. The 40 Tg N total annual emission com-

prises 30 Tg N from fossil fuel combustion, 5 Tg N from

biomass combustion and 5 Tg N from soil NO emissions.

Control measures on emissions, despite industrial development

in parts of Asia and Africa are assumed to reduce emissions by

the middle of the twenty-first century to approximately 30 Tg

N yr21, but with large uncertainty.
(iii) Reduced nitrogen
Anthropogenic fixation of reduced nitrogen (NH3) is through

nitrogen-fixing crops and the main source through the

Haber–Bosch process, where H2 and N2 are combined at

high temperatures and pressures in the presence of catalyst

[5]. The process was developed during the early years of the

twentieth century and by the first decade of the twenty-first

century is producing 120 Tg N as NH3 annually, of which

80 per cent is used as agricultural fertilizer and 20 per cent as

feedstock for industrial processes [36]. The fate of nitrogen

used in crop production varies, with only 17 per cent consumed

by humans in crops, dairy and meat products, the remainder

being lost to the soils, freshwaters and the atmosphere [37].

In the longer term (decades to centuries), most of the Nr is

returned to the atmosphere as N2 following denitrification,
but the lifetime in different reservoirs en route back to the

atmosphere allows opportunities for transport into freshwaters

or the atmosphere in reactive form. Some of the crop Nr applied

as fertilizer is emitted to the atmosphere as NH3 depending on

the relative balance between ambient NH3 concentrations and

the equilibrium concentration with the NH4
þ concentration

within intercellular fluids [38]. The annual total production

through the Haber–Bosch process of 120 Tg N as NH3 rep-

resents the largest single contribution to Nr formation

through anthropogenic activity. The use of nitrogen-fixing

crops in agriculture contributes an additional 60 Tg N annually

[28], which enters the crop and soil cycling of Nr (figure 2).

The total anthropogenic production of Nr in reduced form is

therefore 180 (+20) Tg N annually.

The total fixation of atmospheric N2 by natural and

anthropogenic activities at the beginning of the twentieth

century is therefore 413 Tg N of which approximately half

results directly from human activity. The relative proportions

of reduced and oxidized nitrogen within the anthropogenic

component is 85 per cent and 15 per cent, respectively, reveal-

ing the dominant role of reduced Nr and the Haber–Bosch

process in the budget of emissions. The components of

global Nr production are summarized in figure 1.
3. Trends in Nr emissions during the twenty-first
century

Emissions of Nr to the atmosphere are a key driver of atmos-

pheric chemistry and composition [10]. Estimates of emissions

of Nr compounds through the twenty-first century are provided

by van Vuuren et al. [35] from a range of scenarios, includ-

ing the IPCC-SRES and the RCP projections for the 4th IPCC

assessments [39]. Emissions of approximately 40 Tg N annually

of NOx continue through the period 2000–2040, and then decline

through to 30 Tg N yr21 according to the RCP scenarios by the

end of the century, with a gradual increase in uncertainty with

time such that the envelope containing the 25th and 75th percen-

tiles stretches from 15 Tg N yr21 to 70 Tg N yr21 by 2100. The

future emissions of NOx strongly depend on the assumptions

on how activities, especially energy and transport use will

http://rstb.royalsocietypublishing.org/
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develop, and to what extent emissions will be abated by air

pollution controls.

For reduced nitrogen, emissions to the atmosphere increase

from 60 Tg N yr21 in 2000 to between 70 and 80 Tg N yr21 by

2100, mainly depending on the need for food and the nitrogen

fertilizer required. These scenarios, while uncertain, are partly

based on the assumption that as society develops, gradually

emissions of NOx to the atmosphere are controlled, and while

this has been the case over the last few decades, it is a simple

assumption that may not be correct for the future. This is also

a period in which global climate is projected to change, with

substantial warming, averaging between 2 and 4 8K relative to

pre-industrial times by 2100 [39]. Changes in temperature of

this magnitude will directly influence the surface to atmosphere

exchange of many trace gases, and NH3 in particular, the emis-

sions of which are strongly coupled to the temperature of

vegetation [40]. The magnitude of increases in NH3 emissions

as a consequence of changes in climate is addressed by Sutton

et al. [41], and might reach 130 Tg NH3-N yr21 by 2100.

