1		Supplemental Information for						
2	Regional variability and uncertainty of electric vehicle life cycle CO ₂ emissions across the							
3		United States						
4		Mili-Ann M. Tamayao, Jeremy Michalek, Chris Hendrickson, and Inês L. Azevedo						
5								
6	Table	e of Contents						
7								
8	S.1.	Geographical boundaries of NERC and eGRID regions						
9	S.2.	Data sources and values						
10	S.3.	Comparison of Results in Prior Studies						
11	S.4.	Comparison of Emission Factors						
12	S.5.	Emissions estimates by life cycle stage						
13	S.6.	Statistical Tests						
14	S.7.	Comparisons with the Chevrolet Volt						
15								

16 S.1. Geographical boundaries of NERC and eGRID regions

17 In this analysis, we use three levels of aggregation as boundaries for analysis: North American 18 Electric Reliability Corporation (NERC) regions, eGRID regions, and finally states. NERC is the 19 electric power reliability organization of North America - including the U.S., Canada, and Baja 20 California, Mexico – with the main mission of ensuring reliability of the bulk power system in the 21 region (NERC 2014). NERC regions are identified based on the power control area (PCA) 22 servicing a region. Meanwhile, the U.S. Environmental Protection Agency (EPA) defined the 23 eGRID subregions based on the NERC regions and PCAs. NERC and eGRID boundaries may 24 not necessarily coincide with geopolitical boundaries such as the state (e.g., TRE is not the same

as Texas).

26 We show representative maps of the NERC and eGRID subregions in Figure S1 and Figure S2.

27	USEPA eGRID2010 Version 1.0 December 2010
28	Figure S1. Representational Map of NERC regions. Reprinted from U.S. EPA. 2010. NERC region
29	representational map. accessible online:
30	http://www.epa.gov/cleanenergy/documents/egridzips/eGRID_9th_edition_V1-
31	0_year_2010_NERC_regions.jpg. Copyright 2010 U.S. EPA.

This Is a representational map; many of the boundaries shown on this map are approximate because they are based on companies, not on strictly geographical boundaries. USEPA eGRID2010 Version 1.0 December 2010

32

Figure S2. Representational Map of eGRID sugregions. Reprinted from U.S. EPA. 2010. eGRID subregion representational map. accessible online:
 http://www.epa.gov/cleanenergy/documents/egridzips/eGRID_9th_edition_V1 0_year_2010_eGRID_subregions.jpg. Copyright 2010 U.S. EPA.

37 S.2. Data sources and values

- 38 Summary of data sources by life-cycle stage. Table S1 summarizes the data sources for
- 39 emissions rate used to compute emissions for each life stage. These include vehicle upstream,
- 40 manufacture, and assembly; battery upstream and manufacturing (Lithium-ion); gasoline
- 41 upstream and distribution; gasoline combustion; electricity upstream; and electricity production.
- 42
- Table S1.
 Summary of data sources by life-cycle stage.

Stage	Method/Source	Value or
8		distribution used
I. Vehicle Upstream, Manufacture and Assembly (Resvehicle assembly; all material and energy needed during vehicle assembly; all material and energy needed during vehicle assembly.	ource extraction and production of mater vehicle manufacturing and assembly)	ials needed for
ICEV	Avg.: GREET estimate for Generic 1532 kg	Normal(2169,230) kg CO ₂
HEV	GREET estimate for HEV 1683 kg	Normal(2002,17) kg CO ₂
PHEV	GREET estimate for PHEV20 1746 kg; GREET estimate for PHEV40 1959 kg	PHEV20=1995 kg CO ₂ PHEV40=2165 kg CO ₂
BEV	GREET estimate for BEV 2104 kg	2, 244 kg CO ₂
II. Battery Upstream and Manufacturing (Lithium- ion) for PHEV and BEV	Battery Capacity, Specific Energy, and EV AER: fueleconomy.gov Battery mnfg. and assembly emission rate: Hart et al. (2013), Zackrisson et al. (2010), Notter et al. (2010), and Majeau-Bettez et al. (2011)	Normal(15,5) kg CO ₂ /kg
III. Gasoline Upstream and Distribution (extraction, refining, and distribution from refineries to gasoline stations)	Low: Venkatesh et al. (2011) Avg.: Low and High Avg. High: GREET 2013	Normal(2.4,0.01) kg CO ₂ /gal
IV. Gasoline Combustion	Low: EPA 2014 Avg.: Low and High Avg. High: Venkatesh et al. (2011)	Normal(8.7,0.2) kg CO ₂ /gal
V. Electricity Life Cycle (Upstream: fossil fuel extraction, production, and transportation to power plants; Generation: fossil fuel combustion during generation (includes electricity consumed and onsite, transmission, and distribution).	Detailed in following sections	

