

U.S. Department of Transportation

National Highway Traffic Safety Administration

DOT HS 813 160

July 2021

Vehicle Technology Assessment, Model Development and Validation of a 2018 Toyota Camry XLE With a 2.5L I4 And 8-Speed Automatic Transmission

DISCLAIMER

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Suggested APA Format Citation:

Stutenberg, K., Kim, N., Russo, D. M., Islam, E., Kim, K., Lohse-Busch, H., Rousseau, A., & Vijayagopal, R. (2021, July). Vehicle technology assessment, model development and validation of a 2018 Toyota Camry XLE with a 2.5L 14 and 8-speed automatic transmission (Report No. DOT HS 813 160). National Highway Traffic Safety Administration.

1. Report No.	2. Government Acc	ession No.	3. Recipient's Catalo	og No.
DOT HS 813 160				
4. Title and Subtitle Vehicle Technology Assessment, Model Development and Validation of a 2018 Toyota Camry XLE with a 2.5L I4 and 8-speed automatic transmission		5. Report Date		
		July 2021	nization Codo	
			0. I er for hinnig Organ	
7. Authors			8. Performing Orga	nization Report No.
Stutenberg, K., Kim, N., Russo, D. I	M., Islam, E., Kim, K., Loł	nse-	0 0	×
Busch, H., Rousseau, A., Vijayagop	al, R.			
9. Performing Organization Name and Add	ress		10. Work Unit No. (TRAIS)
Argonne National Laboratory			11 Contract or Gra	nt No
Energy Systems Division			II. Contract of Gra	nt 100.
9700 South Cass Avenue, Bldg. 362				
Argonne, Il 60439-4854				
12. Sponsoring Agency Name and Address			13. Type of Report a	and Period Covered
National Highway Traffic Safety Adr	ninistration		Final Report	
1200 New Jersey Avenue SE			_	
Washington, DC 20590			14. Sponsoring Ager	ncy Code
15 Sumplementers Nata				
15. Supplementary Notes				
The Contracting Officer's Technical I	Representative for this proj	ect was Sei	ar A. Zia	
16. Abstract				
NHTSA sets Corporate Average Fuel	Economy (CAFE) standar	rds for pass	enger cars, light tru	icks, and medium-
duty vehicles, and contracted Argonn	e National Laboratory to c	onduct full	vehicle simulation	s using Argonne's
Autonomie software to provide input	into the CAFE model to d	etermine th	e contribution of ve	ehicle technologies
on fuel economy. In 2019 NHTSA fu	nded a project at Argonne	to benchma	ark a 2018 Toyota (Camry sedan,
resulting in an extensive dataset for a	nalysis, model developmen	it, and value	lation with Argonn	e's Autonomie to
assess the fuel-saving technologies of	this advanced powertrain.	The Camr	y was equipped wit	in the 2.5L 14
for the function of the function of the former of the function	delivering significant vehi	allo porform	transmission accia	imed for providing
	denvering significant veni			
17. Key Words CAEE Argonne Autonomie 2018 T	ovota Camry "Dynamia	18. Distribu	tion Statement	public from the
Force" engine Autonomie 8-speed a	utomatic	National '	National Technical Information Service	
Nationality in the second automatic in the second auto		www.ntis	.ntis.gov.	
19. Security Classif. (of this report)	20. Security Classif (of this n	age)	21. No. of Pages	22. Price
			100	
Unclassified	Unclassified		122	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Table of Contents

1.	Exe	cutiv	ve Summary	1
2.	Intr	odu	ction and Background	2
3.	Tes	t Vel	hicle Description	3
	3.1. 3.2. 3.3.	Veh Key Con	icle Specifications Technology Features nparison Vehicles and Preliminary Analysis	3 4 5
4.	Tes	ting	Overview	. 11
	4.1.	Gen	eral Testing Overview	. 11
	4.1.	1.	Vehicle Procurement and Break In	. 11
	4.2.	Exte	ended Testing Overview	. 12
	4.2. 4.2. 4.2. 4.2.	1. 2. 3. 4.	Vehicle Dynamometer Setup Test Plan Execution Specialized Testing Overview Tier 3 - 88 AKI (Low-Octane) to Tier 2 - 93 AKI (High-Octane) Fuel	. 12 . 17 . 18
	4.2.	11pa11 5.	Vehicle Setup	. 21
5.	Veh	icle	Testing Analysis	. 24
	5.1. 5.2.	Veh Trar	icle Operation Overview	. 24 . 24
	5.2. 5.2. 5.2.	1. 2. 3.	Fuel Economy Vehicle Efficiency based on Low Octane Fuel Testing Thermal Impact on Fuel Economy and Vehicle Efficiency	. 24 . 27 . 27
	5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9.	Stea Pass Ope Idle Tier Ana CAI	 idy-State Speed Fuel Economy and Efficiency	. 30 . 33 . 34 . 36 . 37 . 40 . 42
6.	Cor	npor	nent and Control Analysis	. 43
	6.1. 6.2.	Sigr Trar	nal Calculations for Control Analysis	. 43 . 47
	6.2. 6.2. 6.2. 6.2.	1. 2. 3. 4.	Cert Cycle Duration in Each Gear Shift Mapping Torque Converter Lockup Status Lockup Variability per Gear	. 47 . 47 . 49 . 51 . 52
	6.4. 6.5.	PFI Eng	vs. DI Operation	. 55 . 54 . 55

6.5.1. 6.5.2.	Fuel Rate Map Torque Pedal Map	
6.6. Impa	act of Thermal Management Technologies on Vehicle Controls	
6.6.1. 6.6.2. 6.6.3. 6.6.4.	Engine Operation Under Cold Conditions Engine Injection Under Cold Conditions Engine Performances Fuel Consumption Analysis	58
6.7. Acc	essory Load	
6.8. Ener	gy Balance Diagram	
7. Autonor	nie Model Validation	
8. Conclus	ions	
9. Referen	ces	77
Acknowledg	ments	
Appendix A:	Vehicle Build Sheet	A-1
Appendix B:	Subset of Midsize Cars for Comparative Analysis	B-1
Appendix C:	2018 Toyota Camry XLE Test Signals	C-1
Appendix D:	Test Summary	D-1
Appendix E:	Cert Fuel Specifications	E-1
Appendix F:	Test IDs to Figures Matrix	F-1
Appendix G:	Comments From External Reviewers	G-1

List of Figures

Figure 1. Fuel economy trends: cars in the 3,500-lb weight class	5
Figure 2. Summary distributions of weight and horsepower of the midsize cars included in	-
the review.	6
Figure 3. FTP fuel economy of 2018 midsize vehicles	7
Figure 4. FTP fuel economy of 2018 midsize vehicles by vehicle	8
Figure 5. HWFET fuel economy of 2018 midsize vehicle	9
Figure 6. HWFET fuel economy of 2018 midsize vehicles by vehicle selected	. 10
Figure 7. Drive cycle developed from on-road data for on dyno mileage accumulation	. 11
Figure 8. Vehicle mounted for mileage accumulation on the AMTL two-wheel drive (2WD)	
chassis dynamometer	. 12
Figure 9. Figure 9: Vehicle mounted for full testing inside the AMTL 4WD chassis	
dynamometer	. 13
Figure 10. Instrumentation of port and direct fuel injection systems (61808001-61808051)	. 15
Figure 11. Direct fuel flow measurements via fuel scale and Coriolis flow meters	. 15
Figure 12. Wiring of the Hioki Power Analyzer on the 2018 Toyota Camry test vehicle	. 16
Figure 13. CAN breakout on the 2018 Toyota Camry XLE	. 17
Figure 14. Overview of steady state drive cycle with preparation	. 19
Figure 15. Vehicle acceleration with varying constant pedal inputs	. 20
Figure 16. Constant acceleration ramp cycles with varying accelerator pedal inputs	. 20
Figure 17. Engine mapping operation under fixed engine speed and varying pedal inputs	. 21
Figure 18. Toyota Camry test vehicle mounted to the chassis dynamometer inside of the	
test cell	. 23
Figure 19. Toyota Camry powertrain operation on cold start UDDS	. 24
Figure 20. Daily drive cycle test sequence executed in the morning	. 25
Figure 21. Raw fuel economy results: UDDS and HWFET certification cycles from Argonne	. 25
Figure 22. Raw fuel economy results for certification cycles across different temperature	
conditions	. 28
Figure 23. Cold-start engine operation on the UDDS across different temperatures	. 29
Figure 24. Powertrain and cabin temperature profiles across varying ambient temperatures	. 30
Figure 25. Steady-state speed operation at 72 °F and 0% grade – Tier 3 low-octane fuel	. 31
Figure 26. Steady state speed operation at 72 °F and 0% grade - Tier 2 high-octane fuel	. 32
Figure 27. Steady-state speed operation at 95 °F and 0% grade	. 32
Figure 28. Powertrain operation during the 55-mph to 80-mph passing maneuver on low-	
octane Tier 3 fuel	. 34
Figure 29. Powertrain operation during maximum acceleration	. 35
Figure 30. Repeat maximum acceleration runs overlaid	. 35
Figure 31. Initial 120 s of the idle fuel flow test.	36
Figure 32. Idle fuel flow test – full duration	. 37
Figure 33 Knock feedback signals on UDDSx2 cold-start cycles	39
Figure 34. Spark advance comparison between Tier 2 and Tier 3 fuels	39
Figure 35. Powertrain thermal and cooling information between different testing setups	. 41
Figure 36. Raw fuel economy results: UDDS and HWFET certification cycles from EPA	
and Argonne	42
Figure 37. Schematic of the vehicle configuration	43
Figure 38. Calculation of missing signals for component speed	44
0	

Figure 39. Calculation of missing signals for component torque	. 45
Figure 40. Calculation of missing signals for component speed	. 46
Figure 41. Time spent in each gear number for the UDDS/HWFET/US06 cycles	. 47
Figure 42. All operating points according to gear number – vehicle speed vs accelerator	. 48
Figure 43. All operating points according to gear number – vehicle speed vs. wheel torque	. 48
Figure 44. Transmission shifting points – upshifting	. 49
Figure 45. Transmission shifting points – downshifting	. 49
Figure 46. Torque converter lockup operation – wheel torque vs. vehicle speed	. 50
Figure 47. Torque converter lockup operation – engine speed vs. vehicle speed	. 50
Figure 48. Torque converter operation points for lockup vs. non-lockup for each gear (1 to 4).	. 51
Figure 49. Torque converter operation points for lockup vs. non-lockup for each gear (5 to 8).	. 52
Figure 50. Torque converter operation points for lockup	. 52
Figure 51. Operation of the DFCO when the braking is active	. 53
Figure 52. Operation of the DFCO for each gear	. 53
Figure 53. Operating behavior of the fuel injection mode	. 54
Figure 54. Operating behavior of the fuel injection mode (when the engine coolant temperatur	e
is between 35 °C and 60 °C)	. 55
Figure 55. Operating behavior of the fuel injection mode (when the engine coolant temperatur	e
is above 60 °C)	. 55
Figure 56. Engine fuel rate map according to engine speed and torque	. 56
Figure 57. Torque pedal map for each gear (1 to 4)	. 57
Figure 58. Torque pedal map for each gear (5 to 8)	. 58
Figure 59. Engine operation at the launch of the vehicle differs according to the engine coolan	t
temperature	. 59
Figure 60. Engine idle speed is controlled according to the coolant temperature	. 60
Figure 61. Behaviors of engine coolant temperatures on UDDS under different test conditions	60
Figure 62. Operating behavior of the fuel injection mode under cold ambient temperature	. 61
Figure 63. Fuel system operation at vehicle start under different ambient temperatures	. 61
Figure 64. Fuel rate of engine according to engine power for different coolant temperatures	. 62
Figure 65. Fuel rate of engine according to engine throttle position for cold coolant	
temperature	. 63
Figure 66. Accumulated fuel consumption trajectories on UDDS under different test	
conditions	. 63
Figure 67. Electrical consumption when the vehicle is fully stopped	. 64
Figure 68. Example of energy calculation for one component on Autonomie	. 65
Figure 69. Energy balance diagram on UDDS in Autonomie	. 65
Figure 70. Energy balance diagram on HWFET in Autonomie	. 66
Figure 71. Validation process for the 2018 Toyota Camry in Autonomie	. 67
Figure 72. Simulation results and test data for the UDDS cycle	. 68
Figure 73. Simulation results and test data for the HWFET cycle	. 69
Figure 74. Simulation results and test data for the US06 cycle	. 70
Figure /5. Torque converter locked vehicle speed	. 72
Figure /6. Comparison of torque converter lockup status	. 72
Figure //. Engine tuel cut-off vehicle speed	. 73
Figure /8. Comparison of engine tuel cut-off status	. /3
Figure /9. Comparison of engine operating points on the UDDS cycle	. 74

Figure 80. Comparison of engine operating points on the HWFET cycle	74
Figure 81. Comparison of engine operating points on the US06 cycle	75
Figure 82. Fuel consumption and error between test data and simulation result	75

List of Tables

Table 1. Technical specifications of the model year (MY) 2018 Toyota Camry test vehicle	
(Toyota Motor Sales, USA Inc., n.d.)	3
Table 2. Standard data streams collected for all vehicles tested at Argonne's Advanced	
Mobility Technology Laboratory	. 13
Table 3. Summary of the executed general test plan	. 17
Table 4. Main specifications of the low-octane Tier 3 EEE fuel for test for Test IDs	
61807001–61808040	. 21
Table 5. Main specifications of the high-octane Tier 2 EEE fuel (Test IDs 61808041–	
61808050)	. 22
Table 6. Main specifications of the EPA Tier 2 EEE fuel (Test IDs 61811001-61811014)	. 22
Table 7. Chassis dynamometer target parameters for the 2018 Toyota Camry XLE test vehicle	23
Table 8. Raw fuel economy results (mpg): UDDS and HWFET certification cycles from	
Argonne	. 26
Table 9. Raw Tier 3 – 88 AKI Unadjusted fuel economy results for drive cycle results	. 26
Table 10. Powertrain efficiencies (percentage) based on J2951 positive cycle energy	. 27
Table 11. Powertrain efficiencies across different ambient test conditions based on Tier 3 fuel	. 29
Table 12. Time duration for acceleration events	. 33
Table 13. Octane impact on fuel economy (mpg) on standard drive cycles at 23 °C	. 38
Table 14. Octane Impact on vehicle efficiency	. 38
Table 15. Varying vehicle modes during comparative HWFET cycle testing	. 40
Table 16. Raw fuel economy results: UDDS and HWFET certification cycles from EPA and	
Argonne	. 42
Table 17. Parameter values used for calculating additional signals	. 46
Table 18. Percentage time of torque converter locked per each cycle	. 51
Table 19. The NCCP values for UDDS, HWFET, and US06 cycles	. 71
Table 20. Percentage of times for torque converter lockup and DFCO on	. 74
Table 21. Fuel consumption comparison of test data and Autonomie simulation results	. 75
Table 22. Facility and Vehicle Signal list	C-2
Table 23. CAN Signal List	C-3
Table 24. Certificate of Analysis for Tier 3 test fuel used in tests 61807001–61808040	E-2
Table 25. Certificate of Analysis for Tier 2 test fuel used in tests 61808041–61808051	E-3
Table 26. Certificate of Analysis for Tier 2 test fuel used in tests 61811001–61811014	E-4
Table 27. Test IDs to Figures Matrix	F-2

Definitions and Abbreviations

2WD two-wheel drive	
4WD four-wheel drive	
AKI anti-knock index	
AMTL Advanced Mobility Technology Laboratory (Argonne)	
Autonomie Argonne full vehicle simulation software at www.autonomie.	net/
Argonne Argonne National Laboratory	
ASR absolute speed change rating	
AVTE Advanced Vehicle Testing Evaluation (previous U.S. DOE ac	tivity)
BEV battery electric vehicle	2 /
BTU British thermal unit	
CAN controller area network	
CAFE Corporate Average Fuel Economy	
ccps cubic centimeters per second	
CEd positive driven cycle energy	
CFR Code for Federal Regulation	
D3 Downloadable Dynamometer Database (www.anl.gov/d3)	
DAQ data acquisition system	
DFCO deceleration fuel cut-off	
DFI direct fuel injected	
DI direct Injection	
DOHC double overhead cam	
DR distance rating	
EGR exhaust gas recirculation system	
ER energy rating	
EER energy economy rating	
FTP Federal test procedure (EPA defined)	
gps grams per second	
HC hydrocarbon	
HEV hybrid electric vehicle	
Highway or HWFET EPA certification testing: Highway dynamometer driving cyc	le
inH20 inches of water	
inHg inches of mercury	
kPa kilopascal	
LA92 California unified driving schedule	
lb-ft Foot-pounds	
lbm pound-mass	
LHV lower heating value	
MBT maximum brake torque	
N newton	
NA naturally aspirated	
Nm newton-meters (torque)	
NOx oxides of nitrogen	
PFI port fuel injected	
RMS root mean squared	

Rear-wheel drive
Society of Automotive Engineers
EPA certification test (air conditioning test)
standard cubic feet per minute
steady speed stairs
torque converter clutch
transmission control unit
EPA certification test: Urban dynamometer driving schedule (FTP-72)
EPA certification test: US06 dynamometer driving schedule
Volpe National Transportation Systems Center
Vehicle Systems Research
valve timing control
variable valve timing and lift electronic control

Symbols	Description
<i>F_{chassis}</i>	force obtained from the dynamometer
J _{TC}	Inertia of torque converter
r_t	radius of tire
$R_{xy}(\tau)$	cross-correlation over the range of lags (τ) between two signals (x, y)
T _{accmech}	torque of accessory load
T _{eng}	torque of engine
T _{fd,in}	torque in of final drive
T _{fd,out}	torque out of final drive
$T_{gb,in}$	torque in of gearbox
T _{gb,out}	torque out of the gearbox
T _{ratio}	torque ratio of torque converter
$T_{TC,in}$	torque in of torque converter
T _{wheel,brake}	brake torque of wheel
T _{wheel,out}	torque out of wheel
$v_{chassis}$	linear speed of vehicle
γ_{fd}	ratio of the final drive
η_{fd}	transfer coefficient of final drive
τ	displacement, also known as lag
ω_{ratio}	speed ratio of turbine speed to impeller speed for torque converter
ω_{TC}	rotational speed of impeller for torque converter
ω_{wheel}	rotational speed of wheel

1. Executive Summary

The National Highway Traffic Safety Administration is an agency within the U.S. Department of Transportation (DOT), which sets Corporate Average Fuel Economy (CAFE) standards for passenger cars, light trucks and medium-duty passenger vehicles. NHTSA contracted with Argonne National Laboratory (Argonne) to conduct full vehicle simulations using its Autonomie software (https://www.autonomie.net/) and provide input into the CAFE model for determining optimum average fuel economy based on numerous technological and economic factors. Autonomie relies on vehicle and component data for model development and validation. Argonne's Advanced Mobility Technology Laboratory (AMTL) provides the laboratory test data used in Autonomie. In 2019 NHTSA funded a project at Argonne to benchmark a 2018 Toyota Camry sedan, resulting in an extensive dataset for analysis, model development, and validation with Argonne's Autonomie to assess the fuel-saving technologies of this advanced powertrain.

The vehicle benchmarked in this report is a 2018 Toyota Camry equipped with the 2.5L I4 "Dynamic Force" engine coupled to a newly introduced 8-speed automatic transmission. This powertrain is acclaimed for providing favorable fuel economy results while delivering significant vehicle performance [1]. The focus of the evaluation is to understand the use of critical powertrain components and their impact on the vehicle efficiency. The vehicle was instrumented to provide data to support the model development and validation in conjunction with providing the data for the analysis in the report. Tests were performed on a chassis dynamometer in a controlled laboratory environment across a range of certification tests and testing temperatures. Furthermore, focused testing was performed to characterize different powertrain components' performance. Note that this provided a vehicle system focus and does not result in component specific results such as engine fuel maps, which may be best developed from focused testing efforts on the components rather than vehicle system level experimentation.

The analysis in this report is separated into several sections. Initial discussions provide a basis for vehicle instrumentation and setup throughout the testing program. Discussions then focus on vehicle level operation, fuel economy, and efficiency results on certification drive cycles, and the impact of high-level changes such as test temperature, test methodology, and test fuel. Finally, model development and validation are discussed.

2. Introduction and Background

Argonne National Laboratory performed a technology assessment of a 2018 Toyota Camry based on a joint vehicle evaluation, modeling, and simulation effort. The vehicle evaluation focused on developing an understanding of powertrain operation and corresponding fuel economy based on a combination of in-depth instrumentation and focused testing, which resulted in a comprehensive dataset. This dataset of hundreds of time-resolved vehicle signals provided a basis for direct analysis, informed the refinement of Argonne's Autonomie software, and enabled validation of the vehicle-specific technologies (www.autonomie.net). In addition, this dataset will be made publicly available through the Advanced Mobility Technology Laboratory's Downloadable Driving Database (D3) at www.anl.gov/d3.

3. Test Vehicle Description

3.1. Vehicle Specifications

In 2018, Toyota began offering a new powertrain lineup, with an engine technology marketed as "Dynamic Force." This powertrain technology was described as providing many improvements over previous generations of engine technology. The engine redesign includes new technologies that are said to allow it to produce ample torque at all speeds, including high-speed combustion stated to increase the engine thermal efficiency by 15 percent while reducing the fuel consumption, a variable control system that allows precise control of the fuel injection to reduce emissions, and an improved thermal management system [1][3]. In addition, the Camry features an updated 8-speed automatic transmission with a wider gear range stated to increase responsiveness and efficiency and to provide a more compact design compared to the previous generation 6-speed transmission [2][3]. An overview of the vehicle's technical specifications can be found in Table 1.

Test vehicle	2018 Toyota Camry XLE/2.5L I4 Dynamic Force (A25A-FKS) w/ 8-speed automatic transmission
Vehicle identification number	4T1B11HK2JU057338
Engine	2.5-liter, I4, DOHC 16V, 151 kW (206 hp) @ 6,600 rpm, 250 Nm (186 ft*lbf) @ 5,000 rpm Compression ratio 13.0:1 D-4S= Port-fuel Injection and direct injection
Transmission	8-speed UB80E "Direct 8AT" automatic transmission 1st 5.250 2nd 3.028 3rd 1.950 4th 1.456 5th 1.220 6th 1.000 7th 0.808 8th 0.673 Differential gear ratio = 2.802 235/45 R18 tires
Climate control	Dual-zone automatic climate control Belt-driven air conditioning compressor R1234-yf refrigerant
EPA label fuel economy (mpg) ^a	28 City/39 Highway (HWFET)/32 Combined, regular gasoline

Table 1. Technical specifications of the model year (MY) 2018 Toyota Camry test vehicle (Toyota Moto	r
Sales, USA Inc., n.d.)	

^a Data from fueleconomy.gov.

The full vehicle build details can be found in the test vehicle's Monroney label, or window sticker, in Appendix A: Vehicle Build Sheet.

3.2. Key Technology Features

The 2018 Toyota Camry was produced with a new generation of Toyota internal combustion engine called a Dynamic Force engine in the Toyota New Global Architecture (TNGA). As stated by the manufacturer, the engine was redesigned from the basic structure of the prior generation resulting in efficiency improvements throughout the powertrain, high-speed combustion, and an advanced variable valve control system [1]. The engine is a naturally aspirated, in-line, 4-cylinder, 2.5L, 16-valve, dual overhead cam (DOHC) engine referred to as the A25A-FKS. The engine operates on a high- expansion-ratio Atkinson cycle to provide improved engine performance; noise, vibration, and harshness (NVH); and fuel economy, with a peak thermal efficiency of 40 percent, and expanded operational areas of higher overall thermal efficiency [1]. The following technologies, referenced from Toyota press releases [1] and service documentation [3], are used.

- Atkinson cycle, high-tumble-ratio, high-efficiency intake port design with a stroke-tobore ratio of 1.2, enabling high-speed combustion.
- Widened angle between intake and exhaust ports, with a straightened intake port runner
- Dual VVT-iE: Dual variable valve yiming Intelligent
 - Adjustment of intake camshaft timing through an electrically operated actuator with a range of 70 degrees
 - Adjustment of exhaust camshaft timing through a hydraulic actuator with a range of 41 degrees
- D-4S: Direct injection (DI) 4-stroke gasoline engine: Superior version
 - Blending of direct and port fuel injection (PFI)
- DIS: Direct ignition system

_

- ETCS-i: Electronic throttle control system Intelligent
- EGR: Exhaust gas recirculation with a high-volume/high-efficiency cooler
 Cylinder heads have built-in EGR cooler functionality
 - Cylinder neads nave built-in EGR cooler func
 - Continuously variable capacity oil pump
 - Engine oil flow rate control under any running condition

In addition to the Dynamic Force engine, as part of the TNGA, Toyota developed two new automatic transmissions—the 8-speed transmission Direct Shift-8AT and a 10-speed Direct Shift-10AT [2]. Several transmission-specific enhancements were noted for both transmissions to improve efficiency and reduce energy loss. These transmission enhancements, summarized from Toyota press releases [2] and service documentation [3], include the following.

- Reduced friction between gears during engagement from new gear tooth surface processing techniques.
- Clutch friction material configuration change to reduce clutch torque loss by a stated 50% (compared to prior 6-speed transmission) during rotation by improving fluid drag force.
- Widened gearing and newly developed torque converter for broader lockup range and quicker response.

Note, in vehicles with the A25A–FKS engine, such as the test vehicle, the powertrain was equipped with the UB80E 8-speed automatic transaxle known as the Direct Shift-8AT.

3.3. Comparison Vehicles and Preliminary Analysis

This section will provide a brief comparison of the 2018 Toyota Camry with historical trends in this category and other vehicles released in the midsize non-luxury vehicle category for the 2018 model year (MY). The 2018 Toyota Camry was offered in five trim levels: L, LE, SE, XLE, and XSE. All trim levels are equipped with a 2.5L engine as standard, while the XLE and XSE are offered with an optional 3.5L V6. Following a joint review of possible powertrain configurations with project sponsors, the 2018 Toyota Camry XLE with a 2.5L engine and 8-speed UB80E transmission was chosen for this research.

This 2018 Toyota Camry XLE test vehicle has a curb weight of 3,351 lbs, with a gross vehicle and equivalent test weight (ETW) of 3,625 lbs. To provide insight into trends for similar vehicles in this category, the test vehicle was compared with cars of a similar weight. To this end, the 2017 U.S. Environmental Protection Agency (EPA) fuel economy trends report [4] provides a glimpse into the historical trends from 1975 to 2020 for similar cars within the weight class of 3,500–4,000 lbs. The trend of average fuel economy rates, with the specific test vehicle combined results for the 2018 Toyota Camry indicated by a star, are shown in Figure 1.

Figure 1. Fuel economy trends: cars in the 3,500-lb weight class

Combined fuel economy for mid-sized passenger cars has been steadily increasing from 25.3 mpg since 2009 to 30.2 in 2017 (EPA, 2019). The Camry 2.5L XLE, offered the first year of a new generation of Toyota powertrains, provides insight into how this trend will likely continue to increase. Improvements are found in both the test vehicle's city and highway fuel economy rates, with the highway cycle fuel economy results demonstrating the greatest increase over the historical trend.

Beyond historical trends of vehicles in a similar weight category, there are benefits in comparing the test vehicle with other vehicles in the MY2018 midsize category. For this comparison,

vehicles of similar test weight, with a starting manufacturer suggested retail price (MSRP) below \$25,000 were considered. Following vehicle selection based on these broad criteria, all trim levels were then considered based on data available in the EPA vehicle test car list database[5]. A subset of selected vehicles used for this comparison can be found in Appendix B: Subset of Midsize Cars for Comparative Analysis. The resulting list of comparable midsize sedans from the 2018 model year is summarized in the list below.

- Buick Regal
- Chevrolet Malibu
- Ford Fusion
- Kia Optima
- Honda Accord
- Hyundai Sonata
- Mazda 6
- Nissan Altima
- Subaru Legacy
- Toyota Camry
- Volkswagen Passat

Vehicle weights in those reviewed varied considerably, as optional powertrains (with the exception of hybrids) and trim levels were also considered. Figure 2 shows the distributions of weight and horsepower available of the vehicles reviewed.

Figure 2. Summary distributions of weight and horsepower of the midsize cars included in the review

The 2018 Camry 2.5L XLE test vehicle weight is near the mean of the category based on its equivalent test weight of 3,625 lbs. Note that ETW is the test weight used for chassis dynamometer testing based on the inertia weight classes. The inertia weight class is defined by Table 1 in 40 CFR § 1066.805 [6].

In addition, the test car's rated engine power of 151kW (203 hp) is also near the mean of 159kW (213.2 hp) for its category. Fuel economy in this category varies considerably based on powertrain and trim selection. The fuel economy values published by manufacturers is termed as adjusted fuel economy values, as the observed (unadjusted) fuel economy from vehicle dynamometer is adjusted downward based on EPA's established procedure. A comparison of the

unadjusted fuel economy, separated by induction category, is shown on the Federal test procedure (FTP) cycle in Figure 3: FTP fuel economy of 2018 midsize vehicles.

Distribution of MY2018 Unadj. FTP FE (mpg)

Figure 3. FTP fuel economy of 2018 midsize vehicles

The adjusted fuel economy on the FTP cycle of the 2018 Toyota Camry XLE is within the highest of the sample set. Only alternative trim levels of the Toyota Camry with the 2.5L engine and the recently revised Honda Accord 1.5L powertrain offered higher fuel economy above 37 mpg. Figure 4 displays the fuel economy of the vehicles in the sample set by transmission type and gear count.

Distribution of MY2018 Unadj. FTP FE (mpg)

Figure 4. FTP fuel economy of 2018 midsize vehicles by vehicle

The fuel economy results for the 2018 Toyota Camry were similarly high on the reported Highway Fuel Economy Test (HWFET) cycle. Of the vehicles compared, the five test vehicles with the highest reported fuel economy were all varying trim levels of the 2.5L Toyota Camry. Overviews of the 2018 Toyota Camry HWFET fuel economy can be found are in Figure 5 and Figure 6.

Distribution of MY2018 Unadj. HWFET FE (mpg)

Figure 5. HWFET fuel economy of 2018 midsize vehicle

Distribution of MY2018 Unadj. HWFET FE (mpg)

Figure 6. HWFET fuel economy of 2018 midsize vehicles by vehicle selected

4. Testing Overview

4.1. General Testing Overview

4.1.1. Vehicle Procurement and Break In

Vehicle trim level selection followed an extensive review of available vehicle options that could affect vehicle energy use. As testing was performed at above and below a 23 °C ambient temperature, automatic climate control offers insights into the climate control system operation, which affects vehicle energy consumption. At above ambient (hot) temperatures, the air conditioning (AC) system provides a load on the powertrain, which can be affected by controlled cabin temperature, controlled airflow, and AC compressor operation. At low temperatures, the climate control system affects the rate at which fluid temperatures rise as coolant flow is routed to the passenger cabin, reducing the waste heat that is available for the powertrain.