Emissions to the atmosphere of Nr from anthropogenic

activities seem destined to increase, driven by the dominant

term, the emissions of NH3 from agriculture. The global

fluxes of Nr shown in figures 1, 2 and 3 are listed in table 2,

with their author attributions.
4. Processing and distributing Nr through the
Earth system

The Nr fixed by natural processes or anthropogenic activity

is processed chemically in the atmosphere and largely by

microbial and plant biochemistry in terrestrial and marine

environments. The products of the chemical processing

include a wide range of inorganic and organic compounds.

The relative magnitudes of the quantities of Nr cycling

within each of these environments are shown in figure 2.

This simple representation shows the terrestrial component

to be responsible for processing of 240 Tg N in its different
forms, while 230 Tg N yr21 is processed in the oceans and

approximately 100 Tg N yr21 is processed in the atmosphere,

ignoring the fluxes into and out of the much larger atmos-

pheric N2 reservoir. Also shown in figure 2 is a rough

estimate of the residence time of the Nr in each of these

environments to show that the atmospheric residence time

is short relative to marine and terrestrial compartments,

and that even in the case of terrestrial environments (except

peatlands), the average lifetime of Nr is only a few decades.

Such averaging over the global terrestrial biosphere is poten-

tially misleading as there are long-lived reservoirs, such as

organic matter in peatlands and Nr in ice sheets and in

deserts and aquifers. The Nr generated through BNF in terres-

trial and marine ecosystems is processed by plant metabolism

and microbial activity and converted into plant and microbial

protein. The vegetation bound Nr in agricultural crops is either

used directly as food for human consumption or fed to live-

stock and converted, rather inefficiently, to protein for

human consumption. The conversions and transfers from

initial fixation through the food chain all present opportunities

for leakages to ground water or the atmosphere.

The readily available inorganic Nr in soils, if not sequestered

by vegetation is transformed through nitrification or denitrifica-

tion to gaseous forms (NO, N2O or N2) depending on soil

physical conditions and oxidation state [31]. The fluxes from

soil to the atmosphere, soil water and rivers transport the Nr

compounds over a range of distances, depending on subsequent

transformations, as illustrated in figure 2 and described in

greater detail in the companion papers in this issue.

(a) The nitrogen cascade
The transfer of Nr from soils to atmosphere and to freshwaters

has a wider application in considering the leakages of Nr from

transformations in soils, vegetation and water. Galloway et al.
[2] introduced the nitrogen cascade concept to illustrate the

many inter-conversions and leakages of Nr occurring between

the original fixation step and denitrification back to the atmos-

phere as N2. It is helpful to take an example describing the fate

http://rstb.royalsocietypublishing.org/
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Table 2. A summary of global fluxes of Nr and literature sources.

global nitrogen fluxes Tg N yr21 references

industrial production (fertilizer

100, chemical industry 20)

120 [36,42]

N2 fixation natural ecosystems 58 [16]

N2 fixation by oceans 140 [17]

N2 fixation by agricultural crops 60 [28]

combustion NOx emissions 40 [35]

NO emissions from soils 5 [33,43]

N2O emissions from soils 13 [44]

lightning 5 [24,25]

NH3 emissions from terrestrial

ecosystems into the atmosphere

60 [41]

wet and dry deposition of oxidized

nitrogen to terrestrial surfaces

70 [45,21]

wet and dry deposition of oxidized

to oceans

30 [45,21]

NH3 emissions from oceans (and

volcanoes) to atmosphere

9 [42,39,21]

N2O emissions from the oceans to

atmosphere

5.5 [46]

denitrification to N2 in oceans 100 – 280 [17,47,21]

Nr burial in oceans 20 [17]
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of a freshly produced NH3 molecule to illustrate the point: con-

sider a nitrogen atom converted to an NH3 molecule in the

Haber–Bosch process, applied as fertilizer to soil and trans-

formed many times before finally being returned to the

atmosphere as N2. A possible sequence of transformations is

illustrated in table 3, with an indication of the environmental

effects at each stage.