43 Vehicle and Battery Assumptions. We summarize in Table S2 and in Table S3 the vehicle and

44 battery assumptions used in computations as described in the Methods section. All values are

45 from fueleconomy.gov except for sales-weighted average fuel economy, which was obtained

46 from the Eco-driving Index (University of Michigan Transportation Institute 2013). Gasoline fuel

47 economy values correspond to combined driving. All vehicles are model year 2014. Assumed

48 best estimate lifetime vehicle miles traveled is the midpoint (125,000 mi) of the assumed mileage

49 range of ~100,000 mi/vehicle (assuming about 10, 088 mi/vehicle annual mileage and 9.6 average

50 vehicle life [NHTS 2009]) to ~150,000 mi/vehicle (assuming about 13, 476 mi annual mileage

51 [U.S. Department of Transportation 2015] times 11.4 years average vehicle lifetime [IHS Inc.

52 2014]).

53

Table S2. Summary	v of vehicle all electric range	(AER) and energy	v use assumptions
	y of veniere an electric range	(The choirs)	y use assumptions.

Vehicle Model	AER (mi)	Combined Electricity Use (kWh/mi) [fueleconomy.gov]	Combined Fuel Economy (mpg)
2014 Chevrolet Volt (PHEV) [fueleconomy.gov]	38	0.35	37
2014 Nissan Leaf (BEV) [fueleconomy.gov]	84	0.29	
2014 Toyota Prius HEV [fueleconomy.gov]			50
Sales Weighted Ave. CV [UMTI 2013]			24.6

54 55

Table S3. Lithium-ion battery assumptions.

Tuble See Elanam fon cutter j'ubbannpronb.								
Vehicle Model	Battery Energy Capacity (kWh)	Battery Specific Energy (kWh/kg)	Charging Rate (kW)	Charge Time (hrs)				
Chevrolet Volt [fueleconomy.gov]	16	0.080	3.3	4				
Nissan Leaf [fueleconomy.gov]	24	0.0873	3.3	8				

56

57 **Marginal and average emission factors.** While eGRID sub-regions do not always

58 correspond precisely to NERC region boundaries, we group eGRID sub-regions by the NERC

region with which they are most closely associated. We use eGRID 2012 annual average

60 emissions factors for year 2009, shown in

- 61 Table S4, either at the eGRID sub-region level or at the NERC region level. Table S5 and Table
- 62 S6 show marginal emissions factors estimates used in the analysis. Table S5 provides the hourly
- 63 generation-based marginal emission factors, in kg CO₂ per MWh from Siler-Evans et al. (2012).
- Table S6 shows the hourly consumption-based marginal emission factors, in kg of CO₂ per MWh
- 65 from Graff Zivin *et al.* 2014.
- 66

Table S4. Regional average generation-based emission factors in kg CO₂/MWh (Source: eGRID 2012)_____