After a review of the 2018 Toyota Camry trim levels found that the XLE trim level provided all desired features, it was chosen to be the test vehicle. The test vehicle was purchased new from a Toyota dealership, providing a known (near zero mile) starting point of vehicle maintenance and operation history.

A new vehicle must be "broken in" for stability and consistent vehicle losses of tires and of moving and rotating components and to ensure catalyst "degreening." An industry standard with a duration of 4,000 miles is established for proper vehicle break-in [7][8]. On the test vehicle, these preliminary 4,000 miles were completed through a combination of on-road and on-dynamometer operation. Controller-area-network (CAN)-based vehicle instrumentation was completed prior to break-in, providing data for preliminary results and instrumentation validation and refinement. On-road mileage accumulation of 2,000 miles ensured proper break-in of vehicle tires and other rotating components, in addition to collecting data of on-road vehicle operation. The remaining 2,000 miles were completed on a chassis dynamometer to expedite the vehicle evaluation.

A key component of an effective break-in is variations in powertrain speed and loading. Break-in miles accumulated on-road inherently provide this variability, whereas variability in operation on a chassis dynamometer depends on the driving cycle completed. To ensure variability while accumulating miles on the dynamometer, several custom drive cycles were created based on collected on-road data with varying acceleration rates and speeds. An example of a custom drive trace is shown in Figure 7.

Figure 7. Drive cycle developed from on-road data for on dyno mileage accumulation

Vehicle operation on dynamometer mileage accumulation was provided by a custom-built robot driver, allowing for consistent mileage accumulation while reducing project burden. Figure 8 shows the test vehicle during mileage accumulation.

Figure 8. Vehicle mounted for mileage accumulation on the AMTL two-wheel drive (2WD) chassis dynamometer

4.2. Extended Testing Overview

4.2.1. Vehicle Dynamometer Setup

4.2.1.1. Testing Overview

The following sections provide details of the vehicle setup, and an overview of the test methodology specific to this test vehicle. For further information regarding the methods of vehicle testing, please review the AMTL Testing Methodologies Report [9]. Figure 9 shows the test vehicle located in the 4-wheel drive (4WD) chassis dynamometer during testing at the AMTL.

Figure 9. Figure 9: Vehicle mounted for full testing inside the AMTL 4WD chassis dynamometer.

4.2.1.2. Instrumentation

Vehicle instrumentation was developed to be sufficiently comprehensive to provide overall insight into vehicle operation and to supply modeling and simulation with enough detail to develop models, calibrate control strategies, and validate simulation results. This section describes the vehicle-specific instrumentation installed, in addition to the generic facility instrumentation listed in Table 2.

Facility Data	Drive Cycle Input	Emissions Data	Generic Vehicle Data
Dyno_Spd[mph]	Drive_Schedule_Time[s]	Dilute_CH4[mg/s]	Engine_Oil_Dipstick_Temp [°C]
Dyno_TractiveForce [N]	Drive_Trace_Schedule[mph]	Dilute_NOx[mg/s]	Cabin_Temp[°C]
Dyno_LoadCell[N]	Exhaust_Bag []	Dilute_COlow[mg/s]	Tire_Rear_Temp[°C]
DilAir_RH(%)		Dilute_COmid[mg/s]	Tire_Front_Temp[°C]
Tailpipe_Press [inH2O]		Dilute_CO2[mg/s]	
Cell_Temp[°C]		Dilute_HFID[mg/s]	
Cell_RH(%)		Dilute_NMHC[mg/s]	
Cell_Press[inHg]		Dilute_Fuel[g/s]	

 Table 2. Standard data streams collected for all vehicles tested at Argonne's Advanced Mobility

 Technology Laboratory

Additional analog signals include a thermocouple measuring the air temperature behind the radiator and a thermocouple measuring the engine bay temperature.

The following is a categorized list of important signals decoded on the vehicle communication bus, both diagnostic and broadcast messaging.

- Driver input:
 - Accelerator pedal position (several signals)
 - Brake pedal (several signals)
 - Mode selection (Comfort/Normal/Sport)
 - Transmission Park-Reverse-Neutral-Drive-Low (PRNDL) selection
- Engine:
 - Engine load
 - Engine speed

- Intake air temperature
- Exhaust and intake cam angle
- Knock feedback
- Spark adjustment
- Equivalence ratio
- Engine DI to PFI operational mode
- Fuel rail pressure (low pressure)
- Cooling system
 - Engine cylinder head temperature
 - \circ Engine cooling fan speed
- Transmission
 - Transmission temperature
 - Gear number
 - Transmission turbine shaft speed
 - Transmission output speed
 - Torque converter lockup operation

The list above is only a subset of the signals collected. The complete list for the test vehicle can be found in Appendix C: 2018 Toyota Camry XLE Test Signals.

4.2.1.3. Fuel Flow Measurements (PFI, DI, Total- Coriolis, Modal, Bag)

The 2.5L I4 Dynamic Force engine has two fuel injection systems: a direct injection (DI) system, and a port fuel injection (PFI) system. The total fuel flow was measured using a Coriolis fuel flow meter supplied from the engine bay connection by the low-pressure fuel pump, and the junction that splits the fuel between the DI and PFI systems. At the output of the Coriolis meter, the fuel flow was split and routed to two independent positive displacement fuel scales, allowing for direct measurement of DI and PFI flow. Each system was then routed to the respective fuel rail for the high-pressure fuel pump inlet. It should be noted that the addition of hosing, although required for DI/PFI analysis, results in some delay due to fuel storage. In addition, following the vehicle's remounting to the chassis dynamometer for additional testing as noted in Appendix D: Test Summary, the fuel flow instrumentation was modified to capture only total fuel flow rather than separating out fuel flowing to the direct and port fuel injection systems. Figure 10 and Figure 11 illustrate the fuel system instrumentation of the test vehicle.

Figure 10. Instrumentation of port and direct fuel injection systems (61808001–61808051)

In should be noted that on tests 61811001–61811014, only total fuel flow was measured prior to the DI/PFI junction at the "Direct 3" location.

Figure 11. Direct fuel flow measurements via fuel scale and Coriolis flow meters

4.2.1.4. Hioki Setup

Vehicle electrical systems measurements were captured with a 4-channel Hioki 3390-10 power analyzer. Three channels were instrumented, each with a direct measurement of current with Hioki CT6843 200A current probes. Voltage for each channel was measured across the 12V battery, which was then bridged to act as the source for all three channels. From the measured current and voltage channels, power and energy use were calculated in the analyzer. An overview of vehicle 12V system instrumentation is shown in Figure 12.

Figure 12. Wiring of the Hioki Power Analyzer on the 2018 Toyota Camry test vehicle

4.2.1.5. CAN Signals

A core capability of the AMTL staff is the ability to decode the vehicle and powertrain internal communication messages (i.e., the CAN). Over the last few years, AMTL staff have developed powerful tools and expertise that enable the decoding of both broadcast and diagnostic CAN messages. These tools rely on the understanding of CAN messaging structure, the correlation of changes in CAN messages to known instrumentation signals, and the ability to use the chassis dynamometer environment to safely control planned scenarios to enable the decoding of specific signals.

Capturing communication signals, whether broadcast or diagnostic, directly from the vehicle can provide a considerable amount of data that would otherwise be unattainable due to the challenges of instrumentation and the high costs associated. Once determined, these signals provide key insight into component control and operation. Though these signals offer the mentioned benefits, they do have a higher level of signal specific uncertainty as the data is developed internally at the manufacturer and varies based on the specific signals and sensors. Due to this, Argonne staff validate signals to the greatest extent possible through independent instrumentation and calculation of correlating results of similar signals.

The team decoded a significant list of vehicle messages for the vehicle, which are detailed in Appendix C: 2018 Toyota Camry XLE Test Signals. This instrumentation included the determination and probing of eight separate CAN networks across the vehicle that were joined to a single measurement location for data collection, as shown in Figure 13.

Figure 13. CAN breakout on the 2018 Toyota Camry XLE

The corresponding logging and communication of CAN messages were completed through a combination of custom scripting in Intrepid Control Systems Vehicle Spy software, and with National Instruments LabVIEW software located on the AMTL custom-built data acquisition system (DAQ).

4.2.2. Test Plan Execution

4.2.2.1. Overview of Testing Matrix

Table 3 provides a summary of the tests that were executed as part of the general test plan. A test sequence, depicted in Figure 20, is repeated three times at 23 °C, while testing at -7 °C and 35 °C did not include any repeat testing. In addition to this initial testing which occurred on a high-octane certification fuel, additional testing using a low-octane certification fuel provided data for a comparison study of the effects of octane which will be discussed in a later section.

Test Cycle/Test Conditions	23 °C	35 °C + 850W/m ²	-7 °C	23 °C Tier 3 Fuel
UDDSx3 (including cold start) ^a	3x	UDDSx2	1x	3x
HWFETx2	3x	2x	HWFETx3	3x
US06x2 (4bag)	3x	2x	1x	3x
SC03x2	N/A	2x	N/A	N/A
Steady-state speed testing 0%, 3%, 6% grade	1x	1x		1x
Passing 0%, 3%, 6% grade	1x			1x
WOT'sx3	1x			1x

 Table 3. Summary of the executed general test plan

^a SC03 = air conditioning test; UDDS = urban dynamometer driving schedule; US06 = US06 dynamometer driving schedule

Additional testing was included to provide further insight into vehicle energy consumption and operation. The additional testing includes the following.

- 23 °C Cold start idle: mapping out the idle fuel flow consumption as a function of powertrain temperature
- 23 °C Cold start LA92
- 23 °C Cold start US06
- Transmission mapping through:
 - Constant accelerator tip-ins tests
 - Accelerator tip-ins with vehicle locked at constant speed
- High load engine and transmission mapping

The table in Appendix D: Test Summary summarizes the final tests performed in this effort.

4.2.2.2. Driver Selection (Human vs. Robotic)

Argonne has experienced dynamometer drivers who have driven test cycles on chassis rolls for decades. Vehicle operation on all drive cycles was completed with these trained human drivers unless otherwise noted. To supplement their efforts and provide greater control for specific tests such as mapping or steady-state speeds, Argonne also uses a robot driver. These focused tests perform best when step-change inputs can be executed and subsequently held constant on braking or accelerator inputs — an operation that is more easily performed by an actuator. The driver used to perform each specific test is identified in the test plan located in Appendix D: Test Summary.

4.2.2.3. Vehicle and Test Cell Setup

Argonne's testing goal is research fidelity and data capture for the purpose of direct analysis and model development. Due to this, Argonne testing may deviate from certification testing, though standard certification drive cycles are conducted. The staff often purposefully chose to change specific aspects of the test procedures to prioritize vehicle operation in real-world conditions. Further detail in standard vehicle and test setup is discussed in separate documentation, which can be found in the AMTL Testing Methodologies report [9]. For specific details on how a test was performed, please consult Appendix D: Test Summary.

All testing on both the 2WD and 4WD chassis dynamometers was conducted with the Forward Collision Warning and Pre-collision Braking systems disabled through the driver control interface. Analysts reviewed and confirmed test data to ensure consistent vehicle operation with these systems disabled with the vehicle operating on the chassis dynamometer.

4.2.3. Specialized Testing Overview

Determination of component and controls operation and limitations is best realized by focused testing in which vehicle operation can be controlled. This section will provide an overview of the methods and testing developed specifically for the 2018 Toyota Camry. Additional operational testing discussion can be found in a supplemental report [9].

4.2.3.1. Steady State Speeds

Steady-state speed tests determine vehicle operation while the vehicle is driven at a constant speed and load point. These cycles are conducted by following a constructed driving schedule and are completed with a minimum of 30 seconds spent at each speed until stability is determined. Vehicle speed is increased in 10-mph increments up to 80 mph, held for the set period of time, and then reduced to a stop in 10-mph increments (Figure 14). Holding each speed following both the increases and decreases in speed captures variability in powertrain operation, as well as the starting thermal state. These cycles may be repeated at varying grades to capture variations in vehicle loading at a steady state.

Figure 14. Overview of steady state drive cycle with preparation

Prior to each steady-state speed cycle, the vehicle is warmed to an engine oil temperature of above 80 °C, or similar to that observed on transient drive cycles. On the 2018 Toyota Camry, steady-state speed cycles were performed at the test temperatures of 23 °C (0% grade, both fuels), and 35 °C (0%, 3%, and 6% grades), as contained in Appendix D: Test Summary.

4.2.3.2. Powertrain Mapping Cycles

Limitations and operation of the vehicle powertrain are not common during operation on transient drive cycles. To properly map powertrain operation, custom cycles are used to control vehicle operation and effectively map component operation. For mapping powertrain operation of the 2018 Toyota Camry, Argonne used a combination of custom drive cycles, a robotic driver, and feedback from focused instrumentation. Mapping was performed using a series of tests. The first method consisted of the dynamometer being placed in the road load simulation mode, and accelerating with fixed accelerator pedal inputs, as shown in Figure 15. It should be noted that a max dynamometer speed of 85mph limited the vehicle speed, which can be seen at about 3,500s in the following test cycle.

Figure 15. Vehicle acceleration with varying constant pedal inputs

This method provides a map of load demand and upshift strategy for the full range of powertrain operation. Accelerator pedal inputs were held in 2.5% increments to a position of 20%, then increased by 5% bins to 50%, and then by 10% up until full accelerator pedal input.

Additional mapping is required to capture transmission operation during deceleration. For this testing the dynamometer is placed into a mode that provides ramps of constant acceleration and a deceleration rate of 2 mph/s. This acceleration rate was chosen to provide an acceleration rate low enough to have a low change in vehicle speed during the shift event but is high enough to avoid component overheating. During ramp cycles, the accelerator pedal input was held constant while vehicle speed varied. An overview of the cycle is shown in Figure 16.

Figure 16. Constant acceleration ramp cycles with varying accelerator pedal inputs

One additional method of powertrain mapping focused on engine mapping, in which the goal is to develop a map of varying engine speed vs. load. Engine mapping on a chassis dynamometer is inherently challenging when compared to an engine dynamometer due to transmission operation, which can lead to "holes" in the map caused by the torque converter operation, and transmission shift commands. To avoid these "holes," the AMTL staff decoded communication messages that control the demanded transmission gear and used this method of control to effectively lock the torque converter and lock the transmission into a desired gear.

Once control over vehicle gear was established, testing was conducted by setting the chassis dynamometer to a vehicle speed that provided a desired engine speed under the vehicle-selected gear. The vehicle speeds of 20 mph to 85 mph were used to match specific engine speed and load points, with higher vehicle speeds enabling reduced wheel slip on the chassis dynamometer. Once the desired engine speed point was reached, the vehicle control was overridden, and the transmission locked into gear and the robotic driver used to increase accelerator pedal position, varying engine load and mapping out each engine speed point. Figure 17 shows a summary of this cycle.

Figure 17. Engine mapping operation under fixed engine speed and varying pedal inputs

4.2.4. Tier 3 - 88 AKI (Low-Octane) to Tier 2 - 93 AKI (High-Octane) Fuel Comparison

One important factor in the fuel economy observed during chassis dynamometer testing is the test fuel that is used. Test fuels vary in many ways including energy content, octane, and others. The 2018 Toyota Camry is listed as requiring an octane rating of 87 (research octane number [RON] 91) or higher. Manufacturer certification testing provided by EPA [5] was performed on a high-octane (RON 93) Tier 2 fuel. As a low-octane fuel is likely to be used by consumers, and prior dynamometer testing was conducted on a high-octane fuel, the use of both fuels was evaluated to capture data on the impacts of each fuel on vehicle operation.

The low-octane fuel chosen was EPA Tier 3 EEE certification fuel with an octane rating of 88 anti-knock index (AKI) and 10% ethanol content. The fuel was procured through Haltermann Solutions under the product code of HF2021. Table 4 provides the major specifications of the low octane Tier 3 certification fuel used. The complete fuel specifications for each fuel can be found in Appendix E: Cert Fuel Specifications.

Fuel Name:	HF2021 EEE Tier 3
Ethanol content	10%
Carbon weight fraction	0.827
Density	0.744 [g/ml]
Net heating value	17958 [BTU/lbm]
RON	91.9
Motor octane number (MON)	83.3
R+M/2	87.6
Sensitivity	8.6

Table 4. Main specifications of the low-octane Tier 3 EEE fuel for test for Test IDs 61807001–61808040

Additional testing was performed using a high-octane Tier 2 certification fuel. This fuel was procured through Haltermann Solutions under the product code of HF0437. Table 5 provides the major specifications for the Tier 2 certification fuel that we used.

Fuel Name:	HF0437 EEE Tier 2		
Ethanol content	0%		
Carbon weight fraction	0.8658		
Density	0.743 [g/ml]		
Net heating value	18627 [BTU/lbm]		
RON	96.8		
MON	89.1		
R+M/2	93.0		
Sensitivity	7.7		

Table 5. Main specifications of the high-octane Tier 2 EEE fuel (Test IDs 61808041–61808050)

The high-octane Tier 2 fuel has a 3.7% higher energy content by mass compared to the lowoctane Tier 3 fuel. This was accounted for in post processing for all fuel economy calculations. In addition, vehicle efficiency calculations use the actual fuel energy content and density, considering fuel variability.

Additional follow-on testing that explored the impact of varying vehicle setups, such as variable speed fan speed, hood position, and dynamometer mode, took place after a period where the vehicle was removed from the dynamometer. This testing was also conducted using the high-octane Tier 2 certification fuel to provide a comparison with EPA-listed dynamometer testing with the vehicle in 2WD mode. The specifications for this high-octane, Tier 2 test fuel are listed in Table 6.

Fuel Name:	HF0437 EEE Tier 2
Ethanol content	0%
Carbon weight fraction	0.8665

0.743 [g/ml]

97.3

88.6

93.0

8.7

18623 [BTU/lbm]

Density

RON

MON

 $\overline{R+M/2}$

Sensitivity

Net heating value

Table 6. Main specifications of the EPA Tier 2 EEE fuel (Test IDs 61811001–61811014)

It should be noted that the majority of the testing was performed using a low-octane certification fuel, though Appendix E: Cert Fuel Specifications provides a reference for the specific fuel used for each test.

4.2.5. Vehicle Setup

Argonne referenced manufacturer supplied certification data published by the EPA [5], to determine the test weight and road load coefficients. The vehicle was tested in 4WD mode using both the front and the rear rolls in the test cell, and it was restrained on the chassis dynamometer using chains linked to towers at each corner of the vehicle. The team performed the vehicle coast down and vehicle loss determination before testing started. The bulk of the test was completed in 4WD mode (i.e., with all four wheels spinning). In addition, the team explored different testing setups including some 2WD modes as discussed in Section 5.8.

Table 7 provides the chassis dynamometer setup parameters for the Toyota Camry, referenced from the manufacturer certification documentation and the EPA Test Car List Database [5]. Figure 18 shows the test vehicle mounted to the chassis dynamometer.

Test weight	3,625 [lb]		
Chassis dyno setup	4WD on rolls with dyno mode		
	Target	Set	
Road load A term	26.51 [lb]	-13.27 [lb]	
Road load B term	0.1985 [lb/mph]	0.3003 [lb/mph]	
Road load C term	0.0165 [lb/mph ^a]	0.0142 [lb/mph ^a]	

Table 7. Chassis dynamometer target parameters for the 2018 Toyota Camry XLE test vehicle

Figure 18. Toyota Camry test vehicle mounted to the chassis dynamometer inside of the test cell

Appendix D: Test Summary contains further details on the vehicle dynamometer coefficients used for specific tests.

5. Vehicle Testing Analysis

5.1. Vehicle Operation Overview

To provide an overview of the highlights of vehicle operation, Figure 19 displays an example of general vehicle operation on a section of the UDDS cycle. As the test vehicle was not equipped with an engine idle stop feature, the vehicle enters accelerations with the engine at idle. When the vehicle accelerates, it shifts quickly through the gears to maintain a low engine speed. At the relative low speed of 35 mph and low accelerator pedal position, the transmission is already in seventh gear. During deceleration, the fuel to the engine is cut off while the engine is motored through the transmission and locked torque converter using the kinetic energy of the vehicle. The engine resumes fueling again before the vehicle comes to a full stop. Figure 19 provides an overview of this powertrain operation.

Figure 19. Toyota Camry powertrain operation on cold start UDDS

5.2. Transient Cycle Results

5.2.1. Fuel Economy

5.2.1.1. Standard Fuel Economy Test Sequence Overview

The fuel economy testing focus for this work is on the UDDS, the Highway (HWFET), and the US06 drive cycles at the 23 °C ambient temperature. The test sequence includes a cold-start UDDS, a hot-start UDDS, a third UDDS, a HWFET (highway) pair, and a US06 pair. The preparation for the cold-start test consists of completing a UDDS cycle at 23 °C and leaving the vehicle to soak thermally at 23 °C for more than 12 hours. The overnight soak is performed on the chassis dynamometer in the test cell as the vehicle remains mounted on the rolls for the duration of the testing. The graph in Figure 20 shows the sequence of drive cycles executed, which was repeated three times to capture test-to-test variability on the low-octane fuel. Note
that a 10-minute soak period is held between the UDDS cycles as noted in the figure. The fuel economy numbers in this report are based on the test phases highlighted by the pink boxes. The phases for the US06 drive cycle are the split city and HWFET (highway) phases needed to calculate the EPA 5-cycle fuel economy label.

Figure 20. Daily drive cycle test sequence executed in the morning

5.2.1.2. Corporate Average Fuel Economy (CAFE) Certification Cycle Fuel Economy Results

Figure 21 and Table 8 compare the three test sequences completed at the AMTL. These tests were performed on the low octane Tier 3 fuel. The test results on the Tier 3 fuel show good repeatability, with the highest deviation of any phase to the average fuel economy being less than 0.5%.

Figure 21. Raw fuel economy results: UDDS and HWFET certification cycles from Argonne

	Argonne (Tier 2) 93 AKI	Argonne avg. (Tier 3) 88 AKI	Repeat #1 (Tier 3) 88 AKI	Repeat #2 (Tier 3) 88 AKI	Repeat #3 (Tier 3) 88 AKI
UDDS Phase 1	34.3	33.5	33.5	33.6	33.4
UDDS Phase 2	34.5	33.4	33.3	33.3	33.6
UDDS Phase 3	40.0	37.9	37.9	37.9	37.9
HWFET	57.4	56.6	56.4	56.9	56.7

Table 8. Raw fuel economy results (mpg): UDDS and HWFET certification cycles from Argonne

5.2.1.3. Tier 3 Fuel Economy Results for Standard Drive Cycles

The fuel economy results for standard drive cycles are presented in Table 9. The drive cycles include the cold-start UDDS (Phases 1 and 2), the hot-start UDDS (Phases 3 and 4), a third UDDS cycle, the HWFET cycle, and the US06 cycle. The third UDDS cycle is not part of the certification testing, however, it is performed to capture the fuel economy and operational changes as the powertrain temperature reaches higher operating temperatures as shown in Figure 20. Both the HWFET and US06 drive cycles were tested in phases, and the fuel economy presented here is from the second cycle as described in Figure 20.

Table 9. Raw Tier 3 – 88 AKI Unadjusted fuel economy results for drive cycle results

	Fuel Economy (mpg)
UDDS #1 cold start	33.4
UDDS#1 Phase 1	33.5
UDDS#1 Phase 2	33.4
UDD S#2 hot start	35.7
UDDS#2 Phase 1	37.9
UDDS#2 Phase 2	33.9
UDDS #3	35.9
UDDS#3 Phase 1	38.2
UDDS#3 Phase 2	34.0
HWFET	56.6
US06	32.7
US06 City	20.2
US06 Highway	39.1

5.2.2. Vehicle Efficiency based on Low Octane Fuel Testing

The vehicle efficiency is calculated by dividing the positive driven cycle energy (CEd) by the fuel energy used over the drive cycle as is discussed in the SAE J2951 standard [10]. Table 10 provides the calculated vehicle efficiencies for the drive cycles in each test sequence.

	Test Sequence #1	Test Sequence #2	Test Sequence #3	Average
	(%)	(%)	(%)	(%)
UDDS #1 cold start	21.7	21.4	21.5	21.5
UDDS #2 hot start	22.9	22.9	22.9	22.9
UDDS #3	23.0	23.0	22.8	22.9
HWFET	32.4	32.4	32.3	32.4
US06	30.1	30.8	31.4	30.8

Table 10. Powertrain efficiencies (percentage) based on J2951 positive cycle energy

The lowest average vehicle efficiency occurs on the UDDS cycle, which is typical for conventional vehicles. The UDDS cycle is a stop-and-go drive cycle with very mild power requirements. On the UDDS cycle, the engine operates at low load with a relatively low throttle opening, which increases the pumping losses. The powertrain efficiency increases by 1.5% from the cold-start cycle to the third cycle where the powertrain has reached its operating temperature.

The average powertrain efficiency is the highest on the HWFET drive cycle. The powertrain can take full advantage of the 8-speed automatic transmission on the HWFET cycle. The eighth gear is engaged about 70% of the time, and the seventh and eighth gears combined are engaged more than 88% of the time, which results in median speeds of between 1,200 rpm to 1,500 rpm on the HWFET cycle. The engine down speeding coupled with the Atkinson cycle engine enables the vehicle to achieve a vehicle efficiency as calculated by SAE J2951[10] of above 30% on the HWFET cycle.

The average powertrain efficiency on the US06 drive cycle is also over 30%. This drive cycle requires high engine loads. These high loads, along with the flexibility in operation from the 8-speed automatic transmission and the Atkinson cycle engine, enable the high vehicle efficiencies.

5.2.3. Thermal Impact on Fuel Economy and Vehicle Efficiency

The UDDS cycles, the HWFET cycles, and the US06 cycles were also tested at -7 °C and at 35 °C with 850 W/m² of solar load, which are the two extreme temperature conditions for the EPA 5-cycle fuel economy label. Figure 22 provides the test results for these conditions and drive cycles.

Figure 22. Raw fuel economy results for certification cycles across different temperature conditions

The fuel economy for the cold-start UDDS at -7 °C is decreased by 26% compared to the same test at 23 °C, yet the fuel economy for the second urban cycle at -7 °C is only 13% lower compared to the same test at 23 °C. The powertrain must overcome significantly increased friction losses throughout the drive train on the cold start at -7 °C; however, once the powertrain reaches a steady operating temperature, those friction losses become less significant. The fuel economy penalty at -7 °C compared to 23 °C become smaller as the powertrain temperature increases.

The fuel economy at the 35 °C test condition is also reduced compared to the 23 °C test condition. At 35 °C, the fuel economy decreases by 8% and 10% for the cold-start UDDS and the hot-start UDDS, respectively, compared to the 23 °C test condition. The fuel economy reduction is driven by the additional power required to operate the air conditioning system to cool down the cabin. The deceleration fuel cut-off (DFCO) is reduced (13.8% DFCO UDDS cold start at 23 °C compared to 11.9% at 35 °C) as the engine restarts fueling sooner to provide power to the AC compressor when the kinetic energy of the vehicle is no longer high enough. Note that for the 35 °C testing, the third UDDS was replaced by SC03 drive cycles.

Table 11 provides the calculated vehicle efficiencies for the different ambient test conditions. The impact of the cold powertrain temperatures is apparent in the -7 °C cold-start efficiency. As the powertrain temperatures rise throughout the tests in the test sequence, the vehicle efficiencies at -7 °C start to approach the vehicle efficiencies at 23 °C ambient temperature. The impact of the auxiliary load from the AC compressor at 35 °C is also apparent in this table. It is noteworthy that the efficiency impact of the AC compressor is lower on the high-power US06 drive cycle as the ratio between the AC power to the average wheel power is lower compared to the same ratio for the lower-power UDDS cycle.

	-7 °C Vehicle Eff (%)	23 °C Vehicle Eff (%)	35 °C Vehicle Eff (%)
UDDS #1 cold start	16.0	21.5	19.8
UDDS #2 hot start	19.8	22.9	20.8
UDDS #3	20.2	22.9	21.2
HWFET	28.4	32.4	N/A
US06	27.5	30.8	29.3

Table 11. Powertrain efficiencies across different ambient test conditions based on Tier 3 fuel

Figure 23 shows the engine operating areas for the cold start and hot start UDDS at each of the three ambient temperature conditions. The 23 °C plot in the middle serves as the reference case. At -7 °C, the engine operation is slightly shifted to higher speeds and higher loads. At 35 °C, the average absolute engine load shifted upwards slightly. The overall absolute engine load envelop is increased, which also results from the additional power required for the AC compressor.

Figure 23. Cold-start engine operation on the UDDS across different temperatures

Figure 24 shows some relevant powertrain and ambient temperature profiles over the completion of the test sequence. To obtain a thermally stable result, three HWFET drive cycles were tested at -7 °C. The SC03 is a critical test at 35 °C, which replaced the HWFET cycle during this testing series. These graphs also show the targeted 23 °C cabin temperature that the climate control system tries to achieve in the -7 °C and 35 °C test condition.

Figure 24. Powertrain and cabin temperature profiles across varying ambient temperatures

The engine oil temperature is representative of the powertrain temperature. For all three ambient temperature conditions, the final engine oil temperature for the US06 is around 90 °C to 105 °C.

5.3. Steady-State Speed Fuel Economy and Efficiency

One characterization test run is the steady-state speed drive cycle, which holds vehicle speed for a duration of 1 minute at speeds from 10 mph to 80 mph in increments of 10 mph. On this cycle, the vehicle is first accelerated, then decelerated, through the speed set points to capture effects that may be seen in gear selection. The fuel economy results as well as some vehicle characterization parameters are presented in Figure 25. Note, the hood remained closed during testing with the variable speed fan matching the driven vehicle speed. For each steady-state speed, the vehicle efficiency, power required at the wheel, and engine speed are calculated.

Figure 25. Steady-state speed operation at 72 °F and 0% grade – Tier 3 low-octane fuel

The highest fuel economy was displayed at a vehicle speed of 40mph. Below 40mph, a low resulting vehicle efficiency results in reduced fuel economy, although required wheel power remains low. Although vehicle efficiency increases as vehicle speed increases, the additional wheel power required offsets any improvements in efficiency, thus reducing overall fuel economy. Peak vehicle efficiency is just below 30% at 80 mph. Engine speed remains between 1,000 and 1,250 rotations per minute (RPM) until the highest gear, the eighth gear, is engaged at 50 mph. Following this shift to eighth gear, engine speed increases in relation to vehicle speed with a resulting speed of about 2,000 rpm at 80mph.

As discussed in Section 5.7, additional testing was performed using a high-octane Tier 2 fuel. Testing on both fuels was conducted with the dynamometer in 4WD mode and with the vehicle remaining mounted to the dynamometer through the fuel swap. Figure 26 demonstrates vehicle operation with the high-octane fuel. Fuel economy, vehicle efficiency, and general vehicle operation all remained in that expected for test-to-test variability between the two fuels.

Figure 26. Steady state speed operation at 72 °F and 0% grade - Tier 2 high-octane fuel

Additional steady-state testing was completed at the elevated temperature of 35 °C with solar emulation, at varying grades of 0%, 3%, and 6%. The results of the test performed at 0% grade are displayed in Figure 27.