The wide range of issues and processes in which nitrogen

is involved are very seldom integrated at a global scale.

Instead, the science is described within components such as

the oceans, atmosphere or terrestrial ecosystems, as in the com-

panion papers. The issues within each and the approaches to

describe and investigate them are different. The following

three sections outline approaches and issues for Nr in the

atmosphere and terrestrial and marine ecosystems.

(b) Atmospheric processing of Nr
(i) Application of chemistry transport models
Emissions of NOx to the atmosphere from anthropogenic

and natural processes have been a focus of interest as these com-

pounds play a major role in atmospheric chemistry, especially

of photochemical oxidants such as ozone (figure 1). The chemi-

cal processing has been simulated within chemistry transport

models (CTM) to quantify transport transformation and

deposition at regional and global scales. Early models of the

global cycles of oxidized and reduced nitrogen (NOy and

NHx) were treated separately [52]. Currently, while almost all

global atmospheric chemistry models include a representation

of NOy chemistry, few models include reduced nitrogen

(NHx). In a recent model intercomparison [45], 23 global

models included NOy, while only seven included NHx. How-

ever, increasingly, models now include combined aerosol and

photochemistry descriptions, as reviewed by Fiore et al. [53].

The first attempts to model the global NHx cycle were

based on a simplified, empirical approach that assumed a

limited uptake of NH3 according to (NHx)1.5H0.5SO4.
More recent models describe aerosol equilibrium using

equilibrium modules.

The resolution of global models currently ranges from

0.58 � 0.58 to 48 � 58 latitude–longitude and is expected to

increase to 0.258 � 0.258 in the coming years. Also the spatial
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Table 3. Illustrating the nitrogen cascade: a possible life cycle of a nitrogen atom following fixation in the Haber – Bosch process to NH3 and its pathway
through terrestrial and marine ecosystems and the atmosphere before returning to the atmospheric N2 reservoir. The single N atom contributes en route to
eutrophication and acidification of terrestrial and marine ecosystems, and to human health and climate effects.

transformation pathway environmental effect

N2 fixation: Haber – Bosch process

N2! NH3

industry energy intensive process, production of CO2

plus all the consequences of the Nr as it

cascades through soils, the atmosphere and

aqueous phases

N fertilizer on crops agricultural lands provision of food for human consumption

NH4 nitrified to! NO3

NO in soil! atmosphere

oxidation of NO! NO2! HNO3

NO emission from soil to atmosphere and ozone

production during volatile organic compound

degradation

ozone effects on vegetation or human health

[48,49]

aerosol formation, HNO3! NO3 in atmosphere planetary albedo, human health [50]

wet þ dry deposition NO3 to

soil! vegetation NO3! R-NH2

removal from atmosphere and transfer to plant

biomass

eutrophication, acidification [51]

consumption by herbivores: excreted

as urea R-NH2! CO(NH2)2

plant biomass! animal protein! excreted and

returned to soil

eutrophication [51]

urea converted to NH3 in soil and

released to atmosphere

soil to atmosphere flux of NH3 eutrophication

NH3/NH4 uptake by vegetation removal from atmosphere by dry deposition to

vegetation

eutrophication

decomposition R-NH3 ! NH4 vegetation to soil eutrophication

NH4 nitrified to NO3 transferred to

river/estuary/open ocean

soil to ground water! river! ocean eutrophication

ocean uptake in phyto/zooplankton shelf seas to open ocean eutrophication

denitrification in ocean sediments

NO3! N2

returns to atmosphere as N2 and N2O climate change
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domain and resolution of regional models has been steadily

improving typically from 36 km to 12 km grid sizes, and

higher resolutions for limited periods. As we argue below

high resolution is important to accurately describe deposition,

especially over complex terrain.
(ii) Dry and wet removal
Realistic descriptions of wet and dry deposition and thorough

evaluation with high-quality measurements remain a major

weakness of global modelling of the atmospheric Nr cycle.