<u> </u>	201
nx	////
00	201

NERC region	NERC region name	NERC Region annual CO ₂ emission rate (kg/MWh)	eGRID subregion acronym	eGRID subregion name	eGRID subregion annual CO ₂ emission rate (kg/MWh)
FRCC	Florida Reliability Coordinating Council	534	FRCC	FRCC All	534
MRO	Midwest Reliability	736	MROE	MRO East	722
MIKO	Organization	750	MROW	MRO West	739
			NYLI	NPCC Long Island	611
NIPCC	Northeast Power	207	NEWE	NPCC New England	330
NFCC	Coordinating Council	291	NYCW	NPCC NYC/Westchester	277
			NYUP	NPCC Upstate NY	226
	Reliability First	621	RFCE	RFC East	430
RFC			RFCM	RFC Michigan	753
	Corporation		RFCW	RFC West	690
			SRMW	SERC Midwest	794
	SERC Reliability Corporation	566	SRMV	SERC Mississippi Valley	455
SERC			SRSO	SERC South	601
			SRTV	SERC Tennessee Valley	616
			SRVC	SERC Virginia/Carolina	470
CDD	Southwest Dower Dool	756	SPNO	SPP North	824
SPP	Southwest Power Poor	/30	SPSO	SPP South	725
TRE	Texas Regional Entity	536	ERCT	ERCOT All	536
			CAMX	WECC California	299
WECC	Western Electricity	420	NWPP	WECC Northwest	372
WECC	Coordinating Council	432	RMPA	WECC Rockies	828
	-		AZNM	WECC Southwest	540

Table S5. Hourly generation-based marginal emission factors, kg CO2/ MWh (adapted from
Siler-Evans et al., 2011).

Hour	FRCC	MRO	NPCC	RFC	SERC	SPP	TRE	WECC
1AM	503	908	459	695	625	474	478	473
2AM	490	949	474	770	711	665	545	491
3AM	496	959	508	803	778	765	577	543
4AM	554	940	522	798	816	796	653	560
5AM	565	918	522	794	816	791	657	574
6AM	567	891	499	782	794	638	583	574
7AM	572	861	473	725	707	726	561	561
8AM	541	820	486	704	768	668	628	486
9AM	603	758	503	690	661	613	522	489
10AM	554	700	500	657	589	489	481	458
11AM	527	714	493	648	574	483	474	469
12PM	452	699	482	642	596	510	467	478
1PM	453	695	486	621	609	519	447	472
2PM	462	691	476	633	620	511	451	501
3PM	484	702	461	635	658	525	444	505
4PM	472	740	478	671	622	512	455	522
5PM	459	745	481	697	618	512	459	529
6PM	394	708	496	650	599	544	480	523
7PM	371	683	494	648	622	549	499	502
8PM	468	700	494	636	660	555	484	485
9PM	520	688	514	668	649	543	488	509
10PM	513	613	497	637	562	484	473	486
11PM	503	665	502	581	463	450	418	453
12AM	545	834	450	633	512	428	398	449

	Gran Zivin et al., 2014).							
Hour	FRCC	MRO	NPCC	RFC	SERC	SPP	TRE	WECC
1AM	608	1175	481	685	558	340	463	381
2AM	603	866	331	785	581	612	490	376
3AM	553	1284	599	635	653	417	503	381
4AM	540	1279	640	621	658	503	513	381
5AM	549	1275	662	626	649	562	508	363
6AM	572	1275	612	667	590	653	485	349
7AM	653	1211	535	717	476	794	454	322
8AM	671	1270	617	640	395	789	431	299
9AM	689	1066	562	662	345	789	426	308
10AM	794	975	549	662	358	640	426	349
11AM	821	1075	644	567	449	526	417	386
12PM	748	1129	680	490	544	440	417	399
1PM	603	1102	689	449	599	413	413	399
2PM	508	1080	658	449	599	390	417	390
3PM	440	1034	640	458	576	395	417	376
4PM	404	984	658	458	549	431	417	372
5PM	404	989	635	467	535	417	417	363
6PM	422	903	603	494	526	404	413	358
7PM	472	807	594	517	503	435	408	358
8PM	522	767	526	553	485	417	408	363
9PM	558	744	503	576	472	408	404	367
10PM	581	821	581	549	485	395	404	363
11PM	612	921	476	612	476	349	413	367
12AM	662	1030	481	649	508	327	431	372

Table S6. Hourly consumption-based marginal emission factors, in kg CO₂/MWh (adapted from Graff Zivin et al., 2014).