Figure 27. Steady-state speed operation at 95 °F and 0% grade

At this elevated test temperature, transmission operation remained the same at each set speed. Peak fuel economy was reduced to approximately 64 mpg and remained at this level from 30 to 50 mph. Vehicle efficiency is reduced by several percentage points at lower speeds due to heating, ventilation, and Air Conditioning (HVAC) operation. It should be noted that the vehicle cabin conditioned to a steady state prior to the start of this test, so that no impact of a "pulldown" of cabin temperature affected the results.

Vehicle gear selection remained consistent with prior tests and engine speed remained consistent as well. An additional point of note is the reduced impact on fuel economy at higher speeds compared to lower speeds. As vehicle load increases with vehicle speed increases, the overall proportional impact of HVAC loads is reduced. In addition, increases in powertrain temperatures, which are enabled by the electronic thermostat and the electric water pump, reduce losses, further improving vehicle efficiency. At a speed of 80 mph, both vehicle efficiency and fuel economy between the 23 °C and elevated 35 °C testing are in test-to-test variability.

5.4. Passing Maneuver Results and General Operation

To develop an understanding of vehicle performance when a vehicle is overtaking on a highway, Argonne has developed a test to simulate these events on a chassis dynamometer. This passing maneuver drive cycle includes accelerations from 35 to 55 mph, 55 to 65 mph, 35 to 75 mph, and 55 to 80 mph. In addition, to determine vehicle operation at higher loads, such as on an incline, this test is repeated at dynamometer grade settings of 0%, 3%, and 6%. For each passing maneuver, the vehicle is held at an initial steady-state speed; then the driver applies 100% accelerator pedal until the vehicle passes the desired end speed.

Table 12 summarizes the time it took the Camry to complete each passing maneuver on both high- and low-octane fuels.

Passing Manuever Time [s]					
		0% grade	3% grade	6% grade	
Low octane	35–55	4.3	4.7	5.0	
	55-65	3.6	3.8	4.4	
	35-70	7.9	9.0	10.1	
	55-80	7.4	8.4	10.2	
High octane	35–55	4.4	4.6	4.9	
	55-65	3.7	3.5	4.3	
	35–70	7.9	8.7	9.9	
	55-80	7.4	7.9	9.8	

Table 12. Time duration for acceleration events

A plot of the powertrain details for the passing maneuver from 55 mph to 80 mph is shown in Figure 28. In this case, the powertrain required slightly more than one-tenth of a second after 100% application of the accelerator pedal to downshift from eighth gear to fifth gear. An additional shift from fifth to third gear occurred about 1 second after 100% pedal application. Immediately upon 100% pedal application, the torque converter unlocks and remains unlocked for about 2.5 seconds, or until the vehicle reaches 60 mph. Fuel injection mode switches from

"either," a mixture of PFI and DI injection, to DI only for the remainder of the acceleration. Fuel enrichment to a ratio of 0.86 begins approximately 0.4 seconds after 100% pedal application.

Figure 28. Powertrain operation during the 55-mph to 80-mph passing maneuver on low-octane Tier 3 fuel

5.5. Operation During Maximum Acceleration (Tier 3 – 88 AKI)

Maximum acceleration performance tests were performed on the chassis dynamometer. The test is performed from a rolling start to alleviate the traction issues of the tire on a steel roll. Figure 29 shows the details of the powertrain operation during the maximum acceleration test. The DI fuel system is used during the acceleration phase. The equivalence ratio remains stoichiometric with small deviations during shift phases. The transmission shifts from first to second at approximately 25 mph and from second to third at 60 mph. The engine speed reaches 6,700 rpm at the shift points. The torque converter slips from launch through first and second gear and then locks in third gear. The maximum power at the wheel during these accelerations is about 112 kW at 80 mph.

Figure 29. Powertrain operation during maximum acceleration

Repeat testing of the maximum acceleration were performed and are shown in Figure 30. The acceleration and the power delivery values were found to be consistent of this duration of tests.

Figure 30. Repeat maximum acceleration runs overlaid

5.6. Idle Fuel Flow Rate Test Results

A 30-minute engine idle test in cold-start conditions is performed with the transmission in park, following an overnight soak at the test temperature of 23 °C. This test is designed to characterize engine behavior and fuel flow rate as the powertrain warms up at idle in Park.

Figure 31 shows the first 120 seconds of the cold start engine idle test. The engine is started at 3.5 seconds into the test to ensure that all measurements are properly captured following the start of test. By 5 seconds, engine speed is increased to more than 1,850 rpm before settling to 1,450 rpm. The ignition is retarded to help with the warm-up of the exhaust aftertreatment system. At approximately 25 seconds, the vehicle transitions to closed-loop operation. During this transition, ignition timing advances; and engine load, fuel power, and engine speed all decrease. At this transition, catalyst temperature from diagnostics (vehicle calculated) is reported at 280 °C. Approximately 85 seconds into the test, the vehicle transitions from DI to PFI. A slight dwell time is evident between the transition from DI to PFI due to the damping effect from fuel lines used for the measurement equipment. It should be noted that the catalyst temperature, a CAN reported signal has a default value of 675 °C prior to the engine start where it resets to the correct value.

Figure 31. Initial 120 s of the idle fuel flow test

Figure 32 shows the full 30-minute duration of the idle fuel flow test. Engine oil temperature continues to increase over the duration of the test, ending slightly over 75 °C. At 525 seconds after the engine start, the catalyst temperature reaches a steady state of 405 °C.

Figure 32. Idle fuel flow test – full duration

5.7. Tier 3 – 88 AKI (Low-Octane) to Tier 2 – 93 AKI (High-Octane) Fuel Comparison

Fuels with octane ratings of 87 (RON 91) and higher are recommended for use in the 2018 Toyota Camry. Because of its lower price, the lower-octane fuel is expected to be the dominant fuel used by consumers for the Toyota Camry. Argonne tested the vehicle with both low and high octane certification fuels to capture data on the impact of octane rating on fuel economy and performance. The Tier 2 certification fuel has an octane rating of 93 AKI, and the Tier 3 certification fuel has an octane rating of 88 AKI. The Tier 2 fuel represents the premium fuel, and the Tier 3 fuel represents the regular fuel in this investigation.

The specifications for the fuels are in Table 5 and Table 6, with full fuel specification sheets in Appendix E: Cert Fuel Specifications. Although both fuels are standard test fuels, several differences should be noted, including octane, energy content, and ethanol content. The Tier 3 – 88 AKI has a volumetric energy content that it 3.7% lower compared to the Tier 2 – 93 AKI.

All testing for this octane comparison was performed with the dynamometer operating in 4WD mode, with a closed hood and a vehicle speed-match fan at an ambient test temperature of 23 °C. The initial testing of the Camry was performed on Tier 3 - 88 AKI. The majority of testing occurred on the low octane fuel, after which the fuel was drained and switched to Tier 2 - 93 AKI. Fuel exchange took place while the vehicle remained on the chassis dynamometer to reduce variability inherent in removing and remounting a vehicle for testing. Following the fuel change, a series of steady-state speed and transient (some aggressive) drive cycles were used to acclimate the vehicle to the new fuel. Once acclimated, a test sequence identical to that on the low-octane fuel was completed for comparison. A full review of the test order and the tests performed are provided in Appendix D: Test Summary.

The fuel economy results are shown in Table 13. At first glance, it appears that the higher-octane fuel (Tier 2 - 93 AKI) results in higher fuel economy; yet it is important to remember the 3.7%

difference in energy content between the fuels. Thus, Table 13 also includes the energy-adjusted fuel economy for the Tier 2 fuel. The energy adjustment calculation determined the ratio of the volumetric energy content of the Tier 2 and Tier 3 fuel to obtain an energy-equivalent gallon with the Tier 3 fuel as the reference. On the energy-adjusted basis, it appears that the Tier 2 fuel economy is slightly lower as compared to the Tier 3.

	Tier 3 – 88 AKI Avg. Fuel Economy (mpg)	Tier 2 – 93 AKI Fuel Economy (mpg)	Difference based on mpg (%)	Tier 2 – 93 AKI Energy- Adj Fuel Economy (mpge)	Difference based on mpge (%)
UDDS #1 cold start	33.4	34.4	2.8	33.1	-1.0
UDDS #2 hot start	35.7	37.1	3.8	35.7	0.0
UDDS #3	35.9	36.8	2.5	35.4	-1.3
Highway	56.6	57.4	1.3	55.3	-2.4
US06	32.7	33.7	3.1	32.4	-0.7

Table 13. Octane impact on fuel economy (mpg) on standard drive cycles at 23 °C

The vehicle efficiency based on the SAE J2951 [10] calculations are shown in Table 14. The vehicle efficiencies for the Tier 2 - 93 AKI fuel are lower than for the Tier 3 - 88 AKI fuel. It is not possible to determine the reasons (octane, energy content, other fuel specifications) for the shift without further testing. Additionally, focused testing with increased instrumentation would quantify test to test variability, and where it arises from.

Vehicle Efficiency	Tier 3 – 88 AKI (%)	Tier 2 – 93 AKI (%)
UDDS #1 cold start	21.5	20.2
UDDS #2 hot start	22.9	21.7
UDDS #3	22.9	21.6
Highway	32.4	30.3
US06	30.8	29.4

Table 14. Octane Impact on vehicle efficiency

Figure 33 shows the value of knock feedback correction on a pair of UDDS cycles (a cold-start followed by hit-start UDDS) for the series of tests for both fuels. The knock feedback correction is an ignition adjustment the engine controller establishes based on the knock sensor readings at high loads in response to aggressive engine loading. The correction value on the Tier 2 - 93 AKI fuel is consistently higher than the Tier 3 - 88 AKI fuel by 2 degrees crank angle. An additional item of note is the adjustment to the knock feedback value, which occurs at approximately 2,150

seconds on an acceleration at high speed. As knock is more likely to occur at high load points, additional tests were reviewed for adjustment between fuels.

Figure 33. Knock feedback signals on UDDSx2 cold-start cycles

Figure 34 shows the ignition timing for both fuels for the UDDS, HWFET, and US06 cycles, as well as the passing maneuver test and the maximum acceleration test. The maximum absolute load limit appears to be the same for both fuels (note that this is not absolute engine brake torque). For the lower-octane fuel, the spark ignition timing is retarded by a few degrees at these higher loads to prevent engine knock from occurring.

Figure 34. Spark advance comparison between Tier 2 and Tier 3 fuels

Additionally, vehicle performance on these acceleration tests was found is improved on the 93 AKI fuel when compared to the 88 AKI fuel. Vehicle acceleration to 80 mph was 1 second faster under maximum acceleration with the 93 AKI fuel. The performance tests suggest that the engine torque is increased with the higher-octane fuel due to effects of spark advance.

5.8. Analysis on Impact of Different Test Dynamometer and Cooling Setups

As mentioned in the vehicle and test cell setup section, the Argonne testing deviates from certification testing as Argonne's goal is research fidelity rather than regulatory compliance. To quantify the differences, the AMTL executed additional testing to probe the impact of different vehicle and test cell setups. The major differences center around the cooling setup with changes around the test cell fan speed control and a test setup in 4WD vs. 2WD on the chassis dynamometer.

The multiple setups under which the vehicle has been tested are described in Table 15. The AMTL performed the majority of the testing in Setup 1. Setup 2 has the same setup as Setup 1, though it occurred after the vehicle was removed from the chassis dynamometer and driven on the road for 600 miles for on-road testing. At the beginning of Setup 1, the vehicle loss was determined in the 4WD mode on the chassis dynamometer using the target road load coefficients from Table 7, which were published by the EPA. The fuel economy of the Highway drive cycle was 57.4 mpg and 53.8 mpg on Tier 2 fuel for Setup 1 and 2, respectively. This difference represents the variability in fuel economy when taking the vehicle off the dynamometer between tests, even though coast down testing was performed to redetermine vehicle losses.

	Setup 1	Setup 2	Setup 3	Setup 4	Setup 5		
Test IDs	61808046	61811006	61811008	61811009	61811013		
Test setup:							
Fuel			Tier 2 fuel				
Vehicle fan state	Variable	Variable	Constant 5250 CFM	Constant 5250 CFM	Constant 5250 CFM		
Hood position	Closed	Closed	Open	Open	Open		
Dyno mode	4WD	4WD	4WD	2WD	2WD		
Dyno sets A [lb] B [lb/mph] C [lb/mph ²]	4WD determined A = -13.27 B = 0.3003 C = 0.0142	Initial coefficients A = -13.27 B = 0.3003 C = 0.0142	Initial coefficients A = -13.27 B = 0.3003 C = 0.0142	EPA listed A = 8.992 B = 0.0187 C = 0.0178	2WD determined A = 6.1244 B = 0.1732 C = 0.0160		
Note	Majority of testing	Vehicle remounted after 600 miles of on- road testing	EPA cooling	2WD setup – Traction control off EPA cooling	2WD setup – Traction control off EPA cooling		
Results							
Fuel economy Tier 2 (mpg)	57.4	53.8	53.7	54.0	55.0		
Fuel energy [MJ]	21.74	23.23	23.25	23.15	22.70		

Table 15.	Varying	vehicle n	nodes	during	comparative	HWFET	cycle i	testing
-----------	---------	-----------	-------	--------	-------------	-------	---------	---------

	Setup 1	Setup 2	Setup 3	Setup 4	Setup 5
CEd (J2951)	6.58	6.69	6.67	6.67	6.60
Veff (J2951)	30.3%	28.8%	28.7%	28.8%	29.1%
Alternator load [Wh]	47.2	52.4	86.4	81.6	84.0

The difference between Setups 2 and 3 is the cooling. The use of a constant fan speed with the vehicle hood open, impacts the vehicle thermal state, which makes a difference on the HWFET cycle. The fuel economy for Setups 2 and 3 at 53.8 mpg and 53.7 mpg, respectively, was similar; yet the cooling system in the car operates differently, as shown in Figure 35. The engine and transmission operate at a higher temperature in Setup 3, and the vehicle cooling fan turns on.

Comparing Setup 3 to Setup 5 shows the difference between 4WD and 2WD testing. The difference appears minimal. Comparing Setups 4 and 5 highlights the difference between using the EPA road load set coefficients vs. the Argonne-determined 2WD road load set coefficients; again, the difference is minimal.

Figure 35. Powertrain thermal and cooling information between different testing setups.

5.9. CAFE Fuel Economy Results With Certification Testing Comparison

The fuel economy results from the testing at Argonne compare closely to the fuel economy results published by EPA for manufacturer certification under the data on cars used for testing fuel economy[6]. Data was published on the unadjusted fuel economy results from the manufacturer for phases 1, 2, and 3 of the UDDS, as well as the HWFET cycle. Figure 36 and Table 16 compare the published fuel economy results to the low-octane three-test sequences and one high-octane test completed at the AMTL. Note: The vehicle setup at Argonne for several tests varies from the certification testing as described in Table 15.

The test results on the Tier 3 fuel show a good repeatability, the highest deviation of any phase to the average fuel economy is less than 0.5%.

Figure 36. Raw fuel economy results: UDDS and HWFET certification cycles from EPA and Argonne

	EPA by MFR (Tier 2)	Argonne (Tier 2 – 93 AKI)	Argonne avg. (Tier 3 – 88 AKI)	Repeat #1 (Tier 3)	Repeat #2 (Tier 3)	Repeat #3 (Tier 3)
UDDS Phase 1	36.1	34.3	33.5	33.5	33.6	33.4
UDDS Phase 2	35.5	34.5	33.4	33.3	33.3	33.6
UDDS Phase 3	40.9	40.0	37.9	37.9	37.9	37.9
HWFET	58.2	57.4	56.6	56.4	56.9	56.7

Table 16. Raw fuel economy results: UDDS and HWFET certification cycles from EPA and Argonne

6. Component and Control Analysis

This section describes the vehicle component controls, including transmission shifting, torque converter lockup, engine fuel cutoff, and detailed component control concepts. Models and control calibrations developed through this analysis have been implemented in Autonomie.

6.1. Signal Calculations for Control Analysis

The vehicle component control analysis is conducted using Autonomie "Import Test Data" process. This process automatically changes signal names and test data units to match Autonomie nomenclature based on pre-defined conversion methods. During the test data import process, additional parameters required to analyze the component operating conditions are calculated from the test data. The vehicle configuration and signals sources are shown in Figure 37.

In Figure 37 the signals labeled in black, blue and green are obtained directly from the test. At energy management strategy level, the signals used to calculate the engine power and the signals to calculate the battery power are critical, and directly obtained from the test. While not all signals can be recorded during testing, some can be easily calculated from the measured ones. For example, the output torque and speed of the transmission were calculated by the dyno force and speed. Transmission input signals are calculated by engine torque and speed, using assumptions of the torque converter efficiency map used in prior published work [11]. Techniques used in the process will be described in the following section.

Figure 37. Schematic of the vehicle configuration

Since not all signals can be recorded, additional one are calculated based on measured ones and additional information obtained by external sources [5]. First, the time based rotating speed of each component is calculated as shown in Figure 38.

Figure 38. Calculation of missing signals for component speed

The wheel speed can be calculated from the speed signal that is obtained from the dynamometer.

$$w_{wheel} = \frac{1}{r_t} v_{chassis}$$

Equation 1

where r_t is the radius of the tire. Because the tire under driving condition is known, the speeds can be validated by comparing the two values of w_{wheel} and $v_{chassis}$, by adjusting the tire radius. While there may be no discrepancy in speed for the wheel and chassis, the torque calculations should be carefully handled because each component torque measurements include uncertainties.

Figure 39 shows the flow of the calculation for torque signals. Because an accurate transmission efficiency map is not available, the torque calculation process is divided into two parts: from the transmission output to the wheel and from the engine to the transmission input.

Figure 39. Calculation of missing signals for component torque

The output torque of the final drive is calculated from the force obtained from the dynamometer.

$$T_{fd,out} = T_{wheel,out} - T_{wheel,brake} = r_t \cdot F_{chassis} - T_{wheel,brake}$$

Equation 2

The output torque of the gearbox is calculated from T_{fd_out} , which can be expressed as:

$$T_{gb,out} = T_{fd,in} = \frac{1}{\eta_{fd}{}^k} \cdot \frac{1}{\gamma_{fd}} \cdot T_{fd,out}$$

Equation 3

where η_{fd} is the transfer coefficient of the final drive, and k is 1 if the power flows from the final drive to the wheel or -1 if the power flows in the other direction, which are generic values and will be applied to the following calculations in this report.

$$k = \begin{cases} 1 & if power flows from powre sources to the wheel \\ -1 & if power flows from wheel to power sources \end{cases}$$

Equation 4

The torque input of torque converter is calculated from the gearbox torque and the torque converter characteristics.

$$T_{TC,in} = \frac{T_{gb,in}}{T_{ratio}(=f(\omega_{ratio}))} + \dot{\omega}_{TC} \cdot J_{TC}$$

Equation 5

where T_{ratio} is the torque ratio of torque converter, and ω_{ratio} is the speed ratio of turbine speed to impeller speed for torque converter.

The torque of engine is calculated from the torque of torque converter and accessory load torque.

$$T_{eng} = T_{TC,in} - T_{acc_{mech}}$$

Equation 6

All the equations for torque calculation are based on static equilibrium. The parameter values used in the calculations are listed in Table 17.

Parameters	Values
Tire radius, r_t	0.323m
Gear ratio of the transmission	5.250/ 3.028/ 1.950/ 1.456/ 1.220/ 1.000/ 0.808/ 0.673
Gear ratio of the final drive, γ_{fd}	2.802
Vehicle test weight	1,644 kg

Table 17. Parameter values used for calculating additional signals

In addition, we also calculate the signal for the actual gear number. There is a gear number signal in the CAN signal, but it is a request signal for control, and the actual gear number can be calculated as follows. In Figure 40 the speed ratio (yellow) is obtained from the CAN, and speed ratio (green dot) is calculated on the basis of measured turbine speed and vehicle speed. Compared to the request signal from CAN, the actual gear ratio is delayed due to the shifting time. The elements of actual speed ratio can be rounded to the nearest value of gear ratio that we already know.

Figure 40. Calculation of missing signals for component speed

Besides the signals introduced in this section, other signals representing efforts and flows are calculated based on reasonable assumptions. However, the signals introduced in this section are important signals to analyze the control behavior of the vehicle.

6.2. Transmission Operation

The 2018 Toyota Camry has an 8-speed automatic transmission. The transmission operation was analyzed to estimate those control parameters used in Autonomie. The details of such analysis are explained in the subsequent sections.

6.2.1. Cert Cycle Duration in Each Gear

Figure 41 shows the comparison of time spent in each gear number for each gear.

Figure 41. Time spent in each gear number for the UDDS/HWFET/US06 cycles

In the case of urban driving it is found that the lower gears are used more frequently, but in high-speed driving the transmission is operating in the eighth gear approximately 70% of the time.

6.2.2. Shift Mapping

Once all the test data were imported, the analysis functions developed in this study were used to generate shifting maps using the integrated test data. Using these functions, plots could be generated to implement upshifting and downshifting maps. In Figure 42 and Figure 43, the transmission operation points of the 8-speed automatic transmission for the 2018 Toyota Camry's overall driving cycles (under normal ambient temperature) are shown with respect to either vehicle speed and accelerator pedal position, or vehicle speed and wheel torque. In Figure 44 and Figure 45, the shifting points are also plotted with respect to vehicle speed and accelerator pedal position for both upshift and downshift.

Figure 42. All operating points according to gear number – vehicle speed vs accelerator

Figure 43. All operating points according to gear number – vehicle speed vs. wheel torque

Figure 44. Transmission shifting points – upshifting

Figure 45. Transmission shifting points – downshifting

6.2.3. Torque Converter Lockup Status

In order to see the overall behavior of the torque converter lockup status, all operating points of the vehicle from all test data are shown in Figure 46 and Figure 47. These graphs show that the clutch is locked above a certain speed or above a certain torque. Figure 47 shows that the clutch is locked when the wheel torque is mostly positive, and the vehicle speed is about 13 mph or higher. In particular, in the high-torque region of low vehicle speed, the torque converter is unlocked to utilize the torque multiplying effect.

Figure 46. Torque converter lockup operation – wheel torque vs. vehicle speed

In Figure 47, the torque converter locks up above 1,000 rpm for gears greater than or equal to the second gear of transmission. It is also evident that when the engine speed is high by each gear, the torque converter is released.

Figure 47. Torque converter lockup operation – engine speed vs. vehicle speed

The percentage of torque converter lockup per cycle is summarized in Table 18. While driving in the urban cycle, the torque converter is locked approximately 20 percent of the time, but it is locked up more than 50 percent of the time during high-speed driving.

Test Cycle	UDDS	HWFET	US06	WLTP ^a	NEDC ^a	LA92 ^a
⁰∕₀	15.48	55.56	36.70	22.85	21.64	15.15

Table 18. Percentage time of torque converter locked per each cycle

^a LA92 = also called the Unified LA-92; NEDC = New European driving cycle; and WLTP = world harmonized light-duty vehicles test procedure.

6.2.4. Lockup Variability per Gear

To analyze how torque converter lockup is controlled for each gear, we plot the points at which the clutch is engaging and the points at which the clutch is disengaging. In Figure 48 and Figure 49, the points at which the torque converter clutch is engaging are indicated by green points, and the points at which the clutch is disengaging by red points in the domain of engine speed and acceleration pedal position.

Figure 48. Torque converter operation points for lockup vs. non-lockup for each gear (1 to 4)

As noted in Section 6.3.2, the torque converter clutch is not engaged in the first gear. The points at which the clutch of the torque converter is engaged are clearly visible in the form of lines, whereas the points that are released are relatively distributed in many places. Our analysis of these findings is that if the engine speed is increased, the clutch is released to shift to the high gear. Further, if the acceleration pedal position increases, the clutch is again released in order to shift to a lower gear or requires a torque multiplying effect of torque converter.

Figure 49. Torque converter operation points for lockup vs. non-lockup for each gear (5 to 8)

In Figure 50 the torque converter lockup is shown for various engine speeds. Difference between the torque converter turbine converter turbine speed and the torque converter impeller speed help in identifying the lockup conditions. The points at which the torque converter clutch is engaged are indicated by the green points. It is evident that the torque converter is engaged when the difference is smaller than about 60 rpm. When engine speed is less than 1,000 rpm, the torque converter remains open.

Figure 50. Torque converter operation points for lockup

6.3. Deceleration Fuel Cutoff

Deceleration fuel cutoff (DFCO) is a feature that many current electronic control units (ECUs) support; it detects whether the vehicle is coasting downhill and then cuts fuel to the engine and allows the wheels to keep the engine running. To analyze when DFCO works, we first plot the operating points on the graph of the wheel torque and vehicle speed axes. In Figure 51 the DFCO is active only when the wheel torque is negative, especially when the vehicle speed is above about 1 mph.

Figure 51. Operation of the DFCO when the braking is active

In Figure 52 DFCO operation points are shown in plot engine speed and vehicle speed. It is evident that DFCO does not activate in the first and second gears.

Figure 52. Operation of the DFCO for each gear

6.4. PFI vs. DI Operation

The 2018 Toyota Camry is equipped with an entirely new combustion technology engine that has adopted a new multi-hole type of direct fuel injector (DFI) with improved engine power and fuel economy and reduced exhaust emissions. The engine implemented a new D-4S system that allows transition to multi injection mode (i.e., direct injection, or DI and port fuel injection, or PFI) by control of the multi-hole fuel injector. To analyze how the injection mode of the engine is determined, we first checked the engine power points by engine coolant temperature. Figure 53 and Figure 54 show that fuel injection mode is controlled differently depending on engine coolant temperature for all driving cycles at normal ambient temperature. When the initial engine is started cold as shown in Figure 55, only the DI mode is used until the coolant temperature becomes warm (about 35 °C). When the engine coolant temperature is between 35 °C and 60 °C, the fuel is injected in PFI mode for the initial low-power section, and only DI mode is performed in the higher power range. When the engine coolant is above 60 °C, the fuel is injected by DI mode only in the high-power operating range.

Figure 53. Operating behavior of the fuel injection mode

In Figure 54 we plotted the injection mode of the engine in the axis of engine torque and speed when the engine coolant temperature is between 35 °C and 60 °C. In order to obtain the control boundary, we selected only the engine operating points when the engine speed stays steady in range, such as +/-140rpm for 2 seconds—we only tune the thresholds to get a better trend, as shown in the right plot of Figure 54.

Figure 54. Operating behavior of the fuel injection mode (when the engine coolant temperature is between 35 °C and 60 °C)

By using the filtering techniques for engine mapping test data, we obtained the operating boundary as shown in the right plot of Figure 55. The engine operates in PFI mode at initial startup or at low power demand, and uses both modes simultaneously in most engine operating ranges. However, it is evident that only the DI mode is used in the region of high torque or high speed of engine.

Figure 55. Operating behavior of the fuel injection mode (when the engine coolant temperature is above $60 \text{ }^{\circ}\text{C}$)

6.5. Engine Operation

6.5.1. Fuel Rate Map

To validate the vehicle model with the test data, the engine model is the most important component to be precise. The engine fuel rate map is imported from the engine mapping test data as in Figure 56. Till the engine warms up to a stable operating temperature, it would have a relatively higher fuel consumption. However, the engine model is assumed to be in the warmup state for validation purpose, so the fuel map is generated from test data where engine coolant temperature is above 60 °C. In the figure the only points that remain are when the time derivative

of the acceleration pedal is below 0.1/s, by which it is assumed that the points are obtained under relatively steady operating conditions.

Figure 56. Engine fuel rate map according to engine speed and torque

6.5.2. Torque Pedal Map

The accelerator pedal is not a simple way of directly moving the throttles on the engine, because the ECU replaced the traditional Bowden cable between the pedal and throttle with a pedal position sensor and a map. Such torque pedal maps are restricted to each gear, vehicle speed, and transmission mode of operation, etc. To analyze the torque pedal maps according to the engine speed and the accelerator pedal for each gear, we plot the engine throttle position as shown in Figure 57 and Figure 58. For each gear stage, the correlation between the accelerator pedal and the engine throttle position appears to be slightly different. When the engine speed or vehicle speed is high, it is evident that the engine throttle responds even more sensitively when the driver steps on the same accelerator pedal.

Figure 57. Torque pedal map for each gear (1 to 4)

Figure 58. Torque pedal map for each gear (5 to 8)

6.6. Impact of Thermal Management Technologies on Vehicle Controls

We have introduced the analysis results about the thermal control of the vehicle. In this chapter, additional control behaviors observed in our analysis will be introduced especially for thermal condition. These controls are not very essential to determining the operations of the components if the vehicle is driving under normal conditions. However, the thermal impacts on control and performance become more important issues even in conventional vehicles. The thermal impacts that affect control behavior will be vigorously discussed first, followed by the performance analysis under different thermal conditions.

6.6.1. Engine Operation Under Cold Conditions

Although the thermal management system for the engine is designed to heat it up as quickly as possible with advanced techniques [6], it is impossible to completely avoid operating the engine in low temperature because the engine is never hot enough at vehicle start when the vehicle has not been operated for a long time. After startup and while engine is still idling, the coolant temperature is still low and more fuel than normal is needed until the engine warms up to operating temperatures—the engine does not have an electrical heater that keeps the engine itself warm.

Figure 59 shows three different control behaviors under different engine coolant temperatures.

- The engine is operated normally if the coolant temperature is hot enough (hot-start).
- If the coolant temperature is in the medium range that is, between 35 °C and 80 °C the engine stays on higher speed than on normal idle speed (about 600 rpm) even if there is no power demand. This is a specific control behavior at vehicle start because the engine operates as if it is in a hot condition once the coolant temperature is medium after the initial period.
- When the engine coolant is very low (below 0 °C) under cold ambient temperature. Under this situation, the engine is forced to be turned on and the engine operates at a higher speed until the engine coolant reaches a medium temperature.

Figure 59. Engine operation at the launch of the vehicle differs according to the engine coolant temperature

We have identified the engine speed when the engine is in an idle state under the cold condition, which is shown in Figure 60. We collected all operating points when the engine is turned on because of the cold conditions but there is no power demand from the driver. The plot shows that the engine speed is controlled according to the engine coolant temperature, which means that the idle speed has a strong correlation with the engine coolant temperature under the cold condition.

Figure 60. Engine idle speed is controlled according to the coolant temperature

In contrast, Figure 61 shows the comparative results of the coolant temperatures according to driving conditions. The coolant temperature cannot easily reach a hot temperature when the engine is operated with the heater on under cold ambient temperature.

Figure 61. Behaviors of engine coolant temperatures on UDDS under different test conditions

6.6.2. Engine Injection Under Cold Conditions

To prevent operation of the engine when the engine is cold, the engine is controlled in different ways if the engine coolant temperature is low. Further, the cold condition can also affect the control behavior of the injection system. We turn now to introducing these control behaviors.