Rain formation, as a part of the hydrological cycle, is one of

the more difficult parameters in global weather forecasting,

and the removal of pollutants by rain formation in clouds

and scavenging below clouds is even more uncertain. Wet

removal is especially uncertain in tropical regions, where rain-

fall often occurs on sub-grid model scales in convective storms

and in the mid-latitudes over mountains where orographic wet

scavenging processes operate at sub-grid scales for these

models [54]. The description of dry deposition often follows

simplistic deposition velocity schemes [55], coupled to a

land-use database and model generated meteorology. Such

approaches are some decades behind current understanding

of processes for trace gases generally and nitrogen compounds

in particular [56]. In practice, some components of Nr are both

emitted and deposited onto terrestrial surfaces, a process

referred to as bidirectional exchange. The direction of the flux
is determined by the relative concentrations in the vegetation

and above canopy air according to a compensation point [38].

At present, global CTMs do not consider interactive exchange

with nitrogen pools in vegetation and soils. Moreover, the

lack of routine flux measurements of reactive nitrogen com-

pounds precludes validation of modelled dry deposition

with field data at any more than three or four locations.
(iii) Uncertainties and constraints on global atmospheric budgets
The missing processes in the formulation of global atmospheric

transport models include: sub-grid deposition; incomplete

mixing on sub-grid scales (consider, e.g., farm scale NH3 emis-

sions and regional sulfate plumes), and emissions from canopy

and oceans. To what extent, then, can we trust the outputs of

global models for global deposition? Some constraints are

offered by recent satellite observations. For example, NO2

observations from Sciamachy instruments [57] provide con-

straints on NOx emissions, and thus to some extent also on

deposition. Underestimates of NOx emissions over China

were reported by Van Noije et al. [58]. Very recent NH3 satellite

observations indicate in some cases missing hot spots of NH3

emissions [59] but have not so far been used to constrain the

global NH3 cycle.

The global models cannot provide much of the regio-

nal deposition detail; nevertheless, there was a recent

comparison by Dentener et al. [45] of 21 global models with
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wet deposition measurements in North America and Europe.

They demonstrate reasonable performance in southeast Asia,

but problems in Africa, South Asia and South America. A

lack of high-quality data in the latter regions still precludes

clear conclusions on model performance with regard to depo-

sition. Mass conservation requires that global emissions equal

global deposition; until higher accuracy measurements with

sufficient spatial coverage become available, the global atmos-

pheric nitrogen cycle will be associated with uncertainties in

the order of 30–50%.

The reactive gases are processed rapidly and lead to

the formation of O3 and other photochemical oxidants and

secondary inorganic and organic aerosols [9] during the

photochemical degradation of volatile organic compounds.

The NH3 is either dry deposited back to the surface or

incorporated in aerosol, either as NH4NO3 or, if SO2 is pre-

sent in significant quantities, as (NH4)2SO4. The lifetime

of these short-lived compounds is typically a day or two,

being longer as aerosol, which relies on wet scavenging for

the majority of the removal process. The models are able to

capture the global distribution of ozone in the troposphere

at the surface quite well [9]. However, at regional scales

there remain considerable problems reproducing the

trends in surface concentration changes through the last few

decades [60].

The atmospheric processing of reduced nitrogen com-

pounds has received much less attention than oxidized

nitrogen, but is now incorporated in many regional [61,62]

and global models [45]. Projected trends in emissions of NH3

make this the dominant component of emissions through this

century, and one which is likely to increase with temperature,

owing to the coupling between temperature and the gas and

liquid phase partitioning [63].

Emissions of N2O from soil during denitrification [64,65]

have a longer atmospheric lifetime at approximately 100 years,

relying on photolysis in the stratosphere for its removal.

The net flow of Nr from the land into the oceans and the

atmosphere is unsurprising given the mobility of Nr in soil

water and transfer to the oceans by rivers [66] and the advec-

tion of the atmospheric Nr by wind over coastlines. There is

also transfer within the terrestrial landscape from the Nr

hot spots to areas with small Nr inputs from farming and

industry. These include large areas of semi-natural land

(e.g. heathlands, forest and mountains) but also include

small areas embedded within intensively used parts of the

landscape such as nature reserves or unmanaged land sur-

rounded by industrial areas or farmland. These are the

components of the landscape showing some of the largest

effects of Nr deposition, including widespread changes in

flora or the emission of trace Nr species [67,68].
(c) Terrestrial processing of Nr
Most of the anthropogenic perturbation of the nitrogen cycle

is driven by activity on land, both through the use of Nr in

agriculture and through industry, electricity generation and

transport. Although the initial steps in much of the industrial

and transport Nr production lead directly to emissions to the

atmosphere, the relatively short residence times of oxidized

Nr compounds lead to rapid return of NOy and NHx to the

Earth’s surface as deposition. The geographical distribution

of Nr source areas leads to two-thirds of global atmospheric
Nr inputs to terrestrial surfaces and one-third onto marine

surfaces [1] (figure 2).