Table S7. 2009 State average emission factors in kg CO₂/MWh (adapted from eGRID 2012)

State	Average State EF (kg/MWh)	State	Average State EF (kg/MWh)
AL	472	MT	653
AK	511	NE	725
AZ	492	NV	481
AR	505	NH	272
CA	252	NJ	249
СО	788	NM	826
СТ	262	NY	264
DE	814	NC	525
DC	1127	ND	933
FL	541	OH	808
GA	583	OK	678
HI	693	OR	165
ID	54	PA	517
IL	484	RI	406
IN	922	SC	374
IA	737	SD	414
KS	759	TN	486
KY	928	TX	564
LA	512	UT	841
ME	227	VT	1
MD	559	VA	451
MA	505	WA	130
MI	691	WV	912
MN	634	WI	687
MS	500	WY	960
MO	820		2.1.1.1.1

77 S.3. Comparison of Results in Prior Studies

- 78 Figure S3, shows a set of maps that highlights differences in two studies, (a) Anair &
- 79 Mahmassani (2012) and (b) Yawitz et al. (2013). These studies vary in life cycle scope, vehicle
- 80 assumptions, regional boundaries, and grid emissions factors. In particular, variation in grid
- 81 emissions factors and regional boundaries are key drivers of regional differences in EV benefits.

(a) adapted from Anair & Mahmassani (2012)

(b) adapted from Yawitz et al. (2013)

82 Figure S3. Regional comparisons of CO_2 emissions from EVs vs. gasoline vehicles from two studies (a) 83 Anair & Mahmassani (2012): EV Ratings comparing the Nissan Leaf to gasoline vehicles using 2009 84 eGRID subregion avg. emission factors [Violet = EV is comparable to a 31-40 mpg gasoline vehicle); Blue = EV is comparable to a 41-50 mpg gasoline vehicle; and Light Blue = EV is comparable to a >51 mpg 85 86 gasoline vehicle)]. Reprinted from Anair, D. & Mahmassani, A. State of Charge: Electric Vehicles' Global 87 Warming Emissions and Fuel-Cost Savings Across the United States. Copyright 2012 Union of Concerned 88 Scientists; (b) Yawitz et al. (2013): Leaf vs Toyota Prius HEV using 2010 state average emissions factors, 89 where the green states are those where the Leaf is the lower emitting vehicle. Reprinted from Yawitz, D., 90 Kenward, A., & Larson, E., A Roadmap to Climate-friendly Cars: 2013. Climate Central, Princeton, New 91 Jersey. Copyright 2013 Climate Central.

93 S.4. Comparison of Emission Factors

94 Figure S4 summarizes hourly emissions factors in each region. In most cases, MEFs are lower

95 than AEFs during peak load times, where natural gas is often the fuel used at the margin (Siler-

96 Evans et al., 2012). Also, hourly estimates for the consumption-based MEFs (Graff-Zivin et al.,

97 2014) vary more by hour and have wider uncertainty ranges, especially for the regions within the

98 eastern interconnect, than the generation-based MEFs (Siler-Evans et al., 2012). This is

99 presumably due to flow between regions but could also be biased by operation of renewable

100 plants.