Figure 62 shows that fuel injection mode is controlled differently depending on engine coolant temperature for driving cycles at cold ambient temperature (20 °F). When ambient conditions are very cold at initial engine start, the figure shows that the fuel is injected in only the DI mode —
which is the same result as with the test data under normal ambient temperatures. However, unlike when ambient temperatures are normal, the PFI mode starts to operate immediately after the engine coolant temperature reaches more than 20 °C.

Figure 62. Operating behavior of the fuel injection mode under cold ambient temperature

Figure 63 shows two control behaviors under different ambient temperatures. We found that the initial PFI mode appears to operate after the initial approximately 50 seconds, regardless of engine coolant temperature. Then, it seems that both the DI and PFI modes start to operate at the same time after the engine coolant temperature reaches about 60 °C.

Figure 63. Fuel system operation at vehicle start under different ambient temperatures

6.6.3. Engine Performances

The thermal conditions affect not only the control of the components but also their performance. The performance of the engine noticeably deteriorates under very cold conditions. Unfortunately, because we do not have test data for each component under the different thermal conditions, we also do not have detailed enough results in several cases in this section to show the degradation; however, we trust that readers will still have useful information for understanding the performance degradation caused by the thermal conditions.

The engine generates a lot of heat. Approximately one-third of the input power is converted to mechanical work, and another third is exhausted as emission gas, so the last third of the input power contributes to heating the engine block. Therefore, the engine temperature increases very quickly as long as the engine is turned on; however, the coolant temperature is not sustained on high temperature if the ambient temperature is very cold. Although we could not provide an entire fuel map according to the engine temperature, Figure 64 shows that the fuel consumption rate is affected significantly by the thermal condition.

Figure 64. Fuel rate of engine according to engine power for different coolant temperatures

The figure shows the fuel rate according to the engine output power, and the operating points are grouped by the engine coolant temperature range. First of all, the fuel rate shows meaningful trends, as a function of the engine coolant temperature. Although cylinder temperature might have a stronger correlation with the efficiency than the coolant temperature, it is not available, and the coolant temperature can be considered a closest "proxy" temperature to the heat source in that the coolant temperature is one of the highest temperature signals that we have from the test.

The results in Figure 65 state that the engine consumes two times more fuel than normal if the engine coolant temperature is low, even when the engine is at the same throttle position. If the coolant temperature is very low, it seems that more fuel is injected in the same throttle. We must note that the additional fuel consumption can be caused by lower engine efficiency under cold conditions, or it might result because the engine choses far different operating points compared to what it selects under normal conditions.

Figure 65. Fuel rate of engine according to engine throttle position for cold coolant temperature

6.6.4. Fuel Consumption Analysis

The changes in performance finally affect the vehicle's fuel consumption, and the thermal impact on the fuel consumption can be explained by the performance levels of the components. Figure 66 shows the fuel consumption of several tests that were performed on the UDDS cycle but under different test conditions.

Figure 66. Accumulated fuel consumption trajectories on UDDS under different test conditions

Although we have used distinct colors for thermal conditions, the colors indicate the ambient temperatures. Further, the dotted line indicates that the engine starts at cold temperature. In the results, the test conducted in normal ambient temperatures with the HVAC off shows the best fuel economy; however, fuel economy decreases when the AC system is operating — there are variations according to the initial state of the components, such as the engine temperature or the transmission temperature. On the other hand, although the test is performed under cold conditions, the vehicle consumes about only 20% more fuel than it does if the engine starts in hot conditions. However, the fuel consumption is dramatically increased if the engine starts at a cold

temperature and the cabin heater is turned on, because the engine cannot use all the waste heat to increase the engine temperature. Therefore, because the engine temperature is not well maintained, the engine consumes more fuel then than it does under the other conditions, which is worse for fuel economy (Appendix D: Test Summary).

6.7. Accessory Load

There is no electrical heater for the cabin in the 2018 Toyota Camry, so the most significant impact on the electrical accessory load is caused by the air conditioning system under hot ambient conditions. We obtained current signals for the electrical accessory load from our test data. Figure 67 shows the accessory power while the vehicle is at a full stop, and the operating points are grouped according to operating conditions.

First, the black points are the accessory power when the AC or heater is not turned on —the HVAC system is off. The power required without any demand by the HVAC system is about 330 W regardless of the thermal conditions. Second, the battery power increases by about 100 W to 110 W if the AC system in the passenger compartment is turned on in hot conditions, which is assumed to be caused by the ventilating system blowing hot air from the engine into the cabin, the power required for heating is relatively small compared to that for the AC system.

Figure 67. Electrical consumption when the vehicle is fully stopped

6.8. Energy Balance Diagram

In Section 6.1.2, the additional signals were calculated based on other signals or based on additional information provided by external sources [5]. Based on the signals calculated in section 6.1 for each component, the total amounts of energy going in and out can be computed by post-processing in Autonomie. The "Input" and "Output" names are confusing because their roles can be exchanged. Therefore, each port means the one power flow, and all components have two ports in Autonomie. For example, Figure 68 shows the energy in and out for two ports, and the efficiency values for the component of final drive.

Figure 68. Example of energy calculation for one component on Autonomie

In the figure, the total efficiency can be computed on each port in different ways, and the following show the definitions of efficiency values.

- η_{fwd} : Total efficiency when the power on port 1 and 2 is positive (positive positive).
- η_{tot} : Total aggregate efficiency.
- η_{rev} : Total efficiency when the power on port 1 and 2 is negative (negative negative).

For each component, the total energy consumption and efficiency are calculated based on test data and our assumptions. Figure 69 and Figure 70 shows the final diagrams from the Autonomie graphical user interface after post-processing for the energy balance on the UDDS and HWFET cycles. It should be noted that the efficiency of some components (transmission, alternator, reduction gear, torque converter) is taken into account in our assumptions.

Figure 69. Energy balance diagram on UDDS in Autonomie

Figure 70. Energy balance diagram on HWFET in Autonomie

7. Autonomie Model Validation

Analysis of vehicle-level control from vehicle test data was performed to merge the separately developed vehicle component models into a vehicle simulation model. Component control functions include: transmission shifting, torque converter lockup, engine fuel cutoff, and transient control. The analyzed component models including the control model are implemented and integrated in Autonomie to a vehicle simulation model for the 2018 Toyota Camry. However, the vehicle model is simulated only during the vehicle warm-up phase (i.e., for a hot start). Because all of the simulations considered in this report assume a "hot start," where the engine coolant temperature is steady at around 95 °C, the cold-start condition was not a factor for the simulations. The validation process for this study is shown in Figure 71.

Figure 71. Validation process for the 2018 Toyota Camry in Autonomie

The simulation was conducted in the UDDS, HWFET, and US06 cycles. Figure 72, Figure 73, and Figure 74 show the vehicle speed, engine speed, engine torque, wheel power, gear number, cumulative fuel consumption, and accelerator pedal position of both simulation results and test data, which aligned well for each cycle.

Figure 72. Simulation results and test data for the UDDS cycle

Figure 73. Simulation results and test data for the HWFET cycle

Figure 74. Simulation results and test data for the US06 cycle

To compare second-by-second time varying signal traces between test and simulation, the normalized cross correlation power (NCCP) is used [7]. The NCCP is calculated using Equations (8) and (9) where, *x* and *y* represent two distinct signals. When applied to a test signal and a simulation signal of the same quantity, a value of NCCP equal to or greater than 0.9 indicates a high level of correlation. Conversely, lower values indicate a relatively poor correlation.

$$NCCP = \frac{\max\{R_{xy}(\tau)\}}{\max\{R_{xx}(\tau), R_{yy}(\tau)\}}$$

Equation 7
$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t) \cdot y(t - \tau) dt$$

Equation 8

In Table 19 the NCCP values of simulation results were represented for the UDDS, HWFET, and US06 cycles. It is evident that the values for the vehicle speed, gear number, and engine speed, which exceeded 0.9, indicate the highest levels of correlation, whereas there was relatively lower correlation in the engine torque.

	UDDS (Test data: 61808013 Ph. 2)	HWFET (Test data: 61808017 Ph. 2)	US06 (Test data: 61808018 Ph. 2)
Vehicle speed	0.972	0.989	0.987
Gear number	0.983	0.997	0.967
Engine speed	0.978	0.983	0.873
Engine torque	0.850	0.892	0.805

Table 19. The NCCP values for UDDS, HWFET, and US06 cycles

Figure 75 and Figure 76 show the vehicle speed where the torque converter was locked. In addition, the torque converter lockup status was compared according to vehicle speed and engine speed between the simulation results and test data for the UDDS (test data: 61808013 Ph. 2), HWFET (test data: 61808017 Ph. 2), and US06 cycles (test data: 61808018 Ph. 2) in Figure 75. The figure shows that operation of the torque converter in simulation was similar to that of the test data. In Figure 77, the engine fuel cutoff status was compared with the test data for the UDDS (test data: 61808013 Ph. 2), HWFET (test data: 61808017 Ph. 2), and US06 cycles (test data: 61808017 Ph. 2), and US06 cycles (test data: 61808018 Ph. 2). The engine fuel cutoff in simulation showed a similar tendency compared to the test data.

The percentages of times for torque converter lockup and engine fuel cut-off were represented in Table 20.

Figure 75. Torque converter locked vehicle speed

Figure 76. Comparison of torque converter lockup status

Figure 77. Engine fuel cut-off vehicle speed

Figure 78. Comparison of engine fuel cut-off status

		UDDS (Test data: 61808013 Ph. 2)	HWFET (Test data: 61808017 Ph. 2)	US06 (Test data: 61808018 Ph. 2)
T/C lockup	Test	17.66	56.13	40.80
(%)	Simulation	15.29	57.98	43.48
DFCO on	Test	17.48	9.86	16.33
(%)	Simulation	20.30	11.32	15.81

Table 20. Percentage of times for torque converter lockup and DFCO on

Engine operating areas were compared with particular test data on the UDDS, HWFET, and US06 cycles in Figure 79: Comparison of engine operating points on the UDDS cycle, Figure 80, and Figure 81, respectively. In the simulation results, the engine operated in similar levels of engine speed and torque as compared to the test data.

Figure 79. Comparison of engine operating points on the UDDS cycle

Figure 80. Comparison of engine operating points on the HWFET cycle

Figure 81. Comparison of engine operating points on the US06 cycle

The fuel consumption simulation results are compared to the average fuel consumption of the test data to validate the simulation performance in Figure 82. The average fuel consumption was obtained from the test data, which was captured from a hot-start condition. The results show that the simulation's fuel consumption results for the three drive cycles are 6.54 L/100km, 4.30 L/100km, and 7.04 L/100km (Table 21), which differed from the test data by 1.50%, 0.20%, and -4.60%, respectively.

Fuel consumption [L/100km]	UDDS ^a	HWFET ^b	US06°
Test average	6.45	4.29	7.38
Simulation (error)	6.54 (1.50 %)	4.30 (0.20 %)	7.04 (-4.60 %)
^a Test data for UI 61808014. ^b Test data for HV 61808017. ^c Test data for US	DDS: 61808001 Ph. 2, 61808002, 6 WFET: 61808003 Ph. 1, 61808003 306: 61808004 Ph. 2, 61808009 Ph	51808005, 61808006 Ph. 2, 61808 Ph. 2, 61808008 Ph. 1, 61808008 a. 2, 61808018 Ph. 2, 61808026 Ph	012, 61808013 Ph. 2, and 3 Ph. 2, 61808017 Ph.1, and 1. 2

Table 21. Fuel consumption comparison of test data and Autonomie simulation results

Figure 82. Fuel consumption and error between test data and simulation result

8. Conclusions

NHTSA sets CAFE standards for passenger cars, light trucks, and medium-duty passenger vehicles. NHTSA contracted with Argonne to conduct full vehicle simulation using Autonomie (https://www.autonomie.net/) software to provide input into the CAFE model to determine optimum average fuel economy based on numerous technological and economic factors. Autonomie relies on vehicle technology assumptions for model development and validation. Argonne's Advanced Mobility Technology Laboratory provides the laboratory test data that inform the technology assumptions in Autonomie. NHTSA funded Argonne's AMTL to perform a benchmark of a 2018 Toyota Camry XLE midsize passenger car and to provide data to Autonomie and assess the fuel saving technologies of that powertrain.

The vehicle benchmarked in this report is a 2018 Toyota Camry XLE with the 2.5-liter I4 Dynamic Force engine coupled to a newly introduced 8-speed automatic transmission. This particular powertrain configuration provides favorable fuel economy results while providing significant vehicle performance. The focus of the benchmark is to understand the usage of the critical powertrain components and their impact on vehicle efficiency. The vehicle was instrumented to provide data to support the model development and validation in conjunction with providing the data for the analysis in the report. The vehicle is tested on a chassis dynamometer in the controlled laboratory environment across a range of certification tests. Further tests were performed to map the different powertrain components.

9. References

- Toyota Global Newsroom. (2016, December 6). New 2.5-liter Direct-injection, Inline 4cylinder Gasoline Engine. Retrieved from: <u>https://newsroom.toyota.co.jp/en/powertrain/engine/</u>
- 2. Toyota Global Newsroom. (2016, December 6). *New 8-speed and 10-speed Automatic Transmissions (Direct Shift-8AT & Direct Shift-10AT)*. Retrieved from: https://global.toyota/en/powertrain/transmission/
- 3. Toyota Technical Information System (TIS). Available online at: www.techinfo.toyota.com
- 4. U.S. Environmental Protection Agency. 2019. The 2018 EPA Automotive Trends Report (EPA-420-S-19-001).
- 5. U.S. Environmental Protection Agency. 2018 Test Car List Data. <u>www.epa.gov/compliance-and-fuel-economy-data/data-cars-used-testing-fuel-economy</u>.
- 6. Code for Federal Regulations, Road-load power, test weight, and inertia weight class determination,
- 7. 40 C.F.R. §1066.805. Referenced 2021, Available online: www.ecfr.gov
- 8. Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures,
- 9. 40 C.F.R §86, subpart C. Referenced 2021, Available online: <u>www.ecfr.gov</u>
- 10. Fuel Economy and Greenhouse Gas Exhaust Emissions of Motor Vehicles,
- 11. 40 C.F.R. §600. Referenced 2021, Available online: www.ecfr.gov
- 12. Stutenberg K, Lohse-Busch H, Duoba M, Iliev S, Jehlik F, Di Russo M, *An Overview of Argonne's Advanced Mobility Technology Laboratory Vehicle Systems Instrumentation and Evaluation Methodology* (ANL/ESD 2021), <u>https://anl.box.com/v/AMTL-testing-reference</u>
- 13. SAE J2951_201111, Drive Quality Evaluation for Chassis Dynamometer Testing, Society of Engineers
- Islam, E., Moawad, A., Kim, N., Rousseau, A. 2020. A Detailed Vehicle Simulation Process to Support CAFE and CO2 Standards for the MY 2021–2026 Final Rule Analysis - Section 5. Vehicle and Component Assumptions (ANL/ESD-19/9)
- 15. Meng, Y., Jennings, M., Tsou, P., Brigham, D. et al., Test Correlation Framework for Hybrid Electric Vehicle System Model, SAE Int. J. Engines 4(1):1046-1057, 2011, <u>https://doi.org/10.4271/2011-01-0881</u>

Acknowledgments

This work has been funded by NHTSA. Special thanks go to NHTSA Program Manager Seiar Zia for his technical guidance. The authors appreciate the opportunity to perform the laboratory testing and the data analysis of this vehicle.

Finally, the authors want to acknowledge that this work would not have been possible without the entire team at Argonne's Center for Transportation Research. Special thanks go to Mike Kern, Geoffrey Amann, and George Tsigolis for their support during the vehicle evaluation process.

Appendix A: Vehicle Build Sheet

Appendix B: Subset of Midsize Cars for Comparative Analysis

Model Year	Represented Test Veh Make	Represented Test Veh Model	Make Model Description, Disp,	Test Veh Displacement (L)	vehicle Typ	e Kated Horsepower	# of Cylinders and Rotor	snt Test W	ei l'est Number	rest Originato	or Test Procedure Description	Test Fuel Type Description	KND_ADJ_F	E FE_UNI	FE Bag 1	FE Bag 2	FE Bag 3	HE Bag 4 Target Coef A (lbf)	Target Coef B (Ibf/mpl	1) Target Coef C (lbf/mph**2)
2018	BUICK	REGAL	BUICK REGAL: 2L, 3875	2	Car	260	4	38/5	JGMX91003633	EPA	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	27.9	MPG	26.6178391	26.8490274	31.5612281	29.28	0.443	0.01583
2018	BUICK	REGAL	BUICK REGAL: 2L, 3875	2	Car	260	4	38/5	JGMX91003634	EPA	HWFE	Tier 2 Cert Gasoline	45.8	MPG				29.28	0.443	0.01583
2018	BUICK	REGAL	BUICK REGAL: 2L, 3750	2	Car	260	4	3750	JGMX10049714	MER	Federal fuel 3-day exhaust	Tier 2 Cert Gasoline	29.7	MPG	28	28.3	32.8	25.43	0.4243	0.01583
2018	BUICK	REGAL	BUICK REGAL: 2L, 3750	2	Car	260	4	3750	JGWX10049715	MFR	HWFE Fordered & all 2 allow surface with	Tier 2 Cert Gasoline	40.2	MPG	25.0	26.4	20	25.43	0.4243	0.01583
2018	BUICK	REGAL AWD	BUICK REGAL AWD: 2L, 4000	2	Car	260	4	4000	JGN/X10049870	MER	Federal Tuel 3-day exhaust	Tier 2 Cert Gasoline	47	MPG	25.8	20.1	30	37.19	0.3482	0.01763
2018	BUICK	REGAL TOURY AND	BUICK REGAL TOURY AWD: 21, 4350	2	Car	200	4	4000	JGWX10049871	MED	Endoral fuel 2 day exhaust	Tier 2 Cert Gasoline	92	MDG	25.2	76	20.9	37.13	0.3482	0.01703
2018	BUICK	REGAL TOURY AWD	BUICK REGAL TOURY AWD: 21, 4250	2	Car	200	4	42.50	IGMX10049724	MER	HWEE	Tier 2 Cert Gasoline	/1.8	MPG	23.2	20	23.0	38.37	0.3661	0.0178
2018	Ford	Fusion	Ford Eusion: 1 51, 3750	15	Car	169	4	3750	HEMX10049588	MER	Federal fuel 7-day exhaust (w/can load)	Tier 2 Cert Gasoline	30.7	MPG	30.1	78.9	33.7	24.48	0.1365	0.01/0
2018	Ford	Eusion	Ford Fusion: 1.5L, 3750	1.5	Car	169	4	3750	HEMY10049589	MER	HWEE	Tier 2 Cert Gasoline	/0.1	MPG	50.1	20.5	33.2	24.40	0.1365	0.01826
2018	Ford	Fusion	Ford Fusion: 1.5L, 3750	1.5	Car	169	4	3750	HFMX10049594	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	30.4	MPG	30.3	29.1	33.4	24.40	0.1365	0.01020
2018	Ford	Fusion	Ford Fusion: 15L 3750	15	Car	169	4	3750	HFMX10049595	MFR	HWEE	Tier 2 Cert Gasoline	49.8	MPG				24.48	0.1365	0.01826
2018	Ford	Fusion	Ford Fusion: 2L, 4000	2	Car	240	4	4000	HFMX10049678	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	25.3	MPG	24.3	24.1	28.9	35.1	0.2652	0.01889
2018	Ford	Fusion	Ford Fusion: 2L. 4000	2	Car	240	4	4000	HFMX10049681	MER	HWFE	Tier 2 Cert Gasoline	41.2	MPG				35.1	0.2652	0.01889
2018	Ford	Fusion	Ford Fusion: 1.5L 3750	1.5	Car	169	4	3750	HFMX10049590	MER	HWEE	Tier 2 Cert Gasoline	48	MPG				24.48	0.1365	0.01826
2018	Ford	Fusion	Ford Fusion: 1.5L, 3750	1.5	Car	169	4	3750	HFMX10049591	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	29.9	MPG	29.1	28.6	33.9	24.48	0.1365	0.01826
2018	Ford	Fusion	Ford Fusion: 1.5L, 3750	1.5	Car	169	4	3750	HFMX10049592	MFR	HWFE	Tier 2 Cert Gasoline	48.7	MPG				24.48	0.1365	0.01826
2018	Ford	Fusion	Ford Fusion: 1.5L, 3750	1.5	Car	169	4	3750	HFMX10049593	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	30.1	MPG	29.3	28.8	34.1	24.48	0.1365	0.01826
2018	Ford	Fusion	Ford Fusion: 2L, 3875	2	Car	240	4	3875	HFMX10040612	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	26.6	MPG	26.5739027	25.0704292	30.1756432	29.4	0.1681	0.01803
2018	Ford	Fusion	Ford Fusion: 2L, 3875	2	Car	240	4	3875	HFMX10040779	MFR	HWFE	Tier 2 Cert Gasoline	44.7	MPG				29.4	0.1681	0.01803
2018	Ford	Fusion	Ford Fusion: 2.7L, 4500	2.7	Car	325	6	4500	HFMX10049586	MFR	HWFE	Tier 2 Cert Gasoline	36.9	MPG				36.58	0.5648	0.01842
2018	Ford	Fusion	Ford Fusion: 2.7L, 4500	2.7	Car	325	6	4500	HFMX10049587	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	22.1	MPG	22	20.7	25.1	36.58	0.5648	0.01842
2018	Ford	Fusion FWD	Ford Fusion FWD: 1.5L, 3750	1.5	Car	169	4	3750	HFMX10049582	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	29.3	MPG	28.8	28.1	32.4	34.93	0.1712	0.01793
2018	Ford	Fusion FWD	Ford Fusion FWD: 1.5L, 3750	1.5	Car	169	4	3750	HFMX10049583	MFR	HWFE	Tier 2 Cert Gasoline	46.3	MPG				34.93	0.1712	0.01793
2018	Ford	FUSION FWD	Ford FUSION FWD: 2.5L, 3750	2.5	Car	173	4	3750	HFMX10049584	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	26.5	MPG	26.4	24.8	30.3	34.96	0.1714	0.01826
2018	Ford	FUSION FWD	Ford FUSION FWD: 2.5L, 3750	2.5	Car	173	4	3750	HFMX10049585	MFR	HWFE	Tier 2 Cert Gasoline	43.7	MPG				34.96	0.1714	0.01826
2018	Ford	FUSION FWD	Ford FUSION FWD: 2.5L, 3750	2.5	Car	173	4	3750	HFMX10049601	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	26.8	MPG	26.5	24.7	30.4	24.5	0.1367	0.01859
2018	Ford	FUSION FWD	Ford FUSION FWD: 2.5L, 3750	2.5	Car	173	4	3750	HFMX10049602	MFR	HWFE	Tier 2 Cert Gasoline	46.6	MPG				24.5	0.1367	0.01859
2018	Ford	FUSION FWD	Ford FUSION FWD: 2.5L, 3750	2.5	Car	173	4	3750	HFMX10049603	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	26.8	MPG	26.5	24.7	30.4	24.5	0.1367	0.01859
2018	CHEVROLET	MALIBU	CHEVROLET MALIBU: 1.5L, 3375	1.5	Car	160	4	3375	JGMX10047813	MFR	Federal fuel 3-day exhaust	Tier 2 Cert Gasoline	35	MPG	33.5	34.4	37.5	26.28	0.1589	0.01722
2018	CHEVROLET	MALIBU	CHEVROLET MALIBU: 1.5L, 3375	1.5	Car	160	4	3375	JGMX10047814	MER	HWFE	Tier 2 Cert Gasoline	52.6	MPG				26.28	0.1589	0.01722
2018	CHEVROLET	MALIBU	CHEVROLET MALIBU: 2L, 3625	2	Car	260	4	3625	JGMX10047786	MER	Federal fuel 3-day exhaust	Tier 2 Cert Gasoline	28.6	MPG	27.5	27.2	32.5	29.73	0.4356	0.01501
2018	CHEVROLET	MALIBU	CHEVROLET MIALIBU: 2L, 3625	2	Car	260	4	3025	JGWX10047817	MFR	nwre Federal fuel 2 dae arbenet (m/are land)	Tier 2 Cert Gasoline	45.0	MPG	27.2	20.0	20.4	29.73	0.4350	0.01501
2018	HONDA	ACCORD	HONDA ACCORD: 1.5L, 3625	1.5	Car	193	4	3625	JHNX10050345	MER	HWEE	Tier 2 Cert Gasoline	50.5	MPG	37.3	30.8	39.4	49.55	-0.596	0.02744
2018	HONDA	ACCORD	HONDA ACCORD: 1.5L, 3500	1.5	Car	193	4	3500	IHNX10050353	MER	Federal fuel 7-day exhaust (w/can load)	Tier 2 Cert Gasoline	37.7	MPG	37.0	36.6	40.2	45.55	-0.598	0.02761
2018	HONDA	ACCORD	HONDA ACCORD: 1.5L, 3500	1.5	Car	193	4	3500	IHNX10050353	MER	HWEE	Tier 2 Cert Gasoline	51.6	MPG	37.5	30.0	40.2	40.77	-0.598	0.02761
2018	HONDA	ACCORD	HONDA ACCORD: 1.5L, 3500	1.5	Car	192	4	3500	IHNX10050359	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	34.2	MPG	37.6	31.5	37.8	24.86	0.3191	0.01773
2018	HONDA	ACCORD	HONDA ACCORD: 1 5L 3500	15	Car	192	4	3500	IHNX10050360	MFR	HWEE	Tier 2 Cert Gasoline	51.5	MPG		0.10		24.86	0 3191	0.01773
2018	HONDA	ACCORD	HONDA ACCORD: 1.5L. 3500	1.5	Car	193	4	3500	JHNX10050355	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	39.9	MPG	41	38.2	42.6	43.75	-0.6042	0.02619
2018	HONDA	ACCORD	HONDA ACCORD: 1.5L, 3500	1.5	Car	193	4	3500	JHNX10050356	MFR	HWFE	Tier 2 Cert Gasoline	55.9	MPG				43.75	-0.6042	0.02619
2018	HONDA	ACCORD	HONDA ACCORD: 1.5L, 3500	1.5	Car	193	4	3500	JHNX91003607	EPA	HWFE	Tier 2 Cert Gasoline	57	MPG				43.75	-0.6042	0.02669
2018	HONDA	ACCORD	HONDA ACCORD: 1.5L, 3500	1.5	Car	193	4	3500	JHNX91003609	EPA	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	39.7	MPG	38.1430979	39.1298744	42.464714	43.75	-0.6042	0.02669
2018	HONDA	ACCORD	HONDA ACCORD: 2L, 3750	2	Car	252	4	3750	JHNX10050436	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	28.8	MPG	28.9	27.3	31.9	25.66	0.361	0.01802
2018	HONDA	ACCORD	HONDA ACCORD: 2L, 3750	2	Car	252	4	3750	JHNX10050437	MFR	HWFE	Tier 2 Cert Gasoline	45.9	MPG				25.66	0.361	0.01802
2018	HONDA	ACCORD	HONDA ACCORD: 2L, 3625	2	Car	252	4	3625	JHNX10049832	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	28.1	MPG	29.4	26.1	31.7	25.78	0.3414	0.01729
2018	HONDA	ACCORD	HONDA ACCORD: 2L, 3625	2	Car	252	4	3625	JHNX10050438	MFR	HWFE	Tier 2 Cert Gasoline	46.4	MPG				25.78	0.3414	0.01729
2018	HONDA	ACCORD	HONDA ACCORD: 2L, 3625	2	Car	252	4	3625	JHNX10050599	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	29.9	MPG	28.5	28	33.3	28.73	0.0246	0.01935
2018	HONDA	ACCORD	HONDA ACCORD: 2L, 3625	2	Car	252	4	3625	JHNX10050600	MFR	HWFE	Tier 2 Cert Gasoline	51	MPG				28.73	0.0246	0.01935
2018	HYUNDAI	Sonata	HYUNDAI Sonata: 2.4L, 3625	2.4	Car	185	4	3625	GHYX10035939	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	31	MPG	29.9397	29.4786	35.2751	32.262	0.16063	0.018298
2018	HYUNDAI	Sonata	HYUNDAI Sonata: 2.4L, 3625	2.4	Car	185	4	3625	GHYX10035940	MFR	HWFE	Tier 2 Cert Gasoline	49.1	MPG				32.262	0.16063	0.018298
2018	HYUNDAI	Sonata	HYUNDAI Sonata: 2.4L, 3500	2.4	Car	185	4	3500	GHYX10035941	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	31.9	MPG				27.526	0.13932	0.017723
2018	HYUNDAI	Sonata	HYUNDAI Sonata: 2.4L, 3500	2.4	Car	185	4	3500	GHYX10035942	MFR	HWFE	Tier 2 Cert Gasoline	51.9	MPG				27.526	0.13932	0.017723
2018	HYUNDAI	Sonata	HYUNDAI Sonata: 2.4L, 3625	2.4	Car	185	4	3625	GHYX10035947	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	32.2	MPG				32.262	0.16063	0.018298
2018	HYUNDAI	Sonata	ntoNDAI Sonata: 2.4L, 3625	2.4	Car	185	4	3625	GHYX10035948	MER	HWFE	Tier 2 Cert Gasoline	51.9	MPG				32.262	0.16063	0.018298
2018	HYUNDAI	Sonata	ntuNDAI Sonata: 2.4L, 3625	2.4	Car	185	4	3625	GHYX10035949	MER	HWFE	Tier 2 Cert Gasoline	51.3	MPG	-			32.262	0.16063	0.018298
2018	HYUNDAI	Sonata	HTUNDAI Sonata: 2.4L, 3500	2.4	Car	185	4	3500	GHYX10035950	MER	rederal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	52.9	MPG	-			27.526	0.13932	0.017733
2018	Hundal	Sonata	Hundai Sopata: 21, 2275	2.4	Car	261	4	3500	GATA10035951	MER	INVEC	Tior 2 Cert Gasoline	54.1 45.5	MPG				27.526	0.13932	0.017723
2018	Hyundai	Sonata	Huundai Sonata: 21, 3875	2	Car	248	4	3875	JHYX10046478	MER	Enderal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	45.5	MPG	27.22	28 2764	31 0375	32.822	0.33462	0.015902
2010	Hyundai	Sonata	Huundai Sonata: 1.61 3500	16	Car	178	4	3500	IHVX10040479	MER	IISO6	Tier 2 Cert Gasoline	23	MPG	27.23	39.612	31.33/3	32.022	-0.03278	0.013502
2018	Hyundai	Sonata	Hyundai Sonata: 1.6L 3500	1.6	Car	178	4	3500	IHVX10045751	MER	503	Tier 2 Cert Gasoline	27.8	MPG	20.0050	35.013		32.44	-0.03278	0.019661
2018	Hyundai	Sonata	Hyundai Sonata: 1.6L, 3500	16	Car	178	4	3500	IHYX10045752	MFR	Cold CO	Cold CO Regular (Tier 2)	30.8	MPG	27.891	29 9862	35 5561	35.684	-0.03606	0.021627
2018	Hyundai	Sonata	Hyundai Sonata: 1.6L, 3500	1.6	Car	178	4	3500	JHYX10046468	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	35.1	MPG	34,5446	33,7834	38.1408	32.44	-0.03278	0.019661
2018	Hvundai	Sonata	Hyundai Sonata: 1.6L. 3500	1.6	Car	178	4	3500	JHYX10046469	MFR	HWFE	Tier 2 Cert Gasoline	53.5	MPG				32.44	-0.03278	0.019661