To date, the most detailed assessment of terrestrial proces-

sing and fluxes of Nr on a regional basis has been provided

within the European Nitrogen Assessment (ENA) [69]. Assess-

ments for other regions and the global scale have yet to be

completed. Earlier analyses by Galloway et al. [1] provide esti-

mates of the global transformations and flow of Nr through

terrestrial ecosystems and into the atmosphere and oceans.

These two syntheses are broadly consistent in showing the

dominant role of terrestrial processing of Nr (figure 4).

The analysis within the ENA allows the relative scales of

the different activities to be compared. The cycling of Nr

within agriculture through fertilizer inputs to cropland and

the flow of Nr through livestock and back into soils reveals

the central role of processes, with soils as the principle

location of Nr transformations and ultimately the main site

of denitrification back to N2. If we fully understood these pro-

cesses globally and knew the magnitude of the fluxes and

their spatial distribution globally, the uncertainties in global

budgets would be greatly reduced. Simply ranking the mag-

nitudes of the fluxes in the European N cycle by size shows

that of the 35 fluxes quantified in figure 4, fluxes from or to

soils comprise the top 15 and compromise most of the Nr pro-

cessing within Europe. The processing and leaching of Nr in

catchments and the export to coastal seas are described by

Howarth et al. [70] and Billen et al. [66]. The long-term

trends in nitrate in the Thames in the UK (between 1868

and 2008) reveal the magnitude of the change in countries

that industrialized early [71].
(d) Processing Nr in the oceans
The cycling and processing of Nr within the oceans has

received much less attention, but recent reviews have identified

the major components and issues [17,21,72]. BNF in oceans is a

very large component at 140 Tg N annually, among the largest

in the global budget (figure 2), and is subject to more uncer-

tainty than most of the terrestrial terms owing to the lack of

measurements. The net transfer of Nr to oceans from terrestrial

systems is processed (figure 5) and some is buried in organic

sediments while the remainder is denitrified and returned to

the atmosphere as either N2 or N2O. The fraction of the Nr

returned to the atmosphere as N2O is spatially very variable,

and quantifying the global N2O source from ocean sources,

while subject to considerable uncertainty, is a substantial

term, estimated by Duce et al. [21] to be 5.5 Tg N yr21 as

N2O, and represents approximately 30 per cent of the emission

flux of N2O, from the ocean [17]. A source strength of this mag-

nitude may offset as much as two-thirds of the enhancement of

the ocean sink for CO2 owing to nitrogen fertilization of the

oceans [21].

The global flow of N in oceans is coupled to the wider cir-

culation patterns, and especially the ocean conveyor system

transporting solutes southwards at the ocean floor in the Atlan-

tic ocean towards the Antarctic circumpolar current and from

there northwards into the Indian and Pacific oceans. The time-

scales of transport are long relative to other timescales of Nr

processing, with Atlantic water residence times of approxi-

mately 180 years, exceeding the time since industrial

contributions to the global nitrogen cycle began. Thus, the

ocean transport timescales are long relative to the processing

times in the ocean and much longer than atmospheric transport
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or land to ocean transport timescales, by several orders of mag-

nitude. A consequence of these timescales is large regional and

vertical variability in concentrations of Nr in oceans. Peak

values occur in the coastal zones, which are strongly influenced

by terrestrial outflow, and at the larger scale the peak values

occur in polar and bottom water and minimum values occur

in tropical surface waters, where available Nr is quickly assimi-

lated. A consequence of the large spatial variability, including

the coastal zones, is that hot spots of accumulation and proces-

sing are an important feature, resulting in substantial emissions

of N2O from relatively small areas of the ocean, which have not

been measured.
(e) Fate and residence time of Nr in the atmosphere,
and terrestrial and marine ecosystems

The ultimate fate of Nr fixed naturally and from human

activity is as N2 returned to the atmosphere. However,

during the pathway from production of Nr to its ultimate

fate, it presents the potential for effects on terrestrial ecosys-

tems, human health and climate [8], as illustrated in table 2.