101 Discrepancies between generation- and consumption-based MEF values are small in the WECC

and TRE regions where trading with other regions is limited. In MRO consumption-based values

are much higher than generation-based values (by up to 66%) even though MRO is a net importer

104 from regions that are less carbon-intensive. A potential explanation is that the majority of the

105 energy that MRO imports is supplied by coal power plants in neighboring regions (Graff-Zivin *et*

- 106 *al.*, 2014).
- 107

108

- 109
- 110
- 111

112

113

2

114

117Figure S4. Hourly consumption-based (GZ_MEF) [Graff-Zivin et al. (2014)] and generation-based118(SE_MEF) [Siler-Evans et al. (2011)] marginal emission factors by NERC region. Lines show minimum119and maximum eGRID subregion and state average emission factors (mineGRID, minST, maxeGRID, and120maxST) [eGRID 2012] in each NERC region as indicated by chart headings (e.g., Western Electricity121Coordinating Council (WECC)). Error bars show 95% confidence intervals of hourly MEFs.

122 S.5. Emissions estimates by life cycle stage

123 To estimate upstream marginal electricity emissions, first, we estimate the marginal grid mix.

124 Next, we determine the estimated emissions factor for each fuel type in the mix. Siler-Evans et al

125 (2011) provide a supplementary data set containing grid mix at 20 load levels. We use linear

- 126 interpolation to estimate marginal grid mix (percent of marginal generation from coal, natural
- 127 gas, and oil) at intermediate load values.

128 To compute upstream electricity emissions by hour, $\hat{\Phi}_{tjr}^{Upstream_Elec}$ (*j*=generation-based from

- 129 Siler-Evans et al 2011), we used the following formula, where we assumed distributions/values
- 130 shown in Table S8.

$$\widehat{\Phi}_{tjr}^{Upstream_Elec} = \sum_{i} M_{itr} * \widehat{\Phi}_{i}^{Upstream_Fuel}$$

131

Fossil Fuel	Upstream Fuel Emissions ($\hat{\Phi}_i^{Upstream_Fuel}$)
Coal	Normal(mean = 32, std. error = 13)
Gas	Normal(mean = 115 , std. error = 44)
Oil	43

132

Graff Zivin et al. (2014) do not provide a grid mix or load data that can be used to estimate hourly marginal grid. As an approximation of hourly consumption-based upstream electricity emission, $\hat{\Phi}_{tjr}^{Upstream_Elec}$ (*j* = *consumption* – *based*), we used the following formula:

$$\widehat{\Phi}_{itjr,j=consumption-based}^{Upstream_Elec} = \left(\frac{\widehat{\Phi}_{tjr,j=generation-based}^{Upstream_Elec}}{\widehat{Y}_{ijrv,j=generation-based}}\right) \widehat{Y}_{ijrv,j=consumption-based}$$

136 where \hat{Y}_{ijrv}^{Elec} is the vehicle operation electricity emissions estimate for vehicle sample *i*, vehicle

137 type v, using emissions factors set j in region r in g CO₂. This approach may introduce some

138 error, since upstream emissions represent a larger share of natural gas life cycle emissions than

139 for coal; however, we lack information on marginal mix needed to identify marginal upstream

140 emissions using the Graff Zivin estimates.

141 Descriptive statistics of simulated electricity upstream and production emissions in g CO₂/mi for the Nissan

142 Leaf are summarized in Table S9. Simulated battery and vehicle upstream and manufacturing emissions

143 are illustrated in Figure S5 and Figure S6, respectively. Figure S7 illustrates the relative contribution

144 of each life stage to vehicle life cycle emissions.

Table S9. Nissan Leaf electricity upstream and production emissions estimates (g CO₂/mi) by region.