Model Year	Represented Test Veh Make	Represented Test Veh Model	Make Model Description, Disp,	Test Ven Displacement (L	.) Venicle Type	e Rated Horsepov	ver # of Cylinders and Rotors	nt Test We	I lest Number	Test Originato	r Test Procedure Description	Test Fuel Type Description	RND_ADJ_FE	HE_UNIT	FE Bag 1	FE Bag Z	FE Bag 3	FE Bag 4 Target Coet A (Ibt)	Target Coet B (Ibt/mph)	Target Coef C (Ibf/mph**2)
2018	KIA	Optima	KIA Optima: 2L, 3875	2	Car	245	4	3875	GHYX10037887	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	27.4	MPG				34.56	0.39395	0.015464
2018	KIA	Optima	KIA Optima: 2L, 3875	2	Car	245	4	3875	GHYX10037888	MFR	HWFE	Tier 2 Cert Gasoline	44.5	MPG				34.56	0.39395	0.015464
2018	KIA	Ontima	KIA Ontima: 2.4L 3625	2.4	Car	185	4	3625	GHYX10037875	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	31.6	MPG				29.099	0 33773	0.015751
2018	KIA	Ontima	KIA Ontima: 2.41, 3625	2.4	Car	185	4	3625	GHYY10037876	MER	HIWEE	Tier 2 Cert Gasoline	50.1	MPG				29,099	0 33773	0.015751
2010	NUA.	Optima	KiA Optimu: 2.4L, 3025	2.4	Car	105		2025	GITTR10037070	1450	Federal fiel 3 day askesset (sclear land)	Tier 2 Cert Gaselies	30.2	MING				20.000	0.33773	0.015751
2018	KIA	Optima	KIA Optima: 2.4L, 3625	2.4	Car	185	4	3025	GHTX10037873	MPR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	30.3	MPG				29.099	0.33773	0.015751
2018	KIA	Optima	KIA Optima: 2.4L, 3625	2.4	Car	185	4	3625	GHYX10037874	MER	HWFE	Tier 2 Cert Gasoline	49.3	MPG				29.099	0.33773	0.015/51
2018	KIA	Optima	KIA Optima: 1.6L, 3500	1.6	Car	178	4	3500	GHYX10037314	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	36.3	MPG				27.883	0.1882	0.017448
2018	KIA	Optima	KIA Optima: 1.6L. 3500	1.6	Car	178	4	3500	GHYX10037315	MER	HWFE	Tier 2 Cert Gasoline	54.8	MPG				27.883	0.1882	0.017448
2018	Kia	Ontima	Kia Ontima: 2.41 3625	24	Car	185	4	3625	IHYX10050820	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	29.4	MPG	29.0381	27 6773	33.0827	31 669	0 29442	0.01701
2010	Kia	Optima	Kia Optima: 2.4L, 3025	2.4	Car	105		2025	JIII/(10050020	1450	Interest and the second s	Tier 2 Cert Gaselies	47.4	MING	23.0301	27.0773	33.0027	31.005	0.20442	0.01701
2018	Kid	Optima	Kia Optima: 2.4L, 3625	2.4	Car	185	4	3025	JH1X10050821	MPR	HWFE	Tier 2 Cert Gasoline	47.1	MPG				31.669	0.29442	0.01701
2018	кіа	Optima	Kia Optima: 2.4L, 3625	2.4	Car	185	4	3625	JHYX10049716	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	28.5	MPG	28.3755	26.9348	32.4824	31.669	0.29442	0.01/01
2018	Kia	Optima	Kia Optima: 2.4L, 3625	2.4	Car	185	4	3625	JHYX10050819	MFR	HWFE	Tier 2 Cert Gasoline	46.4	MPG				31.669	0.29442	0.01701
2018	KIA	Optima Fe	KIA Optima Fe: 2.4L. 3500	2.4	Car	185	4	3500	GHYX10038244	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	32.9	MPG				30,932	0.16628	0.016555
2018	KIA	Ontima Fe	KIA Optima Fe: 2 4L 3500	2.4	Car	185	4	3500	GHYX10038245	MER	HWEE	Tier 2 Cert Gasoline	52.5	MPG				30 932	0 16628	0.016555
2010		Optime FF	KIA Optima FE 2 41 3500			405		3500	CUNIX40030354		104077	Tion 2 Cost Cossilion	54.3	MADE				20.022	0.45520	0.016555
2018	NIA	Optima FE	KIA Optima FE: 2.4L, 3500	2.4	Car	185	4	3500	GH1X10038254	MPR	HWFE	Tier 2 Cert Gasoline	51.3	MPG				30.932	0.16628	0.010555
2018	KIA	Optima FE	KIA Optima FE: 2.4L, 3500	2.4	Car	185	4	3500	GHYX10038258	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	31./	MPG				30.932	0.16628	0.016555
2018	MAZDA	Mazda6	MAZDA Mazda6: 2.5L, 3875	2.5	Car	227	4	3875	JTKX10051196	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	30.1	MPG	27.967	29.382	33.6266	34.981	0.15271	0.018864
2018	MAZDA	Mazda6	MAZDA Mazda6: 2.5L. 3875	2.5	Car	227	4	3875	JTKX10051197	MER	HWFE	Tier 2 Cert Gasoline	44.9	MPG				34,981	0.15271	0.018864
2018	MAZDA	Mazda6	MAZDA Mazda6: 2 51 3625	25	Car	187	4	3625	ITKX10051156	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	31	MPG	30 7055	29 2862	35 2337	26.069	0 28718	0.017201
2010	111704	Mandat	MATCA MandaG 2 CL 2025	2.5		407		2625	17/0/40054457	1450	100000	Tion 2 Cost Coordina	40.0	MADE				25.050	0.30740	0.017301
2018	MAZDA	Mazdab	MAZDA Mazdao: 2.5L, 3625	2.5	Car	187	4	3025	JIKA10051157	MPR	HWFE	Tier 2 Cert Gasoline	48.0	MPG				26.069	0.28/18	0.01/201
2018	MAZDA	Mazdab	MAZDA Mazda6: 2.5L, 3750	2.5	Car	187	4	3750	JIKX10051258	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	33.7	MPG	31.36/1	33.1252	36.9972	33.516	0.06647	0.01894
2018	MAZDA	Mazda6	MAZDA Mazda6: 2.5L, 3750	2.5	Car	187	4	3750	JTKX10051259	MFR	HWFE	Tier 2 Cert Gasoline	50.8	MPG				33.516	0.06647	0.01894
2018	MAZDA	Mazda6	MAZDA Mazda6: 2.5L, 3750	2.5	Car	187	4	3750	JTKX91003738	EPA	HWFE	Tier 2 Cert Gasoline	50.9	MPG				32.773	0.16507	0.018005
2018	MAZDA	Mazda6	MAZDA Mazda6: 2.5L. 3750	2.5	Car	187	4	3750	JTKX91003739	EPA	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	33.8	MPG	31.6849443	33.3107154	37.0755168	32,773	0.16507	0.018005
2019	NIECAN	ALTINAA	NISSAN ALTIMAL 3 EL 2500	2.5	Car	170		2500	INSV10048404	MED	11506	Tior 2 Cort Gacoline	22.6	MDC	21.0	40		21.04	0.2921	0.03171
2018	NICCAN	ALTIMA	NIGGAN ALTIMA: 2.5L, 3500	2.5	Car	179	4	3500	JNSX10048404	NIFR	COUD	Tier 2 Cert Gasoline	33.0	MPG	21.8	40	40.4	31.04	-0.2831	0.02171
2018	NISSAN	ALIIMA	NISSAN ALTIMA: 2.5L, 3500	2.5	Car	1/9	4	3500	JNSX10049260	MER	rederai fuel 2-day exhaust (w/can load)	ner 2 Cert Gasoline	35.5	MPG	34.b	33.8	40.1	\$1.04	-0.2831	0.021/1
2018	NISSAN	ALTIMA	NISSAN ALTIMA: 2.5L, 3500	2.5	Car	179	4	3500	JNSX10049261	MFR	HWFE	Tier 2 Cert Gasoline	55	MPG				31.04	-0.2831	0.02171
2018	NISSAN	ALTIMA SR	NISSAN ALTIMA SR: 2.5L, 3500	2.5	Car	179	4	3500	JNSX10048401	MFR	US06	Tier 2 Cert Gasoline	34.3	MPG	21.8	41.1		37.46	-0.182	0.01917
2018	NISSAN	ALTIMA SR	NISSAN ALTIMA SR: 2 5L 3500	2.5	Car	179	4	3500	INSX10049258	MFR	HWEE	Tier 2 Cert Gasoline	53.7	MPG				37.46	-0.182	0.01917
2018	NIECAN	ALTIMA EP	NISSAN ALTIMA SRI 2 EL 2600	2.6	Car	170		2500	INSV10040364	AAED	Endoral fuel 2 day or haurt (w/can load)	Tior 3 Cost Gacolina	25.2	MDC	24 5	22.6	20.2	27.46	0.192	0.01017
2018	14133/414	ALTIWA SK	NISSAN ALTINIA SK. 2.5L, 5300	2.5	Cal	1/5	4	3300	JN3X10049204	INITE	Federal fdel 2-day exhaust (w/call load)	Tiel 2 Cert Gasoline	33.2	IVIP G	34.3	33.0	35.3	37.40	-0.182	0.01917
2018	NISSAN	ALTIMA SK	NISSAN ALTIMA SK: 2.5L, 3500	2.5	Car	1/9	4	3500	JNSX10049366	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	35.1	MPG	34.4	33.5	39.2	37.46	-0.182	0.01917
2018	NISSAN	ALTIMA SR	NISSAN ALTIMA SR: 2.5L, 3500	2.5	Car	179	4	3500	JNSX10049368	MFR	HWFE	Tier 2 Cert Gasoline	53.5	MPG				37.46	-0.182	0.01917
2018	NISSAN	ALTIMA SR	NISSAN ALTIMA SR: 2.5L, 3500	2.5	Car	179	4	3500	JNSX10049371	MFR	US06	Tier 2 Cert Gasoline	34.1	MPG	21.8	40.9		37.46	-0.182	0.01917
2018	NISSAN	NISSAN ALTIMA SL	NISSAN NISSAN ALTIMA SL: 3.5L. 3750	3.5	Car	270	6	3750	FNSX10029853	MFR	U\$06	Tier 2 Cert Gasoline	29.6	MPG	19.2	35		33.4	0.0834	0.01834
2019	NICCAN	NICCAN ALTIMA CI	NICCAN NICCAN ALTIMA CLUZ EL 27EO	2 5	Cor	270	6	2750	ENCV10021212	AAED	Endoral fuel 3 day exhaust (w/can load)	Tior 2 Cort Gacolina	20.2	MDC	79.1	37.6	22.6	22.4	0.0834	0.01824
2018	NICCAN	NICCAN ALTINA SE	NISSAN NISSAN ALTIMA SL. 3.5L, 3750	3.5	Car	270	0	3730	FNSX10031313	MITS	rederal rder 2-day exhaust (w/call load)	Tier 2 Cert Gasoline	25.2	MPG	20.1	27.0	33.0	33.4	0.0034	0.01834
2018	INISSAIN	NISSAN ALTIMA SL	NISSAN NISSAN ALTIMA SL: 3.5L, 3750	3.5	Car	270	6	3750	FNSX10031314	MPR	HWFE	Tier 2 Cert Gasoline	45.2	MPG				33.4	0.0834	0.01834
2018	SUBARU	LEGACY	SUBARU LEGACY: 2.5L, 3875	2.5	Both	175	4	3875	FFJX10030669	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	33.6	MPG				35.55	0.0273	0.02036
2018	SUBARU	LEGACY	SUBARU LEGACY: 2.5L, 3875	2.5	Both	175	4	3875	FFJX10030670	MFR	HWFE	Tier 2 Cert Gasoline	50.7	MPG				35.55	0.0273	0.02036
2018	SUBARU	LEGACY	SUBARU LEGACY: 3.6L, 4000	3.6	Both	256	6	4000	FFJX10029253	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	24.9	MPG				32.07	-0.0128	0.02181
2018	SUBARU	LEGACY	SUBARILLEGACY: 3.6L 4000	3.6	Both	256	6	4000	EEIX10030687	MER	HWEE	Tier 2 Cert Gasoline	40.3	MPG				32.07	-0.0128	0.02181
2018	SUBARO	LEGACI	SUBARO LEGACI: 3.00, 4000	3.0	Both	230	0	4000	FFJX10030087	MITE	Federal fiel 2 day subsurb (m/res las d)	Tier 2 Cert Gasoline	40.3	MIPG	24 5 700005	24.24062	24 727767	32.07	-0.0128	0.02181
2018	SUBARU	LEGACY	SUBARU LEGACY: 2.5L, 3875	2.5	Both	1/5	4	3875	HFJX10041935	MER	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	32.3	MPG	31.579865	31.34863	34./3//6/	38.35	0.054	0.02003
2018	SUBARU	LEGACY	SUBARU LEGACY: 2.5L, 3875	2.5	Both	175	4	3875	HFJX10041936	MFR	HWFE	Tier 2 Cert Gasoline	47.6	MPG				38.35	0.054	0.02003
2018	TOYOTA	CAMRY	TOYOTA CAMRY: 2.5L, 3500	2.5	Car	203	4	3500	JTYX10046387	MFR	HWFE	Tier 2 Cert Gasoline	61.8	MPG				21.006	0.17604	0.016028
2018	ΤΟΥΟΤΑ	CAMRY	TOYOTA CAMRY: 2.5L, 3500	2.5	Car	203	4	3500	JTYX10046391	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	39.1	MPG	38.2894671	37.4672085	43.1249854	21.006	0.17604	0.016028
2019	τοχοτο	CAMPY	TOYOTA CAMPY: 2 EL 297E	2 5	Car	201	6	2975	177710046625	MACD	Endoral fuel 3 day exhaust (w/can load)	Tior 2 Cort Gacolina	79.6	MDC	20 25 295 76	26 7151009	22 2601075	24 842	0.40308	0.015059
2018	TOYOTA	CAMINT	TOYOTA CAMPY: 3.5L, 3875	3.5	Car	301	0	3075	JTTX10040033	MITE	rederal rder 2-day exhaust (w/call load)	Tier 2 Cert Gasoline	28.0	MPG	29.2328370	20.7131058	32.3031373	24.043	0.40258	0.015008
2018	TOTOTA	CAMIRT	TOTOTA CAMIRT: 3.5L, 3875	3.5	Car	301	6	38/5	J11X10040030	MPR	HWFE	Tier 2 Cert Gasoline	47.8	MPG				24.843	0.40298	0.015068
2018	TOYOTA	CAMRY LE/SE	TOYOTA CAMRY LE/SE: 2.5L, 3625	2.5	Car	203	4	3625	JTYX91003439	EPA	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	36.2	MPG	34.9059193	35.1032922	39.8964643	25.587	0.19688	0.016371
2018	TOYOTA	CAMRY LE/SE	TOYOTA CAMRY LE/SE: 2.5L, 3625	2.5	Car	203	4	3625	JTYX91003440	EPA	HWFE	Tier 2 Cert Gasoline	57.1	MPG				25.587	0.19688	0.016371
2018	TOYOTA	CAMRY LE/SE	TOYOTA CAMRY LE/SE: 2.5L. 3625	2.5	Car	203	4	3625	JTYX10046386	MFR	HWFE	Tier 2 Cert Gasoline	61.4	MPG				21.662	0.17941	0.016016
2018	τογοτά	CAMRY LE/SE	TOYOTA CAMRY LE/SE: 2 5L 3625	25	Car	203	4	3625	ITYX10046390	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	38.9	MPG	37 8274752	37 4672085	43 125651	21.66?	0 17941	0.016016
2010	TOYOTA	CAMPY LE/SE	TOYOTA CAMPY 16/56: 3 61, 3025	2.5	Car	203		2625	177710046390	AACD	Endoral fuel 2 day exhaust (w/call load)	Tior 2 Cort Gasoline	20.5	MDC	26 9264402	36 6800640	41 9050113	21.002	0.1901	0.016419
2018	IUTUTA	CAIVIRT LE/SE	TOTOTA CAMINT LE/SE: 2.5L, 3625	2.5	Car	203	4	3020	3117410040388	MIER	recerar ruer z-day exhaust (w/can load)	ner z cert Gasoline	38.1	MPG	30.8304492	30.0899019	+1.9323113	24.04/	0.1891	0.010418
2018	TOYOTA	CAMRY LE/SE	IUYUTA CAMRY LE/SE: 2.5L, 3625	2.5	Car	203	4	3625	J1YX10046389	MFR	HWFE	Her 2 Cert Gasoline	59.3	MPG				24.047	0.1891	0.016418
2018	TOYOTA	CAMRY XLE/XSE	TOYOTA CAMRY XLE/XSE: 2.5L, 3750	2.5	Car	206	4	3750	JTYX10046557	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	35.6	MPG	34.26003	34.4059859	39.116687	32.527	0.22484	0.017128
2018	TOYOTA	CAMRY XLE/XSE	TOYOTA CAMRY XLE/XSE: 2.5L, 3750	2.5	Car	206	4	3750	JTYX10046558	MFR	HWFE	Tier 2 Cert Gasoline	54.2	MPG				32.527	0.22484	0.017128
2018	TOYOTA	CAMRY XLE/XSE	TOYOTA CAMRY XLE/XSE: 2.5L. 3625	2.5	Car	203	4	3625	JTYX10046442	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	37	MPG	36.0594713	35.5121899	40.9258593	26.509	0.19851	0.016476
2018	τογοτα	CAMPY XI F/XSE	TOYOTA CAMPY YIE/YSE: 2 SL 3625	25	Car	203	4	3625	ITYX10046443	MER	HWEE	Tier 2 Cert Gasoline	58.2	MPG				26 509	0 19851	0.016476
2010	TOYOTA	CAMPY VCC	TOYOTA CAMPY VCF. 3 FL COT	2.5	Car	203	4	3075	10040443	MER	Federal fiel 2 des extremet for 1 1 2	The 2 Cert Gasoline	30.4	MPG	20 74200000	27.4240271	22.004.246.5	20.305	0.19831	0.010470
2018	IOTOTA	CAMINY XSE	TOTOTA CANIN' XSE: 3.5L, 3875	3.5	Car	301	ь	38/5	JITA10046633	MFR	rederal ruel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	29.1	IVIPG	29.7438903	27.1248271	32.9912194	24.032	0.41181	0.014567
2018	TOYOTA	CAMRY XSE	I UYUTA CAMRY XSE: 3.5L, 3875	3.5	Car	301	6	3875	J1YX10046639	MFR	HWFE	Her 2 Cert Gasoline	48.6	MPG				24.032	0.41181	0.014567
2018	TOYOTA	CAMRY XSE	TOYOTA CAMRY XSE: 3.5L, 3875	3.5	Car	301	6	3875	JTYX10046632	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	29.2	MPG	29.6451155	27.291988	33.3646383	22.382	0.40349	0.014614
2018	TOYOTA	CAMRY XSE	TOYOTA CAMRY XSE: 3.5L, 3875	3.5	Car	301	6	3875	JTYX10046634	MFR	HWFE	Tier 2 Cert Gasoline	49.4	MPG				22.382	0.40349	0.014614
2018	τογοτα	CAMRY XSE	TOYOTA CAMRY XSE: 3 51, 3875	3.5	Car	301	6	3875	ITYX10046640	MFR	HWEE	Tier 2 Cert Gasoline	46.1	MPG				27 975	0 41014	0.016383
2010	TOYOTA	CAMPY YEE	TOYOTA CAMPY VSE 2 EL 2025	3.5	Car	201	6	2075	TVX10046640	MED	Fodoral fuel 2 day orbaust (w/ !*	Tior 2 Cort Casoline	20.1	MDC	28 4022177	26 55 466 70	21 0197607	27.075	0.41014	0.016303
2018	IUTUTA	CAIVIRT ASE	10101A UAWIRT ASE: 3.5L, 38/5	3.5	Car	301	D	38/3	311X10040041	MIFR	receitar fuel 2-day extraust (W/Can load)	ner 2 cert Gasoline	28.2	MPG	28.49231//	20.55400/8	21.9191091	27.975	0.41014	0.010383
2018	TOYOTA	CAMRY XSE	I UYUTA CAMRY XSE: 3.5L, 3875	3.5	Car	301	6	3875	J1YX10046637	MFR	HWFE	Her 2 Cert Gasoline	46.1	MPG				27.415	0.40732	0.016401
2018	TOYOTA	CAMRY XSE	TOYOTA CAMRY XSE: 3.5L, 3875	3.5	Car	301	6	3875	JTYX10046638	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	28.1	MPG	28.5855949	26.3178338	31.6882198	27.415	0.40732	0.016401
2018	VOLKSWAGEN	Passat	VOLKSWAGEN Passat: 2L, 3625	2	Car	174	4	3625	JVGA10047228	MFR	US06	Tier 2 Cert Gasoline	31.7	MPG	19.2	38.7		30.394	0.18194	0.01746
2018	VOLKSWAGEN	Passat	VOLKSWAGEN Passat: 2L. 3625	2	Car	174	4	3625	JVGA10047730	MFR	SC03	Tier 2 Cert Gasoline	26.7	MPG				30,394	0.18194	0.01746
2019	VOLKEWAGEN	Paccat	VOLKSWAGEN Parcet: 21, 3025	-	Car	174		2625	IVGA10047232	MED	Cold CO	Cold CO Bromium (71 3)	26.0	MDC	22.1	76.9	22.2	22.424	0.20014	0.010205
2018	VOLKSWAGEN	Passat	VOLKSWAGEN Passat: 2L, 3625	2	Car	1/4	4	3025	JVGA10047232	MIFR	Cold CO	Tiss 2 Cest Cess'	20.9	MPG	22.1	20.8	32.3	33.434	0.20014	0.019206
2018	VOLKSWAGEN	Passat	VULKSWAGEN Passat: 2L, 3625	2	Car	1/4	4	3625	JVGA1004/597	MER	rederai fuel 2-day exhaust (w/can load)	ner 2 Cert Gasoline	32.8	MPG	32.2	30.8	57.5	30.394	0.18194	0.01/46
2018	VOLKSWAGEN	Passat	VOLKSWAGEN Passat: 2L, 3625	2	Car	174	4	3625	JVGA10047598	MFR	HWFE	Tier 2 Cert Gasoline	53	MPG				30.394	0.18194	0.01746
2018	VOLKSWAGEN	Passat	VOLKSWAGEN Passat: 3.6L, 3875	3.6	Car	280	6	3875	JVGA10049350	MFR	Federal fuel 2-day exhaust (w/can load)	Tier 2 Cert Gasoline	23.4	MPG	23.5	21.8	27.1	31.451	0.26297	0.01845
2018	VOLKSWAGEN	Passat	VOLKSWAGEN Passat: 3.6L. 3875	3.6	Car	280	6	3875	JVGA10049351	MFR	HWFE	Tier 2 Cert Gasoline	37.5	MPG				31.451	0.26297	0.01845
2018	VOLKSWAGEN	Passat	VOLKSWAGEN Pascat: 3.6L 3875	3.6	Car	280	6	3875	IVGA10049352	MER	11506	Tier 2 Cert Gasoline	25.5	MPG	17	79.8		31.451	0 26297	0.01845
2018	VOLKSWAGEN	Paccat	VOLKEWAGEN Paccati 2 6L 2075	3.0	Car	280	6	2975	IVGA10049332	AAED	5300	Tion 2 Cost Gasoline	20.7	MDC		1.0		31.451	0.26207	0.01845
2018	VULKSWAGEN	Passar	VOLKSWAGEN Passat: 3.0L, 3875	3.0	Car	280	D	38/3	1×0A10049353	MIER	5003	ner 2 cert Gasoline	20.7	MPG				31.451	0.20297	0.01845
2018	VOLKSWAGEN	Passat	VOLKSWAGEN Passat: 3.6L, 3875	3.6	Car	280	6	3875	JVGA10049354	MFR	Cold CO	Cold CO Premium (Tier 2)	21.3	MPG	19.5	20.3	25.2	34.596	0.28927	0.020294

Appendix C: 2018 Toyota Camry XLE Test Signals

The signals shown in Tables 22 and 23 were collected at 10 Hz for each test. Note that the signal sampling rate for the CAN and diagnostic messages is dependent on the vehicle, and the actual transmission rate may be faster or slower than the 10-Hz sample rate.

Facility, Dyno, and Cell Data	Analog Data from Vehicle	Modal Tailpipe Emissions
DAQ_Time[s]	DAQ_Time[s]_RawVehicleDAQ	AMA_Dilute_THC[mg/s]
Time[s]_RawFacilities	Time[s]_RawVehicleDAQ	AMA_Dilute_CH4[mg/s]
Dyno_Spd[mph]	Engine_Oil_Dipstick_Temp[°C]	AMA_Dilute_NOx[mg/s]
Dyno_TractiveForce[N]	Radiator_Air_Outlet_Temp[°C]	AMA_Dilute_COlow[mg/s]
Dyno_LoadCell[N]	Engine_Bay_Temp[°C]	AMA_Dilute_COmid[mg/s]
Distance[mi]	Cabin_Temp[°C]	AMA_Dilute_CO2[mg/s]
Dyno_Spd_Front[mph]	Cabin_Upper_Vent_Temp[°C]	AMA_Dilute_HFID[mg/s]
Dyno_TractiveForce_Front[N]	Cabin_Lower_Vent_Temp[°C]	AMA_Dilute_NMHC[mg/s]
Dyno_LoadCell_Front[N]	Solar_Array_Ind_Temp[°C]	AMA_Dilute_Fuel[g/s]
Dyno_Spd_Rear[mph]	Eng_FuelFlow_Direct2[gps]	
Dyno_LoadCell_Rear[N]	12VBatt_Volt_Hioki_U1[V]	
Dyno_TractiveForce_Rear[N]	12VBatt_Curr_Hioki_I1[A]	
DilAir_RH(%)	12VBatt_Power_Hioki_P1[W]	
Tailpipe_Press[inH2O]	Alternator_Curr_Hioki_I2[A]	
Cell_Temp[°C]	Alternator_Power_Hioki_P2[W]	
Cell_RH(%)	12VBatt_Curr_Hi_Hioki_I3[A]	
Cell_Press[inHg]	12VBatt_Power_Hi_Hioki_P3[W]	
Tire_Front_Temp[°C]	Eng_FuelFlow_Direct[ccps]	
Tire_Rear_Temp[°C]	Eng_Fuel_Temp_Direct[°C]	
Drive_Schedule_Time[s]		
Drive_Trace_Schedule[mph]		
Exhaust_Bag		

Table 22. Facility and Vehicle Signal list

CAN Stream	Scantool Stream
Trans_turbine_spd_CAN2rpm	Brake_master_cylinder_control_torque_ECMNm
Trans_gear_CAN2	Eng_cat_temp_1_1_ECMC
Veh_wheel_speed_FR_CAN2kph	Eng_cat_temp_1_2_ECMC
Veh_wheel_speed_FL_CAN2kph	Eng_coolant_temp_ECMC
Veh_wheel_speed_RR_CAN2kph	Eng_cooling_fan_duty_ECMper
Veh_wheel_speed_RL_CAN2kph	Eng_equiv_ratio_commanded_ECM
Eng_spd_CAN2rpm	Eng_fuel_cut_DFCO_ECM
Pedal_accel_pos_CAN2per	Eng_injection_mode_ECM
Veh_PRNDL_pos_CAN2	Eng_intakeair_temp_ECMC
Trans_turbine_spd_CAN2rpm	Eng_knock_feedback_ECMdegCA
Trans_gear_CAN2	Eng_load_absolute_ECMper
Brake_switch_light_CAN4	Eng_load_calculated_ECMper
	Eng_spd_ECMrpm
	Eng_throttle_position_ECMper
	Eng_timing_advance_cyl_1_ECMdeg
	Eng_water_pump_speed_ECMrpm
	HVAC_AC_on_setting_BCAN
	HVAC_ambient_temp_HVACC
	HVAC_blower_motor_spd_HVAC
	HVAC_recirc_setting_BCAN
	HVAC_refrigerant_pressure_HVACkPag
	HVAC_room_temp_HVACC
	HVAC_solar_sensor_d_side_HVAC
	HVAC_solar_sensor_P_side_HVAC
	Trans_gear_manual_set_CAN4
	Trans_oil_temp_TCUC
	Trans_output_axis_speed_ECM_rpm