The effects occur in part through sequestration in biomass,

the largest storage term in the global processing of Nr.

There are also much smaller but potentially significant

stores of Nr in inorganic form in aquifers, ice sheets and peat-

land, all of which have residence times of century to

millennia. In this section, these residence times are briefly dis-

cussed to indicate probable timescales for recovery from

effects of human modification of the global nitrogen cycle.
(i) Atmosphere
The highly reactive compounds (NO, NO2, HNO3, NH3 and

aerosol NH4 and NO3) have atmospheric lifetimes ranging

from a few hours (NH3 and HNO3) to aerosols, which have

lifetimes owing to removal by precipitation of a few days to

a week. The greenhouse gas N2O has an atmospheric lifetime

of approximately 100 years and relies on photolysis in the

stratosphere for oxidation to NO before it can be scavenged

from the atmosphere by wet and dry deposition. Thus,

except for effects of N2O, reduction in emissions of Nr to

the atmosphere would lead to a rapid reduction in most com-

pounds in air and effects on climate and human health would

cease after a period of a few weeks.
(ii) Terrestrial ecosystems
In terrestrial ecosystems, the additional Nr leads to enhanced

quantities of Nr cycling between vegetation and the soil, with

the main removal process being leaching as NO3 to ground

water and denitrification as N2 back to the atmosphere. Plant

and soil communities have evolved to sequester and recycle

Nr as it is an essential and often limiting nutrient [73]. In tropi-

cal ecosystems, Nr is rapidly cycled, maintaining small pools of

inorganic Nr in soil. Except for peatlands that store carbon and

nitrogen for millennia, the majority of temperate and tropical

ecosystems cycle the organic matter and nitrogen sufficiently

quickly and a pulse of additional Nr is lost through denitrifica-

tion and fire over a few decades. Thus, it appears that terrestrial

ecosystems would recover from excess Nr inputs over a period

of less than a century, and probably a few decades, following a

reduction in Nr input. The species composition of the post-
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recovery ecosystems, however, may differ substantially from

the composition prior to enhanced nitrogen deposition. In

some semi-natural ecosystems, active management has been

used to remove Nr from top soils, to restore low fertility plant

communities and accelerate the recovery process [74].

Regional changes in biodiversity as a consequence of Nr

deposition have been observed across Europe [12,51], and it

is likely that the other major regions of enhanced Nr deposition

will show similar trends. The primary productivity of these

ecosystems may also be changing as many semi-natural ecosys-

tems are nitrogen limited. The additional biomass sequestered

as a consequence of the Nr deposition has been estimated for

forests [75,76]. These studies consistently show that forests in

areas of enhanced Nr deposition have been growing more

rapidly in recent decades, an effect that has been shown to be

a consequence of Nr deposition rather than changes in climate

or forestry practice [76]. To date, the data from long-term Nr

addition field experiments show increases in productivity and

nitrogen enrichment of vegetation and surface soils [73]. In con-

trast to the networks of flux monitoring stations for terrestrial

carbon exchange, there are no systematic measurements of

nitrogen sequestration in terrestrial ecosystems, even though

the sequestration of Nr is one of the driving variables for

carbon sequestration [76]. Carbon sequestration in terrestrial

ecosystems is clearly coupled to nutrient supply, especially of

nitrogen and phosphorus [73,77].
(iii) Marine ecosystems
As with terrestrial ecosystems, there are no systematic measure-