During	Emine Ersten Terre	Changing	Marginal Electr	icity Upstream Emis	ssions (g CO ₂ /mi)	Marginal Electricity Production Emissions (g CO ₂ /mi)		
Region	Emission Factor Type	Charging	5th	Mean	95 th	5th	Mean	95th
	Marginal Consumption	Convenience	13	17	22	120	162	204
FROG	Marginal Consumption	Delayed	12	16	20	132	177	222
	Marginal Constation	Convenience	16	16	17	151	154	158
FREE	Warginal Generation	Delayed	11	14	18	158	163	167
	A	Subregion	43	43	43	161	161	162
	Average Generation	State	43	43	43	160	161	161
		Convenience	7	9	11	226	280	334
	Marginal Consumption	Delayed	5	7	9	262	348	434
MBO	Manainal Constantion	Convenience	8	8	8	237	241	244
MKO	Warginal Generation	Delayed	5	5	6	270	273	276
	Avarage Constian	Subregion	11	13	13	217	222	222
	Average Generation	State	7	13	14	124	222	280
	Manainal Congumution	Convenience	13	147	26	108	164	220
	Marginal Consumption	Delayed	9	147	28	76	155	234
NIPCC	Marginal Constation	Convenience	17	167	18	144	147	149
Mrcc	Warginal Generation	Delayed	17	149	18	144	147	149
	Average Constation	Subregion	0.1	90	58	68	90	183
	Average Generation	State	28	90	41	0.3	90	152
	Marginal Consumption	Convenience	6	7	7	149	171	192
	Warginar Consumption	Delayed	5	6	7	171	205	240
REC	Marginal Constation	Convenience	8	8	8	209	211	214
KIC	Warginar Generation	Delayed	7	7	7	227	229	231
	Average Generation	Subregion	15	15	18	129	188	226
		State	15	15	43	75	188	338
	Marginal Consumption	Convenience	7	8	9	140	156	173
		Delayed	6	6	7	157	176	195
SERC	Marginal Generation	Convenience	10	10	10	195	197	200
blitte		Delayed	8	8	8	221	223	225
	Average Generation	Subregion	35	20	13	136	171	238
		State	12	20	16	112	171	278
	Marginal Consumption Marginal Generation Average Generation	Convenience	5	10	15	59	123	188
		Delayed	3	8	13	64	153	242
SPP		Convenience	14	14	14	168	170	173
		Delayed	11	11	11	197	201	204
		Subregion	17	27	32	218	228	247
		State	38	27	15	203	228	228
	Marginal Consumption	Convenience	14	15	16	121	127	134
		Delayed	12	13	14	135	145	155
TRE	Marginal Generation	Convenience	1/	18	18	149	152	155
		Delayed	15	15	16	166	1/0	1/4
	Average Generation	Sublegion	38	20	20	101	101	101
		Convenience	38	38	38	101	101	109
	Marginal Consumption	Delaged	12	13	15	9/	110	123
	- •	Delayed	10	12	14	90	111	132
WECC	Marginal Generation	Convenience	18	18	18	145	147	149
		Delayed	16	17	17	152	155	159
	Average Generation	Subregion	38	26	27	90	130	248
	Average Generation	State	9	26	38	16	130	288

Figure S6. Vehicle upstream and manufacturing emissions estimates by vehicle type - Battery electric vehicle (BEV), Plug-in hybrid electric vehicle (PHEV), Hybrid electric vehicle (HEV), and Internal combustion engine vehicle (ICEV).

Figure S7. Life cycle emissions by vehicle type using marginal emission factors for EVs. Values show the uncertainty bounds of each life stage emissions estimate.

- 160 Table S10 summarizes the probability that the Nissan Leaf is lower emitting than the Toyota Prius Hybrid
- 161 and Sales-weighted Average ICEV by NERC region and marginal emissions estimation method.
- 162
- 163
- 164

Table S10. Probability that the Nissan Leaf is lower emitting than the Toyota Prius Hybrid and sales-
weighted average ICEV (%)

NERC Region	Pr(Nis	ssan Leaf <	< Prius Hyrl	oid)	Pr(Nissan Leaf < Avg. ICEV)			
	Cons_	Cons_	Gen_	Gen_	Cons_	Cons_	Gen_	Gen_
nogion	Conv	Del	Conv	Del	Conv	Del	Conv	Del
FRCC	75	47	100	100	100	100	100	100
MRO	0	1	0	0	100	96	100	100
NPCC	45	89	100	100	100	100	100	100
RFC	86	1	0	0	100	100	100	100
SERC	91	62	5	0	100	100	100	100
SPP	95	86	94	29	100	100	100	100
TRE	100	100	100	91	100	100	100	100
WECC	100	100	100	91	100	100	100	100

165 **S.6. Statistical Tests**

166 We performed statistical comparisons of the vehicle emissions estimates to verify

167 sufficient Monte Carlo draws to test whether the results are significantly different at 5%

168 significance levels. We summarize the hypotheses and the corresponding tests in Table S11.