Table 23. CAN Signal List

Appendix D: Test Summary

										Cycle Fuel	Cycle Fuel	Fuel used	Fuel	Alternator	Alternator Out (200A) Energy	12V Batt (Pos) 1	12V Batt (Pos)	12V Batt	12V Batt (Neg) (200A)	12V Batt (Neg) (200A) Energy							
Test ID #1	Cycle	Test Time Start Comments	End Comments	Test Cell Temp (Cl	Test weight fib1	Dyno Target A:	Dyno Target B:	Dyno Target C:	Cycle Distance (mi1	Consumed [gal] (Emiss Bag)	Economy [mpg] (Emiss Bag)	modal [gal]	Economy Modal (mpg)	Out (200A)	consumption (Wh/mil	A WP2 [Wh]	∆ WP2 Wh/mi1	(Neg) (200A)	Average Power P1 IW1	consumption (Wh/mil	APCtime AS	SCR ASC d ASC t	CE d CE t	DR	Dd Dt	EER	ER INVR
Day 0 Coastdowns, Char	nel Check and Prep																										
Day 1, Cert cycles in 4W)	UDDSx2. 4 bag (FTP), cold start, split fuel flow	L							0.107	33.5	0.109	33.2												_		_
61808001	UDUS cold start Ph 1	US/01/18, 05:54:40 AM measurement, LIDDSx2, 4 box (CTP), cold start, solit fuel from	OK.	24	3625	26.509	0.19851	0.016476	3.60		22.2	0.115	22.0	39.560	10.961	-9.208	-2.556	-18.000	-132.180	-0.181	2050.070758 3.09	74694 2112.494 2049.02/	δ 2.789522 2.724714	0.32189 3.6	02544 3.59098	5 2.00885 2	.378521 0.6023
61808001	UDDS cold start Ph 2	08/01/18, 09:54:40 AM measurement,	ok	22	3625	26.509	0.19851	0.016476	3.90			0.115	55.5	53.216	13.645	-3.917	-1.004	-23.114	-95.809	-5.927	1250.64796 4.96	.54506 3586.189 3416.54	2 2.693175 2.550559	1.039447 3	89996 3.8598	9 4.311038 5	591538 0.721
61808001	UDDS cold start Ph 1+2	08/01/18, 09:54:40 AM UDDSx2, 4 bag (FTP), cold start, split fuel flow measurement,	ok	23					7.50	0.225	33.39	0.224	33.51	92.776	12.366	-13.125	-4.7	-41.780	-113.995	-5.6	4.26	51498 5698.683 5465.56	8 5.482697 5.275274	0.693615 7.5	02505 7.4508	5 3.115863 3	.931993 0.6598
61808001	UDDS hot start Ph 1	08/01/18, 09:54:40 AM UDDSx2, 4 bag (FTP), cold start, split fuel flow measurement	ok	23	3625	26.509	0.19851	0.016476	3.59	0.095	37.88	0.095	37.63	39.198	10.927	-5.031	-1.4	-17.095	-121.684	-4.8	2050 439724 2 39	196898 2098 177 2049 OF	8 2 788318 2 724691	.0 10273 3 9	87297 3 5909	6 2 382317 2	335219 0.6025
61808001	UDDS hot start Ph 2	08/01/18, 09:54:40 AM UDDSx2, 4 bag (FTP), cold start, split fuel flow	ok	22	3625	26.509	0.19851	0.016476	3.85	0.113	33.94	0.111	34.52	57.643	14.989	-2.800	-0.7	-24.521	-101.767	-6.4	1350 799930 1 70	241442 2477 920 2416 54	2 2 580410 2 550555	0.3660 3	94569 2 9509	1 1 5 100 44 1	170245 0.7315
61808001	UDDS hot start Ph 1+2	UDDSx2, 4 bag (FTP), cold start, split fuel flow	ok						7 43	0.208	35.73	0.207	35.96	95.841	13.028	.7.831	41	-41 616	.111 725	-56	1250.788829 1.79	41442 3477.839 3416.542	2 2.560419 2.530536	-0.3669 3	.84508 3.85984	1 1.519944 1	1/0845 0.7213
61808002	UDDS hot start #2 Ph 1	08/01/18. 11:15:27 AM UDDS. 2 bag, cold start, split fuel flow measurement.	ok	22 22	3625	26.509	0.19851	0.016476	3.61	0.095	37.88	0.096	37.75	42.084	11.669	-8.200	-2.3	-19.381	-136.605	-5.4	2.02	11603 5576.017 5465.549 36647 2091.905 2049.00	# 5.368737 5.275247 6 2.788193 2.724703	-0.23958 7.4 0.436183 3.6	32976 7.45082 06648 3.59098	7 1.976795 5 1.850859	1.77225 0.6598 2.33017 0.6023
61808002	UDDS hot start #2 Ph 2	08/01/18, 11:15:27 AM UDDS, 2 bag, cold start, split fuel flow measurement,	ok	15	3625	26.509	0.19851	0.016476	3.88	0.115	33.76	0.113	34.36	57.854	14.907	-2.641	-0.7	-24.501	-101.715	-6.3	1250.876248 3.12	.11608 3523.161 3416.52	6 2.639583 2.550557	0.542627 3.8	80784 3.8598	9 2.848385 3	.490433 0.7213
61808002	UDDS hot start #2 Ph 1+2	08/01/18, 11:15:27 AM UDDS, 2 bag, cold start, split fuel flow measurement,	, ok	19					7.49	0.210	35.63	0.208	35.91	99.938	13.347	-10.840	-1.4	-43.882	-119.160	-5.9	2.73	159566 5615.067 5465.53	2 5.427776 5.27526	0.491325 7.4	87432 7.4508	4 2.332392	2.89115 0.6598
61808003	HWY #1 & coastdown check	08/01/18, 01:32:56 PM Hwyx2, 2 bag, split fuel flow measurement, with Vehicle On coastdown to write whice losses	ok, coastdown ok	23	3625	26.509	0.19851	0.016476	10.27	0.191	53.70	0.191	53.79	70.469	6.859	-24.161	-2.4	-36.466	-171.831	-3.5	1648 532128 3 72	76477 1355 577 1306 86	2 6 584267 6 59102	0 161104 1	0 2732 10 256	8 .0.26384 .	.0 10247 0 2935
61808003	HWY #2 & coastdown check	08/01/18, 01:32:56 PM Hwyx2, 2 bag, split fuel flow measurement, with Vehicle	ok, coastdown ok		3625	26.509	0.19851	0.016476	10.29	0.182	56.38	0.181	56.76	51.090	4.967	-3.481	-0.3	-21.733	-102.166	-2.1							
61808004	US06x2 Ph 1	08/01/18, 02:37:12 PM US06x2, 4 (split) bag, split fuel flow measurement,	ok	24	3625	26.509	0.19851	0.016476	1.78	0.091	19.6	0.092	19.3	24.832	13.989	-5.253	-2.959	-9.671	-149.811	-5.448	4754.168106 0.74	450035 2478.068 2459.74	2 6.645573 6.59101 3 2.732568 2.713096	0.174184 1.3	28688 10.256	8 0.529048 0 5 0.539632 0	.827842 0.2935
61808004	US06x2 Ph 2	08/01/18, 02:37:12 PM US06x2, 4 (split) bag, split fuel flow measurement,	ok	24	3625	26.509	0.19851	0.016476	6.24	0.161	38.8	0.162	38.6	31.702	5.081	-4.329	-0.694	-11.984	-117.650	-1.921	10055.31923 -1.25	56584 1125.658 1139.97	2 5.809709 5.839877	0.067069 6.2	39041 6.2348	9 -0.5867	-0.5166 0.3617
61808004	US06x2 Ph 1+2 US06x2 Ph 3	08/01/18, 02:37:12 PM US06x2, 4 (split) bag, split fuel flow measurement, 08/01/18, 02:37:12 PM US06x2, 4 (split) bag, split fuel flow measurement.	ok ok	23	3625	26.509	0.19851	0.016476	1.77	0.251	31.88	0.254	31.59	19.916	7.054	-9.682	-1.2	-21.655	-133.731 -93.791	-2.7	4741 425222 .0 35	78738 2450 931 2459 73	4 2 682295 2 713082	.021315 13	68328 1 77210	5 .0.93216 .	1 13474 0 8215
61808004	US06x2 Ph 4	08/01/18, 02:37:12 PM US06x2, 4 (split) bag, split fuel flow measurement,	ok	26	3625	26.509	0.19851	0.016476	6.23	0.159	39.1	0.159	39.0	28.428	4.566	-1.076	-0.173	-9.654	-95.386	-1.551	10053.87448 -0.53	45491 1133.824 1139.91	8 5.743679 5.839809	-0.14574 6.3	25772 6.2348	8 -1.52548 -	1.64611 0.3616
61808004	US06x2 Ph 3+4 UDDS Prep	08/01/18, 02:37:12 PM US06x2, 4 (split) bag, split fuel flow measurement, 08/01/18, 03:16:45 PM LIDDS nee, 1 bag, split fuel flow measurement	ok ok	24	3625	25 509	0 19851	0.016476	7.99	0.249	32.12	0.253	31.63	48.344	6.047 14.019	-1.730	-0.2	-15.736	-94.589	-2.0	1556 915000 0.64	24657 5500 753 5465 55	0 5 212551 5 275102	0.20922 7/	205.05 7 45.00	2 1.019096 0	222455 0 6505
Day 2, Cert cycles in 4W)	dere inte, der teken im bebes prep, i beig, spin der ihm messarennen,	un.	10	0020	20.000	0.13031	0.010470	1.45	0100		0.205	50.0	104.140	14.015	-12.000	-1.000	40.400	-112.14	10.00	1556.815099 0.64	34657 5300.752 5465.585	3 3.313331 3.273193	-0.29633 7.4	28585 7.4508.	5 1018086 0	727155 0.8598
61808006	UDDS cold start Ph 1	08/02/18, 09:09:30 AM UDDSx2, 4 bag (FTP), cold start, split fuel flow measurement	ok	22	3625	26.509	0.19851	0.016476	3.59	0.107	33.6	0.107	33.5	34.165	9.512	-3.793	-1.056	-14.858	-105.553	-4.136	2049 270568 1.63	190208 2082 603 2049 F	0 2 76309 2 724704	0.026822 3.9	91949 3 5909	5 1 362783 1	408804 0.6023
61808006	UDDS cold start Ph 2	08/02/18, 09:09:30 AM UDDSx2, 4 bag (FTP), cold start, split fuel flow	ok		3625	26.509	0.19851	0.016476	3.86	0.116	33.3	0.113	34.1	51.367	13.325	-2.120	-0.550	-21.713	-90.101	-5.632							
61909006	UDDS cold start Ph 1+2	DB/02/18, DD:00-20, AM UDDSx2, 4 bag (FTP), cold start, split fuel flow	ak.	19					7.45	0.223	33.44	0.220	33.78	95 533	11 495	.5 012		-26 571	.07 927		1250.806206 1.7-	43072 3476.089 3416.53	7 2.592142 2.550567	-0.12521 3.2	155006 3.8598:	9 1.727074 1	.630012 0.721:
0100000		UDDSx2. 4 bag (FTP), cold start, split fuel flow		21						0.095	37.9	0.095	37.8			0.515	-0.0		-01.021				3.382093				
61808006	UDDS hot start Ph 1	08/02/18, 09:09:30 AM measurement,	ok	23	3625	26.509	0.19851	0.016476	3.60			0.445	24.7	39.551	10.968	-5.835	-1.621	-17.427	-124.735	-4.841	2050.472959 1.75	20249 2084.916 2049.01	7 2.776146 2.724693	0.239611 3	.59959 3.59098	6 1.618216 1	.888386 0.6023
61808006	UDDS hot start Ph 2	08/02/18, 09:09:30 AM UUUSX2, 4 bag (F IP), cold start, spir fuel flow measurement,	ok	21	3625	26.509	0.19851	0.016476	3.88	0.114	34.0	0.112	34.7	57.185	14.754	-2.190	-0.565	-24.184	-100.515	-6.240	1250.72055 1.62	45107 3472.04 3416.53	8 2.60591 2.550554	0.413426 3.8	3.8598	1 1.719619 2	170367 0.721
61808006	UDDS hot start Ph 1+2	08/02/18, 09:09:30 AM UDDSx2, 4 bag (FTP), cold start, split fuel flow measurement	ok	22					7.48	0.209	35.76	0.207	36.14	96.736	12.940	-8.025	4.4	-41.611	-112.626	-5.6			3 376536				
61808007	UDDS hot start #2 Ph 1	08/02/18, 10:31:16 AM UDDS #3, 2 bag, warm start, split fuel flow measurement,	, ok		3625	26.509	0.19851	0.016476	3.59	0.093	38.8	0.093	38.5	41.570	11.564	-7.765	-2.160	-18.987	-136.390	-5.282							
61909007	LIDDS, bot start #2 Pb 2	09/02/19 10/21-16 AM LIDDS #2 2 bas warm start solt fuel for measurement	ak.	23	3625	25,520	0 10951	0.016476	3.97	0.113	34.2	0.111	34.9	57 524	14 955	.2.370	0.612	-24.224	-100 726	6 284	2060.679082 1.17	43155 20/3.0/6 2049.014	4 2.741613 2.724643	0.105048 3.5	94753 3.59090	1 0.51458 0	.622834 0.6023
0100007		cores re, restrict year ecces we, 2 dag, warm start, spin row neuroscience,		19	5025	20.000	0.15051	0.010470	5.07	0.206	36.3			57.524	14.000	-2.0/0	-0.012		-100.720		1261.645322 1.3	22188 3461.701 3416.529	\$ 2.594705 2.550514	0.315671 3.8	72015 3.8598	1 1.392839 1	.732642 0.7213
61808007	UDDS hot start #2 Ph 1+2	08/02/18, 10:31:16 AM UDDS #3, 2 bag, warm start, split fuel flow measurement,	, ok		3625	26.509	0.19851	0.016476	7.47																		
61808008	HWY #1 HWY #2	08/02/18, 11:09:25 AM Hwyx2, 2 bag, warm start, spirt fuel flow measurement, 08/02/18, 11:09:25 AM Hwyx2, 2 bag, warm start, split fuel flow measurement,	ok ok	20	3625	26.509	0.19851	0.016476	10.24	0.180	56.9	0.185	57.0	50.260	4.904	-5.890	-0.575	-25.236	-118.688	-2.465	1648.502778 1.75	32903 1329.775 1306.861 359807 1327.244 1306.8	6.568538 6.591005	-0.19765 10	23641 10.2568	8 -0.16541 - 8 -0.26931 -	0.34087 0.2935
61808009	US06x2 Ph 1	08/02/18, 01:06:22 PM US06x2, 4 (split) bag, warm start, split fuel flow	ok	21	3625	26.509	0.19851	0.016476	1.78	0.091	19.5	0.092	19.4	19.560	11.018	-0.560	-0.315	-5.967	-92.327	-3.361	4752 715020 0 26	02565 3452 115 3450 3	4 2 202021 2 212005	0.190190 1.7	75208 1 77210	0.55171	0.260.49 0.93
61808009	LISOSx2 Ph 2	08/02/18_01:06:22 PM US06x2, 4 (split) bag, warm start, split fuel flow	ok		3625	25 509	0 19851	0.016476	6.22	0.161	38.8	0.161	38.7	28.008	4 499	.0.851	.0 138	.9.457	.93.321	-1.519	4733.713033 -0.20	13303 1433.113 1433.1	1.703071 1.713033	0.100103 1.1	13290 1.1721	-0.33171 -	2.20340 0.011
64005000	LICOLUL DE 412	measurement, opposite, ou opposite US06x2, 4 (split) bag, warm start, split fuel flow		23						0.252	31.77	0.253	31.67			4.004		45.472	00.004		10053.32682 0.81	03489 1149.166 1139.929		-0.16157 6.3	24784 6.2348	8 -0.39869 -	3.55803 0.3616
61808009	USUBK2 Ph 1+2	US/02/18, 01:06:22 PM measurement,	ok	22					8.00		-	0.000	20.0	47.568	6.946	-1.421	-0.2	-15.423	-92.824	-1.9							
61808009	US06x2 Ph 3	08/02/18, 01:06:22 PM USU6X2, 4 (spirt) bag, warm start, spirt fuel flow measurement,	ok	20	3625	26.509	0.19851	0.016476	1.78	0.068	20.2	0.088	20.2	19.429	10.928	-0.510	-0.287	-5.850	-90.190	-3.290	4740.903042 0.80	/31648 2479.487 2459.73	1 2.747914 2.713073	0.325907 1	.77788 1.77210	5 0.946142 1	.284199 0.8218
61808009	US06x2 Ph 4	08/02/18, 01:06:22 PM US06x2, 4 (split) bag, warm start, split fuel flow measurement.	ok	23	3625	26.509	0.19851	0.016476	6.23	0.159	39.1	0.159	39.1	27.889	4.476	-0.810	-0.130	-9.343	-92.485	-1.500	10053.47517 -0.65	318194 1132.508 1139.97	.8 5.830414 5.83986	-0.06317 6	23092 6.2348	9 -0.09874 -	0.16176 0.3617
61808009	US06x2 Ph 3+4	08/02/18, 01:06:22 PM US06x2, 4 (split) bag, warm start, split fuel flow	ok	22					8.01	0.248	32.35	0.247	32.41	47.318	5.908	-1.320	-0.2	-15.193	-91.337	-1.9							
61808010	SSS 0-80-0	08/02/18. 02:06:59 PM SSS stairs, 0-80-0, 1 minute hold warm start, split fuel	ok, need to run a bag in test to ge	2	3625	26.509	0.19851	0.016476																			
64000044	CCC 0 00 4	fow measurement, oscillation on automotion SSS stairs, 0-80-0, 1 bag, bags OFF, 1 minute hold warm	modal fuel data	NaN	2007	25.500	0.40054	0.010170	44.50			0.241	48.0	74.000	C 400		0.494	20,402		2.000							
61808011	555 0-80-1	USIO2718, 02:31:06 PM start, split fuel flow measurement,	ok	20	3625	26.509	0.19851	0.016476	11.56	0.777		0.000	20.0	14.202	6.409	-5.507	-0.481	-30.103	-110.575	-2.600	612.3838649 48.5	93794 1062.838 715.26	4 8.27255 8.253209	0.192211 11	.57774 11.5555	3 0.042026 0	.234336 0.129
61808012	UDDS Prep	08/02/18, 03:02:20 PM double prep, 1 bag, waith start, spin ide now measurement,	ok	21	3625	26.509	0.19851	0.016476	7.48	0.207	30.2	0.203	30.0	96.680	12.929	-7.464	-0.998	-41.411	-108.600	-5.538	1556.621574 1.13	92811 5527.816 5465.54	8 5.348681 5.275169	0.36437 7.4	77962 7.4508:	3 1.015032 1	.393547 0.6598
Day 3, Cert cycles in 4W		UDDSx2, 4 bag (FTP), cold start, split fuel flow	1.	1						0.108	33.4	0.109	33.1														
61808013	UDDSk2, cold start Ph 1	US/US/18, 01:27:52 PM measurement, VSpy DAQ clock enabled (CAN 0)	OK .	24	3625	26.509	0.19851	0.016476	3.60	0.115	22.6	0.114	33.0	33.713	9.372	-3.412	-0.949	-14.600	-104.326	-4.058	2049.263334 1.91	00444 2088.156 2049.01	3 2.758051 2.724709	0.176399 3.5	97319 3.59098	5 1.034626 1	.223686 0.602
61808013	UDDS cold start Ph 2	08/03/18, 01:27:52 PM measurement, VSpy DAQ clock enabled (CAN 0)	ok	22	3625	26.509	0.19851	0.016476	3.88	0.115		0.114	00.0	51.298	13.212	-2.025	-0.522	-21.724	-90.110	-5.595	1250.9411 2.50	.81467 3502.248 3416.55	5 2.631758 2.550569	0.589576 3.8	82596 3.8598	4 2.513581 3	183168 0.721
61808013	UDDS cold start Ph 1+2	08/03/18, 01:27:52 PM UDDSx2, 4 bag (FTP), cold start, split fuel flow measurement, VSpy DAQ clock enabled (CAN 0)	ok	23					7.48	0.223	33.50	0.223	33.52	85.011	11.365	-5.437	-0.7	-36.324	-97.218	-4.9							
61806013	UDDS hot start Ph 3	08/03/18, 01:27:52 PM UDDSx2, 4 bag (FTP), cold start, split fuel flow measurement, VSrv, DAO clock enabled (CAN 0)	ok	23	3625	26.509	0.19851	0.016476	3.59	0.095	37.9	0.096	37.5	39.006	10.856	-4.980	-1.386	-17.131	-122.591	-4.768	2050.49253 1.97	/19073 2089 384 2048 5	68 2 787938 2 724671	0.058765 3.9	93097 3 5909	7 2 211888 2	322014 0.6023
61808013	UDDS hot start Ph 4	08/03/18, 01:27:52 PM UDDSx2, 4 bag (FTP), cold start, split fuel flow	ok		3625	26.509	0.19851	0.016476	3.86	0.115	33.6	0.113	34.0	57.145	14.812	-2.087	-0.541	-24.082	-99.724	-6.242							
61804013	UDDS hot start Db 3+4	measurement, VSpy DAQ clock enabled (CAN 0) UDDSx2, 4 bag (FTP), cold start, split fuel flow	cik	21					7.45	0.209	35.57	0.209	35.62	95 151	12 90.4	7.057	.0.9	41,242	.111.457		1250.715031 2.66	JUU44 S507.72 3416.533	3 2.604648 2.550559	-0.04501 3.8	ice1Us 3.85984	1 2.120724 2	120683 0.7213
0100010		measurement, VSpy DAQ clock enabled (CAN 0) UDDS #3, 2 bap, warm start, split fuel flow measurement		22						0.094	38.1	0.095	38.0										+			+ +	
61808014	UDDS hot start #2 Ph 1	08/03/18, 02:47:15 PM VSpy DAQ clock enabled (CAN 0)	ok	25	3625	26.509	0.19851	0.016476	3.60		-		24.4	41.170	11.432	-7.314	-2.031	-18.850	-134.524	-5.234	2061.539645 0.67	86522 2062.925 2049.0	2 2.743638 2.724651	0.287211 3.6	601295 3.59098	2 0.406811 0	.696857 0.6023
61808014	UDDS hot start #2 Ph 2	08/03/18, 02:47:15 PM VSpy DAQ clock enabled (CAN 0)	ok .	20	3625	26.509	0.19851	0.016476	3.87	0.114	33.9	0.113	34.4	57.584	14.886	-2.469	-0.638	-24.424	-101.323	-6.314	1261.675082 1.54	85914 3469.449 3416.5	4 2.597956 2.55052	0.220643 3.8	168348 3.8598	2 1.609273 1	.859846 0.7214
61808014	UDDS hot start #2 Ph 1+2	08/03/18, 02:47:15 PM UDDS #3, 2 bag, warm start, split fuel flow measurement, VSpy DAQ clock enabled (CAN 0)	ok.	22					7.47	0.209	35.82	0.207	36.06	98.754	13.221	-9.783	-1.3	-43.273	-117.923	-5.8							
Day 4: Additional Cycles			1.	1																							
61808015	WLIP, ph 1 WLTP, ph 2	08/06/18, 09:57:28 AM WLTP, 4 bag, cold start, split fuel flow measurement 08/06/18, 09:57:28 AM WLTP, 4 bag, cold start, split fuel flow measurement	ok.	22 23	3625	26.509 26.509	0.19851 0.19851	0.016476	1.93	0.081	23.8 37.0	0.081	23.9 36.6	44.350 30.602	22.960	-10.673 -4.938	-0.523 -1.674	-21.578 -13.708	-132.284 -113.947	-11.166 -4.647	937.6408937 2.8 1834.386893 0.69	J5037 2057.073 1999.19 J52298 1871.015 1858.01	a 1.404645 1.353408 7 2.268673 2.270456	0.054349 24	.93249 1.9143	1 2.732706 3 8 -0.15506 -	.785785 0.7966 0.10056 0.6934
61808015	WLTP, ph 3	08/06/18, 09:57:28 AM WLTP, 4 bag, cold start, split fuel flow measurement	ok	24	3625	25.509	0.19851	0.016476	4.39	0.099	44.4	0.099	44.2	31.714	7.216	-3.818	-0.869	-13.624	-107.984	-3.100	1616.882211 2.83	.96669 1673.694 1627.47	9 3.230393 3.200391	0.164925 4.3	194848 4.3876:	2 0.765327 0	937427 0.5097
61808015	WLTP, ph 4	08/06/18, 09:57:28 AM WLTP, 4 bag, cold start, split fuel flow measurement 08/06/19, 10:45:50 AM WLTP, 4 bag, bot start, split fuel flow measurement	ok ok	25	3625	26.509	0.19851	0.016476	5.13	0.125	41.1	0.126	40.8	25.923	5.052	-1.918	-0.374	-9.190	-102.451	-1.791	1404.580238 3.99	57011 1033.1 993.406	3 4.878589 4.886903	0.039065 5.1	30837 5.1288	3 -0.20956 -	0.17014 0.3527
61808016	WLTP, ph 2	08/06/18, 10:46:50 AM WLTP, 4 bag, hot start, split fuel flow measurement	ok	22	3625	26.509	0.19851	0.016476	2.93	0.077	37.9	0.080	36.6	30.986	10.560	-2.471	-0.842	-13.094	-108.880	-4.462	1835.700416 0.03	74036 1858.813 1858.11	8 2.267112 2.270976	-0.47843 2.5	34213 2.9483	9 0.308806 -	0.17014 0.6934
61808016	WLTP, ph 3	08/06/18, 10:46:50 AM WLTP, 4 bag, hot start, split fuel flow measurement	ok	24	3625	26.509	0.19851	0.016476	4.37	0.094	46.4	0.097	45.1	32.427	7.420	-1.700	-0.389	-13.357	-105.731	-3.056	1616.294661 1.90	96003 1658.563 1627.48	4 3.193278 3.200395	-0.39116 4.3	70449 4.3876	2 0.169162 -	0.22237 0.5097
61808016	WLIP, pn 4 Hwyx2, ph 1	08/06/18, 12:51:25 PM Hwyx2, 2 bag, cool start, split fuel flow measurement	ok.	24 24	3625	26.509	0.19851	0.016476	5.11 10.23	0.122	54.1	0.124	54.2	66.668	6.517	-20.248	-1.979	-8.994 -33.791	-159.025	-3.303	1648.406524 1.78	1030.043 993.4233 169267 1330.214 1306.8F	2 6.55757 6.591012	-0.31928 5.1	23002 10.256	• -0.6210/ - 8 -0.24874 -	2.93455 0.35 0.50739 0.2935
61808017	Hwyx2, ph 2	08/06/18, 12:51:25 PM Hwyx2, 2 bag, cool start, split fuel flow measurement	ok	25	3625	25.509	0.19851	0.016476	10.23	0.180	56.7	0.180	56.8	51.559	5.039	-3.708	-0.362	-22.184	-104.492	-2.168	1648.813159 4.03	06146 1359.534 1306.85	9 6.554984 6.591004	-0.24227 10	23183 10.2566	8 -0.3059	-0.5465 0.2935
61808018	US06x2, ph 1	08/06/18, 01:31:54 PM US06x2, 4 (split) bag, hot start, split fuel flow measurement	ok	22	3625	26.509	0.19851	0.016476	1.78	0.089	19.9	0.091	19.5	24.150	13.562	-4.586	-2.575	-9.255	-143.279	-5.197	4754.370074 -0.95	36651 2436.309 2459.76	7 2.690972 2.71312	0.4855 1.3	80709 1.77210	5 -1.31255 -	0.81633 0.8218
61808018	US06x2, ph 2	08/06/18, 01:31:54 PM US06x2, 4 (split) bag, hot start, split fuel flow measurement	ok	26	3625	26.509	0.19851	0.016476	6.24	0.159	39.1	0.160	39.0	32.120	5.146	-3.889	-0.623	-11.835	-116.811	-1.896	1005645189 1 20	78632 1154 787 1120 01	1 5 795975 5 820010	0 101958 6	41215 6 22 491	8 -0.86177	0.75332 0.241
61808018	U\$06x2, ph 1+2	08/06/18, 01:31:54 PM US06x2, 4 (split) bag, hot start, split fuel flow	ok						8.02	0.249	32.24	0.251	31.93	56.270	7.015	-8.475	4.4	-21.089	-130.045	-2.6	1.103045105 1.29	1134.707 1139.991					
61909019	11906v2 eb 3	measurement Devoc/18_01-31-54 DM US06x2, 4 (split) bag, hot start, split fuel flow		24	3625	25.500	0.10951	0.016475	1.79	0.088	20.2	0.090	19.8	10.000	11 202	0.642	.0.362	6.147	.01 633	-2.450		_					
01008018	uouox2, pn 3	US06x2. 4 (split) han hot start, split fire! from		22	3625	20.509	0.19851	0.016476	1.78	0.151	41.4	0.152	41.2	15.505	11.203	-0.643	-0.362	-0.14/	-94.033	-3.408	4741.926811 -0.04	51922 2458.644 2459.75	5 2.707665 2.713108	0.286181 1.7	77177 1.77210	6 -0.48778 -	0.20062 0.8218
61808018	US06x2, ph 4	08/06/18, 01:31:54 PM measurement	ok	25	3625	26.509	0.19851	0.016476	6.24					27.899	4.471	-1.017	-0.163	-9.727	-95.806	-1.559	10055.89269 -2.18	84859 1115.038 1139.98	7 5.72843 5.839922	0.07372 6.2	39455 6.2348	9 -2.02145 -	1.90914 0.361
61808018	US06x2, ph 3+4	08/06/18, 01:31:54 PM US06x2, 4 (split) bag, hot start, split fuel flow measurement	ok	24					8.02	0.239	33.67	0.241	33.25	47.808	5.964	-1.661	-0.2	-15.874	-95.220	-2.0							
61808019	NEDCx2, ph 1	08/06/18, 02:14:22 PM NEDCx2, 4 bag, hot start, split fuel flow measurement	ok	18	3625	26.509	0.19851	0.016476	2.55	0.086	29.7	0.084	30.4	63.026	24.701	-12.093	-4.740	-29.512	-136.355	-11.567	361.8785227 5.25	89714 2268.802 2155.44	8 1.548389 1.526956	0.97518 2.9	51461 2.5268	2 0.422513 1	.403624 0.6323
61808019	NEUUX2, ph 2 NEDCx2, ph 1+2	08/06/18, 02:14:22 PM NEUCX2, 4 bag, hot start, split fuel flow measurement 08/06/18, 02:14:22 PM NEDCx2, 4 bag, hot start, split fuel flow measurement	ok.	24	3625	26.509	0.19851	0.016476	4.33	0.176	39.14	0.090	39.54	91.016	0.463 13.224	-1.030	-0.238	-11.584	-104.414	-2.675 -6.0	395.7516234 5.82	2000/ 823.0414 777.7602	2 3.2164/1 3.215793	0.204222 4.3	4.32218	s -U.1831 0	uz1087 0.3363
61808019	NEDCx2, ph 3	08/06/18, 02:14:22 PM NEDCx2, 4 bag, hot start, split fuel flow measurement	ok	20	3625	25.509	0.19851	0.016476	2.55	0.084	30.3	0.082	31.0	51.416	20.146	-1.756	-0.688	-21.564	-99.824	-8.449	362.0561194 6.98	48062 2306.002 2155.44	8 1.561263 1.526953	1.003792 2.5	52184 2.5268	2 1.215871 2	246983 0.632
61808019	NEDCx2, ph 4 NEDCx2, ph 3+4	US/US/18, U2:14:22 PM NEDCx2, 4 bag, hot start, split fuel flow measurement 08/06/18, 02:14:22 PM NEDCx2, 4 bag, hot start, split fuel flow measurement	OK Ok	22	3625	26.509	0.19851	0.016476	4.33	0.090	39.60	0.090	48.3	28.290	6.534	-0.912	-0.211	-11.584	-104.314	-2.676	395.7509048 6.50	34913 828.3184 777.7603	2 3.210425 3.215791	U.168195 4.3	129458 4.32218	s -0.33561 -	J.16686 0.3363