ments of nitrogen sequestration in the oceans and, again, carbon

sequestration is clearly coupled to nutrient supply. The time-

scales of transport and Nr sequestration in the ocean are

substantially longer than those in the atmosphere and in the

majority of terrestrial ecosystems. Furthermore, the anoxic

bottom waters are accumulating Nr, estimated by Galloway

et al. [1] to be approximately 4 Tg N yr21 and from which

N2O is generated, which may represent an important long-

term global problem. Thus, marine Nr reservoirs may prove

to be more important in the longer term, as terrestrial and

atmospheric reservoirs appear to recover more rapidly.
( f ) Nitrogen sequestration
The global sequestration of Nr has been quantified using eco-

system models as described by Zaehle [78], who estimated

terrestrial Nr sequestion of 27 Tg N yr21 between 2001 and

2012. This may be compared with a rough estimate made

using the annual terrestrial global C sequestration [79] and

Churkina et al. [80], assuming a C/N ratio. Adopting this

very simplistic approach for a C/N ratio of 30, terrestrial N

sequestration would be 75 Tg N yr21 and would vary between

50 and 100 Tg N for C/N ratios between 25 and 50, effectively

spanning the range of observed C/N values, and similar to

the value of 60 Tg N estimated by Galloway et al. [1] and

significantly larger than the estimate by Zaehle [78].

The quantity of Nr sequestered in ice is discussed by

Wolff [81] and estimated at 260 Tg N. Although this quantity

may seem large, it represents accumulation over a very long

time and the annual inputs are small.
5. Closing remarks
The global nitrogen cycle has been greatly modified by

human activity, and among the key biogeochemical cycles

on which ecosystems depend for their sustainability the nitro-

gen cycle is the most perturbed on the planet. Many

components of the global budget have been quantified over

the last 20 years, and the contrast between knowledge of

the major fluxes in 1982 [82] and the descriptions of Nr

cycling in ocean and terrestrial ecosystems and the atmos-

phere presented in this issue are striking. However, many

fluxes are subject to large uncertainties and require extensive

measurements to constrain the current range of values, a con-

clusion similar to that reached by Stewart [83] following the

discussion meeting on the nitrogen cycle in 1981.

The consequences of human intervention in the nitrogen

cycle include the obvious benefits for food security with

approximately half of the global human population depen-

dent on the increased yields of agricultural crops owing to

fertilizer nitrogen usage, and substantially enhanced carbon

sequestration resulting from Nr deposition to forests and

other semi-natural terrestrial ecosystems [76]. The negative
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consequences of human fixation of nitrogen are also substan-

tial and include the Nr contribution to effects of aerosols and

ozone on human health [84], terrestrial ecosystem losses in

biodiversity owing to Nr deposition at regional scales [85]

and effects of Nr on climate described by Erisman et al. [8].

The effects on terrestrial ecosystems and the atmosphere

have been subject to much more control than effects in

marine ecosystems, which are the destination for a substantial

fraction of Nr applied to terrestrial ecosystems. The transfer of

80–100 Tg Nr from land to oceans annually represents

approximately half of anthropogenic emissions and com-

prises 50–70 Tg N leached from land to the ocean in

freshwaters and the deposition of an additional 30 Tg N

from the atmosphere on oceans. There are very few control

measures in place to reduce the transfer of Nr to oceans

and no international measures to regulate the overall effects

of perturbation of the nitrogen cycle by human activity.

The Malthusian concept of food security being compro-

mised by population growth has an interesting resonance in

the context of the human influence on the nitrogen cycle. The

problem of growing sufficient food to date has been largely

solved by agricultural science, and the supply of nitrogen as
fertilizer from the Haber–Bosch process has been a substantial

contributor to increased productivity. However, the amounts

of nitrogen applied have not been sufficiently constrained to

prevent widespread leakage to freshwaters and the atmos-

phere, with consequent effects on human health, biodiversity

and climate. The Nr injected into the environment from indus-

try and transport, largely combustion sources, further increases

the scale and range of effects. The irony here is that the societal

needs for use of Nr for food have been satisfied by inefficient

nitrogen use in agriculture, compromising other ecosystem ser-

vices. To date, there has been much more effective regulation of

Nr from combustion and transport sectors than Nr use in agri-

culture. Many of the accumulated effects of Nr are not

attributable to any specific country or region, and the oceans

may represent an important long-term problem as the marine

Nr store gradually releases N2O to the atmosphere.
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