Table S11. Statistical comparison of vehicle emissions estimates

	Null Hypothesis	Test
1a	E[Convenience - Delayed] = 0	Paired one-tailed t-test
	(Consumption-based marginal emissions estimates)	
1b	E[Convenience - Delayed] = 0	Paired one-tailed t-test
	(Generation-based marginal emissions estimates)	
2a	E[Consumption-based - Generation - based] = 0	Paired two-tailed t-test
	(Convenience charging)	
2b	E[Consumption-based - Generation - based] = 0	Paired two-tailed t-test
	(Delayed charging)	
3a-d	E[NERC Average Emissions Estimates - Marginal Emissions	One-sample two-tailed
	Estimates = 0] (Generation- and consumption-based for both delayed	t-test
	and convenience charging)	
4a-d	E[eGRID Average Emissions Estimates - Marginal Emissions	One-sample two-tailed
	Estimates = 0] (Generation- and consumption-based for both delayed	t-test
	and convenience charging)	
5a-d	E[State Average Emissions Estimates - Marginal Emissions Estimates	One-sample two-tailed
	= 0] (Generation- and consumption-based for both delayed and	t-test
	convenience charging)	

170 S.7. Comparisons with the Chevrolet Volt

171 Chevrolet Volt life cycle emissions estimates summary graphs

172 **Figure S8.** Chevrolet Volt life cycle emissions (g CO₂/mile) using alternative grid emission 173 factors by region. The life cycle stages included are: electricity production (blue); electricity 174 upstream (red); vehicle assembly & manufacturing (vellow); and battery upstream & production 175 (green). The marginal emission cases show expected marginal emissions estimates with error bars for the 5th and 95th percentile values. Average generation estimates show NERC region average 176 emissions estimates with error bars that represent the lowest and highest eGRID subregion or 177 178 state emissions estimates within each NERC region, respectively. Horizontal lines show expected 179 Toyota Prius Hybrid and sales-weighted average vehicle emissions estimates. Combined driving 180 pattern (45% city and 55% highway) energy use from fueleconomy.gov (2013) was used for all 181 vehicles. FRCC = Florida Reliability Coordinating Council; MRO = Midwest Reliability 182 Organization; NPCC = Northeast Power Coordinating Council; RFC = Reliability First 183 Corporation; SERC = SERC Reliability Corporation; SPP = Southwest Power Pool, RE; TRE = 184 Texas Reliability Entity; WECC = Western Electricity Coordinating Council; ERCOT = Electric 185 Reliability Council of Texas.

187 The bar graphs in Figure S8 summarize the emissions estimates for Chevrolet Volt for each life

- 188 stage under different electricity emission factor assumptions. For comparison, lines showing
- 189 mean estimated Toyota Prius HEV and sales-weighted ICEV are also shown. Marginal error bars
- 190 show the 5th and 95th percentile values from the simulation to show uncertainty in both marginal
- 191 emissions factor estimates and other life cycle stage emissions vehicle assembly and
- 192 manufacturing emissions and battery upstream and manufacturing. Average emissions estimate
- 193 illustrate the variability of average emission factors; bar heights show mean simulated emissions
- 194 using NERC regional emissions factors while error bars show simulated emission using highest
- and lowest eGRID subregion and state emissions within each NERC region.