					Test Cell	Test weight	Dyno Target	Dyno Target	Dyno Target	Cycle	Cycle Fuel Consumed [ga	Cycle Fuel	Fuel used modal	Fuel Economy	Alternator Out (200A)	Alternator Out (200A) Energy consumption	12V Batt (Pos) ∆WP2	12V Batt (Pos) ∆WP2	12V Batt (Neg) (200A)	12V Batt (Neg) (200A) Average Power	12V Batt (Neg) (200A) Energy consumption			T						
Test ID [#] Day 5, Alternate Cycles	Cycle and Transmission Mapping	Test Time	Start Comments	End Comments	Temp [C]	[16]	A:	В:	C:	Distance [mi]	(Emiss Bag)	(Emiss Bag)	[gal]	Modal (mp	g] ∆ [Wh]	[Wh/mi]	[Wh]	[Wh/mi]	∆ [Wh]	P1 [W]	[Wh/mi]	APCtime ASCR AS	d ASC	<u>1 CE</u>	d CE	t DR	d	D_t	EER	ER IN
61808020	LA92x2	08/07/18, 08:13:26 AM	LA92x2, 2 bag, hot start, split fuel flow measurement	ok	20	3625	26.509	0.19851	0.016476	9.80	0.324	30.3	0.323	30.4	93.695	9.564	-4.594	-0.469	-36.852	-92.587	-3.762	3131356468 13892873 738	.334 7282.:	164 9.03	5962 8.997	7608 -0.20	.201 9.79615	9.815988	0.625604 0.4	426265 0.65
61808020 61808021	LA92x2 JC08x2	08/07/18, 08:13:26 AM 08/07/18, 09:20:49 AM	LA92x2, 2 bag, hot start, split fuel flow measurement JC08x2, 2 bag, hot start, split fuel flow measurement	ok ok	16 22	3625 3625	26.509 26.509	0.19851 0.19851	0.016476	9.83 5.05	0.308	31.9	0.305	32.2	98.577 89.985	10.030 17.814	-2.917 -12.039	-0.297 -2.383	-38.006 -40.567	-93.442 -121.179	-3.867 -8.031	3067.263277 0.8249944 73 1129.881107 1.4000266 371	2.21 7282. .457 3661.	133 9.040 199 3.5	0153 3.47 ¹	/508 0.119 9829 -0.37	776 9.82774 /022 5.05121	9.815988 5.069989	0.358842 0.4	623623 0.68
61808021	JC08x2	08/07/18, 09:20:49 AM	JC08x2, 2 bag, hot start, split fuel flow measurement	ok.	21	3625	26.509	0.19851	0.016476	5.04	0.153	32.9	0.150	33.7	80.666	16.003	-2.616	-0.519	-33.417	-99.414	-6.629	1129.99021 0.9476986 369	.866 3661.	169 3.4	8203 3.475	9817 -0.57	765 5.04070	5.069988	0.640864 0.0	063617 0.68
61808022	grade	08/07/18, 10:20:03 AM	measurement, bags OFF	ok.	25	3625	26.509	0.19851	0.016476	10.01			0.528	19.0	75.538	7.545	-5.613	-0.561	-24.122	-107.456	-2.409	13160.92593 13.925761 381	.703 335	52.8 11.5	5239 11.7#	6804 -2.36	.969 10.0119	10.255	0.547241 -1	.83247 0.47
61808023	WOTs x5	08/07/18, 11:04:45 AM	OFF	0k	23	3625	26.509	0.19851	0.016476	7.96			0.255	31.2	49.495	6.218	-6.740	-0.847	-19.319	-117.895	-2.427									
61808024	25% grade test,	08/07/18, 11:20:39 AM	25% Grade, max MPH, hot start, split fuel flow measurement, bags OFF	ak.	18	3625	26.509	0.19851	0.016476	2.35			0.220	10.7	21.098	8.965	-1.429	-0.607	-6.672	-100.829	-2.835									
61808025	Transmission mapping, constant pedal tip ins	08/07/18, 01:54:06 PM	Transmission shift mapping at constant pedal tip in, split fuel flow measurement, bags OFF	ok, disregard bags	-63	3625	26.509	0.19851	0.016476	45.75	0.166	275.0	1.036	44.2	336.655	7.359	-31.073	-0.679	-141.092	295.866	-3.084									
Day 6, More Mapping	1		infort sold start as were a still full flow more started										0.054	20.5																
61808026	US06x2, ph 1	08/08/18, 08:24:32 AM	bags OFF	ok.	24	3625	26.509	0.19851	0.016476	8.06			0.204	30.5	49.390	6.124	-5.091	-0.631	-17.702	-106.733	-2.195	7992.307249 -0.0344518 359	764 3600.0	004 8.64	3535 8.55	5464 0.710	/744 8.0648	8.007954	0.315426 1/	329417 0.507
61808026	US06x2, ph 2	08/08/18, 08:24:32 AM	US06 cold start as warmup, split fuel flow measurement, bags OFF	ak	24	3625	26.509	0.19851	0.016476	8.07			0.246	32.8	45.728	5.670	-1.423	-0.176	-14.839	-89.025	-1.840	7981.442732 0.1993883 360	169 3599.	991 8.6	6259 8.5	5543 0.716	929 8.06536	8.007952	0.528991 1.	252546 0.507
61808027	Transmission mapping with ramps	08/08/18, 09:14:30 AM	Transmission shift mapping with ramps	ak, 5-50% X5%, 50-100% x 10%, varying	24	3625	26.509	0.19851	0.016476	36.63			1.306	28.0	233.262	6.368	-7.611	-0.208	-76.425	-89.463	-2.086									
61808028	CAVs cycles, ph 1	08/08/18, 01:02:26 PM	CAVs ACC cycles, 3 bag	ok .	25	3625	26.509	0.19851	0.016476	20.93	0.396	52.9	0.401	52.2	106.958	5.109	-17.240	-0.824	-47.145	-117.255	-2.252	1743.268954 13.799084 284	128 2501.0	012 14.3	7644 13.80	0772 0.7	377 20.9337	20.78042	3.247404 4	.11886 0.30
61808028	CAVs cycles, pl 2 CAVs cycles, pl 3	08/08/18, 01:02:26 PM	CAVs ACC cycles, 3 bag CAVs ACC cycles, 3 bag	ok ok	24 25	3625	26.509	0.19851	0.016476	20.93	0.385	54.4	0.387	54.1	97.034	4.636	-3.130	-0.150	-38.479	-95.843	-1.838	1744.292894 14.058462 28 1744.294986 13.973204 285	2.62 2501.0 .489 2501.0	017 14.3	8815 13.80	10772 0.737	1581 20.9333	20.78042	3.35827 4.2 3.327903 4.1	203605 0.304
Day 7, Hot Testing 95F v	with Solar		IDDSx2_4 ban (ETP) cold start in bot (95°E) test cell								0.116	30.9	0.117	30.8																
61808029	UDDSx2, cold start Ph 1	08/09/18, 08:31:23 AM	HVAC-AUTO-72°F, solar load 850W/m*2 at base of	ak	37	3625	26.509	0.19851	0.016476	3.59					44.231	12.329	-2.549	-0.710	-17.785	-126.856	-4.958	2040 847141 0 8275251 20	5 97 2049/	014 274	0091 2.72	4702 0.05	2 5 9 7 26	2 500096	0.095907 0	994734 0.603
			UDDSx2, 4 bag (FTP), cold start in hot (95°F) test cell,								0.125	30.8	0.129	30.0								1043047141 03173331 10	0.97 1049.4	114 1.74	001 1.714	1102 0.03	100 3.30739.	3.370700	2.303037 0.4	194724 0.002
61808029	UDUSK2 cold start Ph 2	US/09/18, US:31:23 AM	Windshield, Solar on 30 minutes prior to first cycle	ok	35	3625	26.509	0.19851	0.016476	3.85					66.769	17.324	-2.155	-0.559	-20.887	-110.934	-6.976	1250.633028 1.7911989 347	735 3416.9	538 2.61	0123 2.55/	0559 -0.14	993 3.85405	3.859839	2.428561 2.5	335346 0.721
61808029	UDDSx2 cold start Ph 1+2	08/09/18, 08:31:23 AM	UDDSx2, 4 bag (FTP), cold start in hot (95°F) test cell, HVAC-AUTO-72°F, solar load 850W/m*2 at base of	ok						7.44	0.241	30.86	0.245	30.34	110.999	14.916	-4.704	-0.6	-44.673	-118.895	-6.0									
			windshield, Solar on 30 minutes prior to first cycle UDDSx2, 4 bao (FTP), cold start in hot (95°F) test cell.		36						0.103	35.2	0.103	35.0									_							
61808029	UDDSx2 hot start Ph 3	08/09/18, 08:31:23 AM	HVAC-AUTO-72°F, solar load 850W/m*2 at base of windshield. Solar on 30 minutes prior to first cycle	ok	37	3625	26.509	0.19851	0.016476	3.62					50.332	13.902	-3.370	-0.931	-19.522	-139.242	-5.392	2050.277585 2.8219267 210	.833 2049.0	.011 2.78	5249 2.72	4691 0.824	4951 3.62060	3.590985	1.367217 2.	222555 0.602
61809020	UDDSy2 hot start Ph.4	08/09/18 09-31-23 ***	UDDSx2, 4 bag (FTP), cold start in hot (95°F) test cell, HVACALITO.72°F, solar load #57M/am/2 at basic of	OK.		3626	25.500	0 10851	0.016476	3.90	0.131	29.8	0.129	30.4	70 500	18.059	2 130	.0.546	-28 412	.117 759	.7.290									
0100029	George (10) Statt P114	00-31-23 AM	windshield, Solar on 30 minutes prior to first cycle		34	3025	20.000	0.19001	0.0.0476	0.90			0.000		10.000	10.000		0.040			200	1250.735359 3.3488181 353	959 3416.	545 2.68	\$159 2.55/	0557 1.103	825 3.90244	3.859841	3.89273 5.1	198936 0.72
61808029	UDDSx2 hot start Ph 3+4	08/09/18, 08:31:23 AM	HVAC-AUTO-72°F, solar load 850W/m*2 at base of	ok						7.52	0.234	32.16	0.232	32.43	120.841	16.063	-5.500	-0.7	-47.934	-128.500	-6.4									
			windshield, Solar on 30 minutes prior to first cycle SC03x4, 4 bag, hot start in hot (95°F) test cell, HVAC-		35						0.121	29.4	0.122	29.2										+-						
61808031	S003x2 ph 1	08/09/18, 10:35:16 AM	AUTO-72°F, solar load 850W/m*2 at base of windshield, HVAC; AUTO 72, AUTO 72, MAX, OFF	ok	36	3625	26.509	0.19851	0.016476	3.57					70.036	19.637	-4.395	-1.232	-27.199	-162.723	-7.626	2004.255129 0.4026709 254	.073 2531.8	878 2.79	5636 2.7	9544 -0.35	3962 3.56660	3.579476	0.366602 0.	.007012 0.699
61909031	S002v2 eb 2	08/09/18 10:35-16 AM	SC03x4, 4 bag, hot start in hot (95°F) test cell, HVAC- AUD, 27°F, solar load 850M/m ² 2 at base of windsheld			3625	25,520	0 10951	0.016476	3.60	0.119	30.2	0.120	29.9	66.977	19 625	.2 092	-1.407	-25 500	452 265	.7.110									
0100001	OCCUPTE	000010, 10.00.10 %	HVAC; AUTO 72, AUTO 72, MAX, OFF	<u>.</u>	36	5025	20.505	0.15051	0.010470	5.00			0.171	25.0	00.577	10.025	-0.502	-1.107	-23.555	-133.333		1999.605417 0.6468195 254	243 2531.8	867 2.84	0029 2.795	5434 0.460	.355 3.59595	3.579476	1.117095 1.4	595271 0.695
61808031	SC03x2 ph 3	08/09/18, 10:35:16 AM	AUTO-72°F, solar load 850W/m*2 at base of windshield,	ok		3625	26.509	0.19851	0.016476	3.60	0.134	20.9	0.134	20.0	114.113	31.722	-3.755	-1.044	-44.650	-265.590	-12.412									
			HVAC; AUTO 72, AUTO 72, MAX, OFF SC03x4, 4 bag, hot start in hot (95°F) test cell, HVAC-		36						0.103	34.9	0.104	34.7								2003.675441 1.271145 256	.057 2531.8	873 2.85:	458 2.795	j426 0.49	371 3.59725	3.579475	1.478094 2.0	J04432 0.65
61808031	SC03x2 ph 4	08/09/18, 10:35:16 AM	AUTO-72°F, solar load 850W/m*2 at base of windshield, HVAC; AUTO 72, AUTO 72, MAX, OFF	ok	36	3625	26.509	0.19851	0.016476	3.60					50.890	14.143	-4.072	-1.132	-19.377	-114.731	-5.385	1997.164512 1.8362292 257	368 2531.8	.877 2.84	6196 2.79	5408 0.524	1793 3.5982	3.579475	1.268997 1	816845 0.695
61808032	US06x2, ph 1	08/09/18, 12:07:36 PM	US06x2, 2 bag, hot start in hot (95°F) test cell, HVAC- AUTO-72°F, solar load 850W/m ² 2 at base of windshield	ok	40	3625	26.509	0.19851	0.016476	7.99	0.274	29.2	0.274	29.2	93.006	11.638	-5.052	-0.632	-33.804	-203.214	-4.230	7992.194989 -0.6337477 357	201 3600.0	.016 8.47	0327 8.55	5478 -0.20	613 7.99144	8.00795	-0.79709 -(0.99528 0.507
61808032	US06x2, ph 2	08/09/18, 12:07:36 PM	US06x2, 2 bag, hot start in hot (95°F) test cell, HVAC-	ok	40	3625	26.509	0.19851	0.016476	8.00	0.258	31.0	0.259	31.0	64.582	8.068	-1.783	-0.223	-21.657	-130.076	-2.706	7981 725449 .0 0081563 359	712 3600 0	006 854	7593 8.55	5422 .0.04	186 8 0046r	8 007953	.0.04969	.0.0915 0.503
61808033	UDDS prep for cold	08/09/18, 02:46:34 PM	UDDS, 1 bag prep for Cold testing at 20°F test cell	ok	24	3625	26.509	0.19851	0.016476	7.44	0.216	34.5	0.211	35.2	98.066	13.184	-15.808	-2.125	-43.867	-114.803	-5.898	1556.556207 1.3440756	5539 5465.5	539 5.36	1041 5.27	5154 -0.17	233 7.43797	7.450812	1.771624 1	.62814 0.659
Day 8, Cold Testing 20F	UDDC and also DL (UDDSx2, 4 bag (FTP/Cold CO), Cold testing at 20'F test	la .	1	2027		0.40074	0.010170	3.00	0.160	22.4	0.161	22.3	0.040	0.050	0.020	0.000	0.077	0.040	0.001	· · · · · ·							<u> </u>	
61808034	ODDS COID STATE PITT	08/10/18, 07:53:56 AM	cell, HVAC-AUTO-72'F UDDSx2, 4 bag (FTP/Cold CO), Cold testing at 20'F test		-5	3625	20.505	0.19651	0.010476	3.00	0.139	27.8	0.136	28.3	0.210	0.005	-0.030	-0.005	-0.076	-0.040	-0.021	2049.982845 1.7361554 20	4.59 2049.0	016 2.75:	1157 2.724	\$707 -0.9	024 3.590124	3.590986	0.985192 0.9	370759 0.602
61808034	UDDS cold start Ph 2	08/10/18, 07:53:56 AM	cell, HVAC-AUTO-72'F	ok	-7	3625	26.509	0.19851	0.016476	3.86			0.007		0.030	0.008	0.000	0.000	-0.010	-0.032	-0.003	1250.546956 2.8236575 351	.997 3416.9	526 2.62	6056 2.550	0549 -0.09	274 3.85625	3.859839	2.965347 2.5	960389 0.721
61808034	UDDS cold start Ph 1+2	08/10/18, 07:53:56 AM	cell, HVAC-AUTO-72'F	ok.	-6					7.45	0.295	24.50	0.257	20.00	0.240	0.032	-0.030	0.0	-0.086	-0.440	0.0									
61808034	UDDS hot start Ph 1	08/10/18, 07:53:56 AM	UDDSx2, 4 bag (FTP/Cold CO), Cold testing at 20°F test cell, HVAC-AUTO-72°F	ok	-6	3625	26.509	0.19851	0.016476	3.61	0.115	31.4	0.116	31.0	2.288	0.634	-0.140	-0.039	-0.845	-5.844	-0.234	2050.461914 2.1953068 209	.001 2049.0	019 2.75	9625 2.	.7247 0.458	159 3.60743	3.590986	0.813213 1.	281795 0.602
61808034	UDDS hot start Ph 2	08/10/18, 07:53:56 AM	UDDSx2, 4 bag (FTP/Cold CO), Cold testing at 20°F test cell, HVAC-AUTO-72°F	ak.	-7	3625	26.509	0.19851	0.016476	3.89	0.127	30.6	0.124	31.3	24.991	6.417	-0.990	-0.254	-9.296	-38.320	-2.387	1250.724615 2.8380296 35	3.49 3416.9	.528 2.6	1988 2.55	0548 0.895	344 3.894	3.859841	1.774721 2.	718307 0.72
61808034	UDDS hot start Ph 1+2	08/10/18, 07:53:56 AM	UDDSx2, 4 bag (FTP/Cold CO), Cold testing at 20'F test cell_HVAC.AUTO.72'F	ak	-6					7.50	0.242	31.01	0.241	31.15	27.278	3.636	-1.130	-0.2	-10.141	-22.082	-1.4									
61808035	UDDS hot start #2 Ph 1	08/10/18, 09:11:45 AM	UDDS #3, warm start, Cold testing at 20°F test cell, b(AC-AUTO-72°F	ok	.5	3625	26.509	0.19851	0.016476	3.61	0.110	32.6	0.111	32.6	27.583	7.650	-1.860	-0.516	-9.471	-67.139	-2.627	2061 611655 1 4446879 207	613 2049 (011 274	8509 2.72	4648 0.405	1053 3 60554	3 590981	0.466005_0	875739 0.603
61808035	UDDS hot start #2 Ph 2	08/10/18, 09:11:45 AM	UDDS #3, warm start, Cold testing at 20'F test cell,	ok		3625	26.509	0.19851	0.016476	3.88	0.125	31.1	0.122	31.8	60.953	15.699	-2.710	-0.698	-22.763	-94.157	-5.863	1361 656707 3 3467064 340	200 24161	526 3 59	2270 2 55	0500 0501		2 950921	0.699304 1	389757 0.73
61808035	UDDS hot start #2 Ph 1+2	08/10/18, 09:11:45 AM	UDDS #3, warm start, Cold testing at 20°F test cell,	ok.	-1	3625	26.509	0.19851	0.016476	7.49	0.235	31.9	0.233	32.2								1261.656/9/ 2.246/964 349	.299 3410.3	330 2.58	379 2.550	1309 0.591	3.882.001	3.859831	2.668204 1.2	
61808036	HWY #1	08/10/18 09:48:02 AM	HvAC-AUTO-721 Hwyx3, 3 bag, warm start, Cold testing at 20°F test cell,	OK.		3625	25 509	0 19851	0.016476	10.25	0.210	48.8	0.210	48.7	55.452	5.412	-3.940	.0.385	.21 355	-100 190	-2.084	1.9460892 557	.912 5465.5	5.55	.888 5.275	3157 0.502	324 7.48821	7.450812	3.567305 1.0	J/5431 0.655
64000000	1000 40		HVAC-AUTO-72°F Hwyx3, 3 bag, warm start, Cold testing at 20°F test cell,	-	4		25.000	0.40054	0.010170	40.04	0.207	49.4	0.205	49.8	50.700	4.052	4.070	0.403	40.045	00.470	4 839	1647.742027 3.116431 134	.589 1306.8	261 6.590	/541 6.591	1012 -0.10	716 10.2456	10.25668	0.100029 -0	.00714 0.293
01000000	HWT #2	08/10/18, 09:48:02 AM	HVAC-AUTO-72°F Hwyx3. 3 bag, warm start. Cold testing at 20°F test cell.		-5	3625	20.505	0.19651	0.010476	10.24	0.206	49.8	0.204	50.2	50.788	4.502	-1.070	-0.105	-10.010	-00.170	-1.636	1646.631683 2.633948 134	.281 1306.8	859 6.57	1174 6.591	1011 -0.19	824 10.2363	10.25668	-0.10304 -0	30097 0.293
61808036	HWY #3	08/10/18, 09:48:02 AM	HVAC-AUTO-72°F USDEx2_4 bag warm start. Cold testing at 20°E test cell	ok.	-5	3625	26.509	0.19851	0.016476	10.25	0.099	19.1	0.099	19.0	33.528	3.270	-1.130	-0.110	-12.462	-58.095	-1.215	1676.741821 4.132859 136	869 1306.8	858 6.56	042 6.594	4079 -0.14	917 10.2524	10.26781	-0.23139 -0	1.37968 0.293
61808037	US06x2 Ph 1	08/10/18, 10:46:48 AM	HVAC-AUTO-72°F	ok	-4	3625	26.509	0.19851	0.016476	1.78			0.035	10.0	1.464	0.821	-0.160	-0.090	-0.548	-7.865	-0.307	4753.675825 0.0737487 246	.564 2459	1.75 2.72	3193 2.71	3104 0.625	.599 1.78319	1.772105	-0.25282 0	J.37184 0.821
61808037	US05x2 Ph 2	08/10/18, 10:46:48 AM	HVACAUTO-72*F	ok	2	3625	26.509	0.19851	0.016476	6.25	0.177	30.3	0.177	35.3	5.895	0.942	-0.440	-0.070	-2.082	-19.217	-0.333	10053.43111 -1.2479493 112	.683 1139.9	908 5.80	5953 5.83	9826 0.165	.824 6.24519	6.234859	-0.7502 -0	1.58003 0.361
61808037	US06x2 Ph 1+2	08/10/18, 10:46:48 AM	USUBX2, 4 bag, warm start, Cold testing at 20°F test cell, HVAC-AUTO-72°F	ok	-4					8.03	0.276	29.12	0.276	29.10	7.350	0.916	-0.600	-0.1	-2.630	-13.541	-0.3									
61808037	US06x2 Ph 3	08/10/18, 10:46:48 AM	US06x2, 4 bag, warm start, Cold testing at 20°F test cell, HVAC-AUTO-72°F	ok	-5	3625	26.509	0.19851	0.016476	1.78	0.090	19.7	0.090	19.7	1.150	0.646	-0.080	-0.045	-0.410	-6.308	-0.230	4741.104321 0.6523554 247	.783 2459.3	737 2.73	1573 2.71	3101 0.407	1629 1.77922	1.772105	0.277336 0.	680853 0.821
61808037	US06x2 Ph 4	08/10/18, 10:46:48 AM	US06x2, 4 bag, warm start, Cold testing at 20°F test cell, HVAC-AUTO-72°F	ok	-4	3625	26.509	0.19851	0.016476	6.24	0.169	37.0	0.168	37.1	6.540	1.048	-0.200	-0.032	-2.230	-22.863	-0.357	10053.62852 -1.1105827 112	.262 1139.5	922 5.78	1908 5.83	9836 0.127	168 6.24278	6.234858	-1.13033 -(0.361
61808037	US06x2 Ph 3+4	08/10/18, 10:46:48 AM	US06x2, 4 bag, warm start, Cold testing at 20°F test cell, HVACAUTO.72°F	ok						8.02	0.259	30.94	0.259	31.00	7.690	0.959	-0.280	0.0	-2.640	-14.586	-0.3									
Day 9, Performance Te	sting				~																		_			_				
61808038 61808039	30 minute idle test Engine Mapping	08/13/18, 09:28:38 AM 08/13/18, 02:00:13 PM	30 minute idle warmup test Engine mapping	ok ok	21	3625 3625	26.509 26.509	0.19851 0.19851	0.016476 0.016476	0.00 76.00	0.089	0.0	0.105	0.0 25.0	544.950	7.171	-20.244	-0.266	-147.934	1776.840	-1.947		_			\rightarrow				
Day 10, Steady State Sp	eeds, fuel swap				1				1				0.555										_	÷		=				
61808040	Steady State Speeds at 95F 55mph	08/14/18, 09:21:15 AM	SSS, U-8U-0, 30 second hold at 0, 3 & 6% grade, 95°F test cell with HVAC ON AUTO 72°F, with 10 min 55MPH	ok		3625	26.509	0.19851	0.016476	9.47			0.203	46.6	91.714	9.688	-3.192	-0.337	-35.663	-198.757	-3.767									
	Glandy State Grouts at OFF and		warmup for HVAC stabilization, Bag collection OFF SSS, 0-80-0, 30 second hold at 0, 3 & 6% grade, 95°F		39								0.148	42.2								179.062885 11.879864 550	sb79 492.3	/45 6.282	.896 6.293	1046 -0.05	285 9.46722	9.472234	-0.1086 -0	.16128 0.080
61808040	Grade	08/14/18, 09:21:15 AM	test cell with HVAC ON AUTO 72°F, with 10 min 55MPH warmup for HVAC stabilization. Bag collection OFF	0k	38	3625	26.509	0.19851	0.016476	6.23					43.735	7.016	-1.428	-0.229	-15.754	-106.955	-2.527	1130.162544 19.663962 855	0132 715.2	264 4.76	9255 4.78	.8858 0.187	146 6.23383	6.222193	-0.59894 -(0.40934 0.222
61808040	Steady State Speeds at 95F 3%	08/14/18 09:21-15 AM	SSS, 0-80-0, 30 second hold at 0, 3 & 6% grade, 95°F test cell with HVAC ON AUTO 72°F, with 10 min 55MPH	OK.		3525	25 509	0 19851	0.016476	6.22			0.246	25.3	51 232	8 231	1.410	.0.227	-15 210	-110.056	-2.605									
	Grade		warmup for HVAC stabilization, Bag collection OFF SSS 0.80.0 30 second hold at 0.3 8.8% country of the		38								0.357	17.4								1130.551308 14.105498 816	1555 715.3	264 4.7	/101 4.788	8859 0.027	611 6.22391	6.222193	-0.40183 -0	.37272 0.223
61808040	Steady State Speeds at 95F 6% Grade	08/14/18, 09:21:15 AM	test cell with HVAC ON AUTO 72°F, with 10 min 55MPH	ok	20	3625	26.509	0.19851	0.016476	6.22			0.007		61.675	9.912	-1.362	-0.219	-16.822	-113.854	-2.703	1120 550 784 23 03307		364		10000 A.A.		6333405	0.778000	788442
Swap to High Octane F	uel (EPA Tier II EEE HF0437)		www.sp.ur.evvo.scattization, Bag collection UFF		38			_														+130/330/64 ZZ/0238/1 872	/15.2	4.826	was 4.788	w38 0.004	0.22245t	0.222193		
61808041	Octane Adjuster Cycle	08/14/18, 02:49:16 PM	Switch to HF0437, EEE, Tier II, 92 Octane Fuel, Octane adjuster cycle, no fuel scales	ok, no bag data, no fuel scales	27	3625	26.509	0.19851	0.016476	14.33			0.437	32.8	99.549	6.945	-19.979	-1.394	-38.967	-125.396	-2.718	5307.941382 0.6718565 601	.704 5977.5	.544 14.6	.6282 14.6	7826 0.161	1739 14.3345	14.31138	-0.26724 -(0.10522 0.451
Day 11, High Octane fue	el testing		SSS 60 MPH 1 hour for fuel scale deverate and vehicle	ok fuel scales look good vehicle	1		1	1	1				0.575	44.3								· · · · ·			_					
61808042	Uctane Adjuster Cycle 2 Steady State Spreds 0.80.0 1 min	us/16/18, 08:34:31 AM	warmup HF0437 Fuel Testing, SSS, 0.80.0 1 minute hold warm	warm	21	3625	26.509	0.19851	0.016476	25.51			0,232	49.8	111.650	4.376	-3.870	-0.152	-38.690	-72.822	-1.516	2522.738526 788.53543 476	531 536.4	448 21.2	2415 22.8?	3508 -19.	739 25.5114	31.78567	13.64713 -7	.05462 0.026
61808043	hold	08/16/18, 09:23:40 AM	start, 1 bag, bags OFF, modal ON HE0437 Fuel Testing WOTsy5 warm start 1 box	ok	25	3625	26.509	0.19851	0.016476	11.56			0.229	13.0	72.296	6.251	-4.659	-0.403	-27.666	-101.534	-2.392	612.3900193 21.766353 870	9509 715.3	264 8.20	3808 8.25	3193 0.078	271 11.5645	11.55553	-0.71755 -0	.63472 0.129
61808044	WOTs x 5	08/16/18, 09:49:00 AM	OFF, modal ON	ok	24	3625	26.509	0.19851	0.016476	3.17			0.220	13.6	25.930	8.181	-1.605	-0.506	-8.408	-81.313	-2.653	0 inf 375	.677	0 6.68	2831	0 Inf	3.16962	0	4aN Inf	NaN
61808045	Passing Manuevers @ 0, 3 &6% grade	08/16/18, 10:13:30 AM	HFU437 Fuel Testing, Passing Manuevers at 0, 3, & 6% grade, warm start, 1 bag, bags OFF, modal ON	ok	26	3625	26.509	0.19851	0.016476	10.02			0.496	20.2	75.471	7.529	-4.120	-0.411	-22.493	-100.391	-2.244	13162.6773 13.964979 382	.018 335	52.8 11.5	5846 11.7(6809 -2.24	722 10.0245	10.255	0.56036 -1	.69637 0.479
61808046	HWY #1	08/16/18, 12:59:17 PM	HF0437 Fuel Testing, Hwyx2, 2 bag with VEHICLE ON coastdown to verify vehicle losses	ok, coastdowns within spec	26	3625	26.509	0.19851	0.016476	10.24	0.189	54.3	0.189	54.3	61.153	5.973	-12.485	-1.219	-26.610	-125.323	-2.599	1648.484329 2.0230969 133	299 1306	5.86 6.57	2966 6.59	1022 -0.17	805 10.2384	10.25668	-0.09615 -f	J.27394 0.293
61808046	HWY #2	08/16/18, 12:59:17 PM	HF0437 Fuel Testing, Hwyx2, 2 bag with VEHICLE ON coastdown to verify vehicle losses	ok, coastdowns within spec	26	3625	26.509	0.19851	0.016476	10.24	0.178	57.4	0.179	57.3	47.158	4.605	-1.560	-0.152	-18.594	-87.597	-1.816	1648.872191 2.9125798 134	.928 1306.8	865 6.58	2217 6.59	1015 -0.16	283 10.2399	10.25668	0.02938 -1	J.13349 0.293
61808047	UDDS prep	08/16/18, 02:11:22 PM	HF0437 Fuel Testing, UDDS prep, 1 bag	ak	23	3625	26.509	0.19851	0.016476	7.49	0.202	37.0	0.205	36.6	92.257	12.313	-6.942	-0.927	-37.164	-97.732	-4.960	1556.679049 2.5148779 560	.014 5465.5	562 5.41/	J692 5.27	5167 0.557	158 7.49232	7.450813	1.961561 2.5	369114 0.659