196

197 The bar graphs show the differences in mean Chevy Volt emission estimates under different

198 emissions factor assumptions. In most cases, mean marginal emissions estimates are higher than

199 mean average emissions estimates. This suggests that benefits from PHEVs similar to the Chevy

200 Volt specifications may have been overestimated in previous studies. The general trend indicates

201 that the Chevy Volt is higher emitting than the Toyota Prius HEV, and in worse conditions (e.g.,

202 MRO), could be higher emitting than the sales-weighted average ICEV.

203 Percentage Differences of Vehicle Life Cycle Emissions

Table S12 summarizes the percentage difference in the simulated marginal emissions of the

205 Chevrolet Volt and two gasoline vehicles - Toyota Prius HEV and sales-weighted average ICEV.

As shown, mean estimates show that in all cases, the Chevrolet Volt is lower emitting than the

average ICEV. However, when compared to the most efficient gasoline vehicle on the road at

208 present, the Toyota Prius HEV, results indicate that the Chevrolet Volt is higher emitting, on

- average.
- 210
- 211

11

- 212
- 213 214

Table S12. Summary of median CO2 emissions difference by region and estimation method computed as vehicle emissions difference divided by gasoline vehicle emissions. Green indicates that the Chevrolet Volt is lower emitting than the gasoline vehicle (Toyota Prius Hybrid or sales-weighted ICEV) while red means vice versa.

NERC Region	Chevrolet Volt – Toyota Prius HEV				Chevrolet Volt – Avg. ICEV			
	Cons_ Conv	Cons_ Del	Gen_ Conv	Gen_ Del	Cons_ Conv	Cons_ Del	Gen_ Conv	Gen_ Del
FRCC	23%	33%	19%	24%	-37%	-32%	-40%	-37%
MRO	69%	94%	47%	64%	-14%	-2%	-25%	-16%
NPCC	34%	16%	18%	16%	-32%	-41%	-40%	-41%
RFC	10%	32%	35%	42%	-44%	-33%	-31%	-28%
SERC	12%	21%	35%	43%	-43%	-39%	-32%	-28%
SPP	2%	0%	25%	35%	-48%	-49%	-36%	-31%
TRE	6%	15%	21%	27%	-46%	-42%	-39%	-36%
WECC	-2%	0%	20%	21%	-50%	-49%	-39%	-39%

- Note: The headings are as follows: Cons_ = Consumption-based MEF; Gen_ = Generation-based MEF; Conv = Convenience Charging; Del = Delayed Charging
- 217

219 Probability that Chevrolet Volt is lower emitting than the Toyota Prius hybrid and U.S.

220 sales-weighted average ICEV

- Table S13 summarizes the probability that the Chevrolet Volt is lower emitting than the Toyota
- 222 Prius Hybrid and the U.S. sales-weighted average ICEV under the four marginal emission factor
- scenarios considered. It can be seen that the highest probability of the Volt being lower emitting
- than the Prius Hybrid is in the western U.S. (WECC region) about 60%–70% under
- 225 consumption-based MEFs. This is followed by the south central U.S. (SPP region) 46% 48%
- under consumption-based. Probabilities are low in the rest of the country. These numbers are
- illustrated in Figure S9.
- 228 229

 Table S13. Probability that the Chevrolet Volt is lower emitting than the Toyota Prius Hybrid and sales-weighted average ICEV

NERC	Pr(Che	vrolet Volt	<pre>rius Hy</pre>	rbid)	Pr(Chevrolet Volt < Avg. ICEV)			
Region	Cons_	Cons_	Gen_	Gen_	Cons_	Cons_	Gen_	Gen_
Region	Conv	Del	Conv	Del	Conv	Del	Conv	Del
FRCC	14	1	0	0	100	100	100	100
MRO	0	0	0	0	88	55	100	100
NPCC	2	22	0	0	100	100	100	100
RFC	29	0	0	0	100	100	100	100
SERC	12	1	0	0	100	100	100	100
SPP	48	46	0	0	100	100	100	100
TRE	33	1	0	0	100	100	100	100
WECC	70	59	0	0	100	100	100	100

Figure S9. Probability that the Chevrolet Volt is lower CO₂-emitting than the Toyota Prius Hybrid by region and charging scheme.