					Test Cell	Test weight	Dyno Target	Dyno Target	Dyno Target	Cycle	Cycle Fuel Consumed (gal)	Cycle Fuel Economy (mpg)	Fuel used modal	Fuel Economy	Alternator Out (200A)	Alternator Out (200A) Energy consumption	12V Batt (Pos) & WP2	12V Batt (Pos) A WP2	12V Batt (Neg) (200A)	12V Batt (Neg) (200A) Average Power	12V Batt (Neg) (200A) Energy consumption					-				
Test ID [#]	Cycle	Test Time	Start Comments	End Comments	Temp [C]	[lb]	A:	В:	C:	Distance [mi]	(Emiss Bag)	(Emiss Bag)	[gal]	Modal [mpg] ∆ [Wh]	[Wh/mi]	[Wh]	[Wh/mi]	∆[Wh]	P1 [W]	(Wh/mi)	APCtime ASCR	ASC_d ASC_	t CE_d	CE_1	DR D_(<u>t D_t</u>	EER	ER	WR
61808048	UDDS cold start Ph 1	08/17/18, 08:34:44 AM	HF0437 Fuel Testing, UDDSx2, 4 bag (FTP), cold start	ok	25	3625	26.509	0.19851	0.016476	3.60	0.105	34.3	0.105	34.2	26.532	7.369	-2.790	-0.775	-10.994	-78.781	-3.053	2049.46555 0.706736	3 2063.509 2049	027 2.7483	2.724719	3.26822 3.604	0618 3.59098	0.595004	0.868391 0	3.602313
61808048	UDDS cold start Ph 2	08/17/18, 08:34:44 AM	HF0437 Fuel Testing, UDDSx2, 4 bag (FTP), cold start	ok .	21	3625	26.509	0.19851	0.016476	3.87	0.112	34.5	0.111	34.8	46.568	12.019	-2.142	-0.553	-18.825	-78.015	-4.859	1250.979591 1.868449	7 3480.386 3416	549 2.59998	2.550574 0.	381541 3.874	4566 3.85983	1.526064	1.937168 0	J.721383
61808048	UDDS hot start Ph 1	08/17/18, 08:34:44 AM	HF0437 Fuel Testing, UDDSx2, 4 bag (FTP), cold start HF0437 Fuel Testing, UDDSx2, 4 bag (FTP), cold start	ok .	23	3625	26.509	0.19851	0.016476	3.60	0.090	40.0	0.091	39.6	29.422	8.163	-2.454	-0.681	-12.312	-76.396	-3.416	2050.685714 0.276371	1 2054.694 2049	031 2.74856	2.724708 0	365065 3.60-	4095 3.59098	0.506096	0.875592 0	3.602317
61808048	UDDS hot start Ph 2	08/17/18, 08:34:44 AM	HF0437 Fuel Testing, UDDSx2, 4 bag (FTP), cold start	CK CK	22	3625	26.509	0.19851	0.016476	3.88	0.112	34.7	0.110	35.2	47.915	12.342	-1.730	-0.446	-19.325	-80.175	-4.978	1250.791965 1.239865	7 3458.897 3416	537 2.60462	2.550562 0	379553 3.882	2209 3.85983	1.508007	2 119523 0).721389
61808049	UDDS hot start #2 Ph 1	08/17/18, 09:52:02 AM	HF0437 Fuel Testing, UDDS #3, 2 bag, hot start	ok ok	23	3625	26.509	0.19851	0.016476	3.60	0.091	39.3	0.092	39.0	36.369	10.116	-3.967	-1.103	-15.231	-108.678	-4.237	2062.00494 1.94942	9 2088.98 2049	035 2.761198	2.72467 0	113373 3.59?	5052 3.59098	1.211036	1.340645 0	3.602328
61808049	UDDS hot start #2 Ph 2 UDDS hot start #2 Ph 1+2	08/17/18, 09:52:02 AM	HF0437 Fuel Testing, UDDS #3, 2 bag, hot start HF0437 Fuel Testing, UDDS #3, 2 bag, hot start	CK CK	22	3625	26.509	0.19851	0.016476	3.86	0.111	34.7 36.8	0.110	35.2 36.9	55.548	14.407	-1.716	-0.445	-22.336	-92.168	-5.793	1261.718015 1.241577	9 3458.964 3416	545 2.57539	2.550514 -	/.11046 3.855	3568 3.85983	1.075427	0.975462 0	0.6595
61808050	US06x2 Ph 1	08/17/18, 10:30:11 AM	HF0437 Fuel Testing, US06x2, 4 bag (split), hot start	ck	24	3625	26.509	0.19851	0.016476	1.78	0.087	20.4	0.087	20.4	19.777	11.130	-2.070	-1.165	-6.678	-102.264	-3.758	4754.377434 0.216160	1 2465.07 2459.	753 2.72362	2.713115 0	272411 1.77(6933 1.77210	5 0.11439	0.387243 0	3.821826
61808050	US06x2 Ph 2 US06x2 Ph 1+2	08/17/18, 10:30:11 AM 08/17/18, 10:30:11 AM	HF0437 Fuel Testing, US06x2, 4 bag (split), hot start HF0437 Fuel Testing, US06x2, 4 bag (split), hot start	ok ok	29	3625	26.509	0.19851	0.016476	6.24	0.158	39.5 32.70	0.158	39.5 32.76	28.806 48.583	4.614	-1.038	-0.166	-9.474	-93.293 .97 778	-1.518	10055.66871 -1.620084	2 1121.501 1139	969 5.826476	5.839893 0.	128609 6.242	2877 6.23485	-0.35919	-0.22976 0	1.361714
61808050	US06x2 Ph 3	08/17/18, 10:30:11 AM	HF0437 Fuel Testing, US06x2, 4 bag (split), hot start	ok	24	3625	26.509	0.19851	0.016476	1.78	0.086	20.7	0.086	20.7	15.310	8.583	-0.440	-0.247	-4.810	-74.752	-2.697	4741.673713 0.354985	5 2468.469 2459.	737 2.7509	2.713098	3.65132 1.78?	3647 1.77210	0.732149	1.393673 0	3.821825
61808050	US06x2 Ph 4 US06x2 Ph 3+4	08/17/18, 10:30:11 AM 08/17/18, 10:30:11 AM	HF0437 Fuel Testing, US06x2, 4 bag (split), hot start HF0437 Fuel Testing, US06x2, 4 bag (split), hot start	ok ok	27 26	3625	26.509	0.19851	0.016476	6.25	0.152	41.1 33.70	0.151	41.3 33.83	27.148 42.458	4.346	-0.730	-0.117	-8.904 -13.714	-87.570 -81.161	-1.425	10055.3117 -2.968334	5 1106.132 1139	9.97 5.782543	5.839891	.17985 6.246	5072 6.234851	-1.17331	-0.98194 0	1.361713
61809051	Accessory Load Test	08/17/18, 01:24:36 PM	Accessory load test	ck	NaN	3625	26.509	0.19851	0.016476						0.030	#VALUE!	-51.050	#VALUE!	-17.130	NaN	#VALUE!									
Day 13, Certification tes	g- Swap to High Octane Fuel (EP) ting prep	A TIEF II EEE HF0437)																									-			
61811001	HWYx3 w/ coastdowns ph 1	11/14/18, 01:33:38 PM	Hwyx3, 3 bag with coastdown time to re-establish 4WD	ok, Axis camera fault, coastdowns OK except a little less loss than	5	3625	26.509	0.19851	0.016476	10.25	0.206	49.9	0.206	49.7	85.628	8.455	0.000	0.000	-36.962	-172.112	-3.608									
			vencie osses	costdowns	25							-	0.000									1655.968828 9.681735	9 1433.345 1306.	822 6.713894	6.584657 0.	055246 10.24	4574 10.2390	5 1.860937	1.962707 0	1293785
61811001	HWYx3 w/ coastdowns ph 2	11/14/18, 01:33:38 PM	Hwyx3, 3 bag with coastdown time to re-establish 4WD	OK except a little less loss than		3625	26.509	0.19851	0.016476	10.26	0.154	52.9	0.192	03.4	69.963	6.822	0.000	0.000	-20.145	-93.796	-1.964									
			venicie losses	costdowns	25																	1653.378992 9.475591	6 1430.65 1306	821 6.68225	6.584656 0.	163871 10.25	5584 10.2390	5 1.299072	1.482197 0	1.293785
61811001	MVV2 w/ coart/downs ob 2	11/14/19 01-22-39 DM	Hwyx3, 3 bag with coastdown time to re-establish 4WD	ok, Axis camera fault, coastdowns OK except a little less loss than	5	3635	25 500	0.10951	0.016176	10.24	0.197	52.1	0.195	52.5	66 766	6 510	0.000	0.000	14 207	66.019	1 205									
61811001	HWTX3 W COasidowits pit 3	11/14/16, 01.33.36 PM	vehicle losses	expected based on EOT costdowns	25	3625	20.509	0.19651	0.0104/6	10.24					00.755	0.019	0.000	0.000	-14.297	-06.019	-1.300	1656.266433 13.94573	7 1489.208 1306	945 6.689165	6.584994 0	003661 10.2	3944 10.2390	1.553705	1.581945 0	0.293803
61811003	UDDS Prep	11/14/18, 03:20:31 PM	UDDS prep, 1 bag, retry after turning pre-collision OFF	ck	21	3625	26.509	0.19851	0.016476	7.48	0.209	35.7	0.211	35.4	118.475	15.841	0.000	0.000	-24.878	-65.396	-3.326	1554.10902 2.137850	6 5582.055 5465	217 5.36414	5.274799 0	376506 7.478	8865 7.45081	1.295395	1.693843 0	1.659885
eletion	LIDDS, cold start Pb 1	11/15/19 07-49-44 AM	UDDSx2, 2 bag (FTP), cold start, hood down with speed	L.	1	3635	25 500	0.10851	0.016476	2.69	0.106	33.7	0.107	33.6	26.000	10 297	0.000	0.000	.4 927	25.075	4.347									
01011004		101010,074044 AM	match fan, 4WD mode UDDSx2, 2 bag (FTP), cold start, hood down with speed	un .	23	0025	20.000	0.10051	0.010470	0.00	0.115	33.7	0.113	34.0	54.300	44.000	0.000	0.000		0.540	0.000	2047.888351 1.504320	6 2079.709 2048:	887 2.74294	2.724592 -	18659 3.584	1285 3.590985	0.85436	0.67352 0	/602275
61811004	ULUS cold start Ph 2	11/15/18, 07:48:44 AM	match fan, 4WD mode UDDSx2, 2 bag (FTP), cold start, hood down with speed	OK	21	3625	26.509	0.19851	0.016476	3.86	0.221	33.68	0.220	33.80	54.369	14.098	0.000	0.000	-2.361	-9.519	-0.612	1248.577584 1.373160	2 3463.223 3416.	312 2.579094	2.55031	-0.0885 3.85	3642 3.85983	5 1.203567	1.128654 0).721397
61811004	UDDS cold start Ph 1+2	11/15/18, 07:48:44 AM	match fan, 4WD mode	ok	22					7.44					91.277	12.267	0.000	0.0	-7.188	-22.297	-1.0			_						
61811004	UDDS hot start Ph 1	11/15/18, 07:48:44 AM	match fan, 4WD mode	ok	24	3625	26.509	0.19851	0.016476	3.60	0.092	39.0	0.092	39.0	38.571	10.716	0.000	0.000	-3.164	-22.210	-0.879	2047.638939 1.101496	5 2071.466 2048	898 2.750416	2.724564 0.	231481 3.59	9297 3.59098	0.710613	0.948836 0	1.602292
61811004	UDDS hot start Ph 2	11/15/18, 07:48:44 AM	UDDSx2, 2 bag (FTP), cold start, hood down with speed match fan, 4WD mode	ok	21	3625	26.509	0.19851	0.016476	3.87	0.114	34.1	0.111	34.8	59.338	15.330	0.000	0.000	-0.810	-3.011	-0.209	1248.573888 0.88013	1 3446.385 3416.	317 2.58186	2.550293 0	280301 3.87	0659 3.8598	0.945984	1.237996 0	3.721404
61811004	UDDS hot start Ph 1+2	11/15/18, 07:48:44 AM	UDDSx2, 2 bag (FTP), cold start, hood down with speed match fan, 4WD mode	ok	23					7.47	0.206	36.26	0.203	36.73	97.909	13.107	0.000	0.0	-3.974	-12.611	-0.5									
61811005	UDDS hot start #2 Ph 1	11/15/18, 09:06:50 AM	UDDS, 2 bag, warm start, hood down with speed match fan 4WD mode	ok	24	3625	26.509	0.19851	0.016476	3.59	0.098	36.5	0.098	36.6	41.791	11.631	0.000	0.000	-5.148	-36.893	-1.433	2058.566689 3.324331	3 2117.017 2048	905 2.78439	2.724506 0	057359 3.59	3041 3.59098	2.094685	2 198087 0	0.602306
61811005	UDDS hot start #2 Ph 2	11/15/18, 09:06:50 AM	UDDS, 2 bag, warm start, hood down with speed match	ok	21	3625	26.509	0.19851	0.016476	3.86	0.118	32.7	0.115	33.5	59.906	15.537	0.000	0.000	-1.250	-5.392	-0.324	1259 454713 4 118857	7 3557.048 3416	334 2 6 2987	2 550272	0 11001 3.85	5581 3.85987	3 133626	3 121432 0	0 721403
61811005	UDDS hot start #2 Ph 1+2	11/15/18, 09:06:50 AM	UDDS, 2 bag, warm start, hood down with speed match	ok		3625	26.509	0.19851	0.016476	7.45	0.216	34.4	0.213	34.9	101.697	13.653	0.000	0.0	-6.398	-21.142	-0.9	2 03000								0.000
61811005	HWY #1	11/15/18 09:43:58 AM	Hwyx2, 2 bag, warm start, hood down with speed match	ck.		3625	26.509	0 19851	0.016476	10.25	0.196	52.2	0.195	52.5	63.477	6 194	0.000	0.000	-5.118	.24.145	.0.499	3.820994	/ 50/4.005 5405.	239 5.4142	5.2/4//8 -	.02934 7.448	7022 7.450801	2.004905	2.04451	0.65989
01011000	1807.40		fan, 4WD mode Hwyx2, 2 bag, warm start, hood down with speed match		26	2025	20.000	0.40054	0.045475	40.00	0.191	53.8	0.190	54.0	50.055	5.000		0.000	0.000	1500		1646.849586 9.649124	8 1432.914 1306.	817 6.6918:	6.590913 -	07934 10.24	4854 10.25661	1.585911	1.530848 0	/293505
61811000	HWT #2	11/15/16, 00.43.56 AM	fan, 4WD mode US06x2, 4 bac warm start, hood down with speed match		25	3625	20.509	0.19651	0.018478	10.26	0.088	20.2	0.068	20.3	52.330	5.102	0.000	0.000	-0.330	-1.540	-0.032	1647.014538 13.40690	9 1482.026 1306	822 6.693164	6.590903 0	344114 10.26	3121 10.25668	1.484395	1.551541 0	1293506
61811007	US06x2 Ph 1	11/15/18, 10:28:13 AM	fan, 4WD mode	ok.	22	3625	26.509	0.19851	0.016476	1.78	0.150	20.2	0.159	20.6	24.542	13.798	0.000	0.000	-3.699	-55.460	-2.080	4757.06109 0.181800	3 2464.122 2459	651 2.71228	2.713017 0	367025 1.778	8608 1.77210	-0.39417	-0.02703	0.82181
61811007	US06x2 Ph 2	11/15/18, 10:28:13 AM	fan, 4WD mode	ok	26	3625	26.509	0.19851	0.016476	6.24	0.150	39.5	0.156	39.6	33.511	5.374	0.000	0.000	-3.853	-37.835	-0.618	10037.26766 -0.73314	2 1131.241 1139	596 5.79267	5.839448 0.	019465 6.23f	6073 6.2348	-0.82707	-0.80098 0	1.361588
61811007	US06x2 Ph 1+2	11/15/18, 10:28:13 AM	usuexz, 4 bag, warm start, nood down with speed match fan, 4WD mode	ok	24					8.01	0.247	32.47	0.245	32.66	58.053	7.243	0.000	0.0	-7.553	-46.648	-0.9									
61811007	US06x2 Ph 3	11/15/18, 10:28:13 AM	US06x2, 4 bag, warm start, hood down with speed match fan, 4WD mode	ok	22	3625	26.509	0.19851	0.016476	1.78	0.087	20.3	0.087	20.4	20.433	11.502	0.000	0.000	-0.230	-3.956	-0.129	4737.505858 1.186720	9 2488.829 2459	9.64 2.742538	2.713015 0	249266 1.77	6522 1.77210	0.829821	1.088117 0	3.821816
61811007	US06x2 Ph 4	11/15/18, 10:28:13 AM	USDEx2, 4 bag, warm start, hood down with speed match fan 4WD mode	ok	26	3625	26.509	0.19851	0.016476	6.24	0.157	39.7	0.156	39.9	29.223	4.686	0.000	0.000	-0.240	-2.431	-0.038	10039 97775 0 059845	4 1140 175 1139	493 5 77840	5.839259 0	018919 6.23	6037 6 23485	-1 07222	1 04213 0	0 361553
61811007	US06x2 Ph 3+4	11/15/18, 10:28:13 AM	US0Ex2, 4 bag, warm start, hood down with speed match	ok	24					8.01	0.244	32.80	0.243	32.93	49.656	6.197	0.000	0.0	-0.470	-3.194	-0.1									
			HWYx2. 2 bag w coast down, hood up with C speed fan.		~						0.188	54.0	0.188	53.9													_			
61811009	HWY #1	11/15/18, 01:49:50 PM	2WD mode to establish losses for 2WD EPA style test	ok		3625	26.509	0.19851	0.016476	10.14					79.954	7.882	0.000	0.000	-5.808	-27.345	-0.573									
			4WD to EPA-2WD of A=8.992 / B=.01874 / C=.017762		23																	1646.896336 8.380637	2 1416.336 1306.	816 6.629326	6.590898 -	1.10585 10.1	4326 10.2566	1.67911	0.583046 0	3.293505
			HWYx2, 2 bag w coast down, hood up with C speed fan,								0.190	54.0	0.189	54.4																
61811009	HWY #2	11/15/18, 01:49:50 PM	2WD mode to establish losses for 2WD EPA style test comparison, Dyno sets changed during first Hwy from ANU	ok		3625	26.509	0.19851	0.016476	10.27					81.606	7.948	0.000	0.000	-0.810	-4.042	-0.079									
			4WD to EPA-2WD of A=8.992 / B=.01874 / C=.017762		22																	1647.201616 9.562655	5 1431.782 1306.	815 6.67207	6.590913 0	102403 10.2f	6718 10.2566	1.115293	1.23143 0	1.293504
61811010	UDDS Prep	11/15/18, 02:43:29 PM	ubbs prep, 1 bag, nood up with C speed tan, 2WD mode using new dyno sets from previous coastdown (EPA Cert			3625	26.509	0.19851	0.016476	7.48		36.8	0.206	30.4	120.451	16.093	0.000	0.000	-6.920	-18.159	-0.925									
Day 15, Certification styl	e testing		Style)		23																	1554.75484 2.382508	1 5595.533 5465.	322 5.39912	5.274905 0	(50559 7.484	(381 7.45081)	1.86055	2.354923 0	/.659885
61811011	UDDS cold start Ph 1	11/16/18. 07:51:48 AM	UDDSx2, 4 bag, cold start (FTP), hood up with C speed fan, 2WD mode using new dyno sets from previous	ok		3625	26.509	0.19851	0.016476	3.58	0.104	34.5	0.104	34.4	34,764	9.700	0.000	0.000	-2.690	-19.265	-0.751									
			coastdown (EPA Cert Style)		22									24.5								2048.918115 0.442865	3 2057.998 2048	923 2.72589	2.724599 -	20195 3.585	3733 3.59098	0.249517	0.047682 0	1.602295
61811011	UDDS cold start Ph 2	11/16/18, 07:51:48 AM	fan, 2WD mode using new dyno sets from previous	ok		3625	26.509	0.19851	0.016476	3.84	0.112	34.3	0.112	34.5	52.089	13.548	0.000	0.000	-0.002	-0.023	0.000									
			coastdown (EPA Cert Style) UDDSx2, 4 bag, cold start (FTP), hood up with C speed								0.216	34.37	0.216	34.41								1249.07867 1.419140	8 3464.837 3416.	354 2.57720	2.550356 -	39332 3.844	4656 3.85983	1.43115	1.052895 0	.721392
61811011	UDDS cold start Ph 1+2	11/16/18, 07:51:48 AM	fan, 2WD mode using new dyno sets from previous coastdown (EPA Cert Style)	ok	22					7.43					86.853	11.692	0.000	0.0	-2.691	-9.645	-0.4									
61811011	UDDS hot start Ph 1	11/16/18, 07:51:48 AM	UDDSx2, 4 bag, cold start (FTP), hood up with C speed fan, 2WD mode using new dyno sets from previous	ok		3625	26.509	0.19851	0.016476	3.61	0.092	39.4	0.092	39.2	44.804	12.413	0.000	0.000	-3.150	-22.207	-0.873									
			coastdown (EPA Cert Style) UDDSx2, 4 bag, cold start (FTP), hood up with C sneed	-	22						0.115	33.9	0.113	34.3								2047.892959 1.192690	2 2073.333 2048	896 2.76639	2.724569 0.	\$17198 3.609	1559 3.59098	1.002388	1.534973 0	/602289
61811011	UDDS hot start Ph 2	11/16/18, 07:51:48 AM	fan, 2WD mode using new dyno sets from previous coastifivan (FPA Cert Style)	ok	23	3625	26.509	0.19851	0.016476	3.89					70.571	18.123	0.000	0.000	-0.394	-1.552	-0.101	1248.918491 1 089044	3 3484.342 2444	6.36 2.60941	2.550346	881212 3.00	3853 3.8500	1.421208	2.335614	0.721204
01011011			UDDSx2, 4 bag, cold start (FTP), hood up with C speed								0.206	36.38	0.205	36.62						44.000		1.903940				3.093				
61811011	UUUS not start Ph 1+2	1 1/16/18, 07:51:48 AM	coastdown (EPA Cert Style)	uk.	23					7.50					115.375	15.376	0.000	0.0	-3.643	-11.880	40.5			_			_			
61811012	UDDS hot start #2 Ph 1	11/16/18, 09:11:55 AM	UDDS, 2 bag, warm start, hood up with C speed fan, 2WD mode using new dyno sets from previous coastdown (EPA	l ok		3625	26.509	0.19851	0.016476	3.60	0.093	38.9	0.093	38.9	41.032	11.383	0.000	0.000	-4.299	-32.359	-1.193									
			Cert Style) UDDS, 2 bag, warm start, hood up with C speed fan. 2WD		21						0.115	33.8	0.113	34.2								2059.193555 1.119773	9 2071.822 2048	879 2.75356	2.72452 0	380964 3.60	3466 3.5909	8 0.677764	1.065953 0	1.602293
61811012	UDDS hot start #2 Ph 2	11/16/18, 09:11:55 AM	mode using new dyno sets from previous coastdown (EPA Cert Style)	ok	23	3625	26.509	0.19851	0.016476	3.88					70.894	18.278	0.000	0.000	-1.670	-7.103	-0.431	1259 802051 1 266351	3 3476.69 3416	345 2 6083	2 550296 0	483596 3.87	8498 3 85983	1 753981	2 277525	0 72141
61911012	UDDS hat start #2 Ph 1+2	11/16/19 00-11-55 AM	UDDS, 2 bag, warm start, hood up with C speed fan, 2WD mode using new durp sate form om iour coastidium (ERA) ak		3635	25 500	0.10951	0.016176	7.49	0.207	36.1	0.206	36.3	111 076	14 957	0.000		.6 060	10 721										
61611012	ODOS NOUSIANT #2 PH 1+2	11/10/16, 00.11.55 AM	Cert Style)	, ox		3625	20.509	0.19651	0.0104/6	7.40					111.926	14.307	0.000	0.0	-0.909	-19.731	-0.0	In 1.523953	4 5548.512 5465	224 5.36194	5.274816 0	434132 7.48	3158 7.45081	1.197813	1.65173 0	1.659884
61811013	HWY #1	11/16/18, 09:51:17 AM	rwyxz, z uwg, warm start, nood up with C speed fan, 2WD mode using new dyno sets from previous coastdown	ok		3625	26.509	0.19851	0.016476	10.26	0.189	54.4	0.189	54.4	76.674	7.474	0.000	0.000	-3.248	-15.033	-0.317									
			(EPA Cert Style) Hwyx2, 2 bag, warm start, hood up with C speed fan,	-	21						0.186	55.0	0.185	55.4								1646.448064 1.019683	4 1320.124 1306.	799 6.59979	6.590865	02407 10.25	3915 10.25668	8 0.111244	0.135465 0	/293503
61811013	HWY #2	11/16/18, 09:51:17 AM	2WD mode using new dyno sets from previous coastdown (EPA Cert Style)	ok	23	3625	26.509	0.19851	0.016476	10.26		_			84.024	8.193	0.000	0.000	-0.328	-1.652	-0.032	1646.421435 4.315108	9 1363.177 1306	788 6.59683	6.590854	3.01057 10.	2556 10.2566	0.101228	0.090751	0.2935
61811014	11505y2 Rh 4	11/16/18 10:40:12 ***	US06x2, 4 bag (split) bag, warm start, hood up with C sneed fan, 2WD mode using new dwo onto four	ok.		3035	26 500	0.10951	0.016476	1.79	0.086	20.7	0.086	20.6	24.475	13 600	0.000	0.000	.2 000	32,000	.1.179									
0101101+	000082 PH 1	1.0.40.13 AM	coastdown (EPA Cert Style), 16MPH fixed tan		21	3625	20.509	3.19651	0.0104/10	1.70					24.175	13.000	0.000	0.000	-2.090	-52.999	-1.1/0	4753.862367 0.195705	5 2464.404 2455	9.59 2.730328	2.71295 0	308712 1.77	7575 1.77210	0.329756	0.640581 0).821821
61811014	US06x2 Ph 2	11/16/18, 10:40:13 AM	USUBX2, 4 pag (split) bag, warm start, hood up with C speed fan, 2WD mode using new dyno sets from previous	ok	_	3625	26.509	0.19851	0.016476	6.24		40.8	0.153	40.9	33.581	5.380	0.000	0.000	-2.575	-25.521	-0.413									
L			coastdown (EPA Cert Style), 16MPH fixed fan US06x2, 4 bag (spilt) bag, warm start, hood up with C	1	20						0.239	33.56	0.239	33.55								10025.70955 -3.997897	1 1093.696 1139.	242 5.76226	5.839087	.11481 6.242	2018 6.2348	-1.44959	-1.31571 0	.361463
61811014	US06x2 Ph 1+2	11/16/18, 10:40:13 AM	speed fan, 2WD mode using new dyno sets from previous coastdown (EPA Cert Style). 16MPH fixed fan	ok	21					8.02					67.756	7.202	0.000	0.0	-4.665	-29.260	-0.6									
61811014	LISOSY2 RH 3	11/16/18 10:40:12 ***	US06x2, 4 bag (split) bag, warm start, hood up with C sneed fan 2WD mode using new dwo onto from	ok.		3036	26 500	0.10951	0.016476	1.79	0.086	20.8	0.086	20.8	23.944	13 094	0.000	0.000	.0.420	-7.026	.0.244									
0101101+	000082 PH 3	1.0.40.13 AM	coastdown (EPA Cert Style), 16MPH fixed tan		22	3625	20.509	3. 1965 (0.0104/10	1.70					23.514	13.004	0.000	0.000	0,430	-1.036	-0.241	4705.814768 0.103797	9 2461.15 2458	598 2.71689	2.712855 0	551305 1.787	1839 1.77206	-0.40176	0.148951 0	1.821118
61811014	US06x2 Ph 4	11/16/18, 10:40:13 AM	speed fan, 2WD mode using new dyno sets from previous	ok	_	3625	26.509	0.19851	0.016476	6.24		40.7	0.154	40.8	49.052	7.863	0.000	0.000	-0.540	-5.399	-0.087									
			coastoown (EPA Cert Style), 16MPH fixed fan US06x2, 4 bag (split) bag, warm start, hood up with C		23						0.239	33.59	0.239	33.51								10027.85053 -3.151471	3 1103.279 1135	9.16 5.774728	5.838975 0.	152475 6.23	JB13 6.25485	-1.16564	-1.10034 0	-361441
61811014	US06x2 Ph 3+4	11/16/18, 10:40:13 AM	speed fan, 2WD mode using new dyno sets from previous coastdown (EPA Cert Style), 16MPH fixed fan	ak	23					8.02					72.366	9.023	0.000	0.0	-0.970	-6.217	-0.1									
End of Testing							-								-											_				-

Appendix E: Cert Fuel Specifications

Tables 24, 25, and 26 show the Certificates of Analysis for the Tier 2 and Tier 3 test fuels.Table 24. Certificate of Analysis for Tier 3 test fuel used in tests 61807001–61808040

haltermannsolutio	onsi			Cer	tificate FAJ	e of Analysi (; (281) 457-146
PRODUCT: Specification No.:	EPA Tier 3 El Emission Ce General Test HF2021	EE rtification F ing - Regu	uel. lar	1	Batch No.: Tank No.: Date:	FH3021HW10 DRUMS 7/24/2017
TEST	METHOD	UNITS	SF		NS MAX	RESULTS
Distillation - IBP	ASTM D862	۰F		THIGHT	merer	100.5
5%		۴.				124.1
10%		٩F	120		140	130.4
20%		٩F				138.8
30%		٩F				147.1
40%		٩F				154.5
50%		٩F	190		210	203.9
60%		٩F				236.4
70%		٩F				258.5
80%		٩F				283.3
90%		٩F	315		335	321.1
95%		٩F	010			339.8
Distillation - EP		٩F	380		420	383.6
Recovery		%	000	Report		97.8
Residue		ml			2.0	1.1
Loss		%		Report		1.1
Gravity @ 60°F	ASTM D40522	°API		Report		58.50
Density @ 15.56 ° C	ASTM D40522	ka/l		Report		0.7440
Reid Vapor Pressure EPA Equation	ASTM D51912	psi	8.7		9.2	8.9
Carbon	ASTM D52912	wt fraction		Report		0.827
Hydrogen	ASTM D52912	wt fraction		Report		0.138
Hydrogen/Carbon ratio	ASTM D52912	mole/mole		Report		1.989
Oxygen	ASTM D48152	wt %		Report		3.85
Ethanol content	ASTM D5599-002	vol %	9.6		10.0	10.0
Total oxygentates other than ethanol	ASTM D48152	vol %			0.1	None Detected
Sulfur	ASTM D54532	mg/kg	8.0		11.0	8.2
Phosphorus	ASTM D32312	g/l			0.0013	None Detected
Lead	ASTM D32372	g/l			0.0026	None Detected
Composition, aromatics	ASTM D57692	vol %	21.0		25.0	23.8
C6 aromatics (benzene)	ASTM D57692	vol %	0.5		0.7	0.5
C7 aromatics (toluene)	ASTM D57692	vol %	5.2		6.4	6.2
C8 aromatics	ASTM D57692	vol %	5.2		6.4	6.1
C9 aromatics	ASTM D57692	vol %	5.2		6.4	5.6
C10+ aromatics	ASTM D57692	vol %	4.4		5.6	5.5
Composition, olefins	ASTM D6550 ²	wt %	4.0		10.0	5.5
Oxidation Stability	ASTM D5252	minutes	1000			1000+
Copper Corrosion	ASTM D130 ²				1	1a
Existent gum, washed	ASTM D3812	mg/100mls			3.0	<0.5
Existent gum, unwashed	ASTM D3812	mg/100mls		Report		1.5
Research Octane Number	ASTM D26992			Report		91.9
Motor Octane Number	ASTM D27002			Report		83.3
R+M/2	D2699/27002		87.0	. oport	88.4	87.6
Sensitivity	D2699/27002		7.5			8.6
	DE00012100		1.0			0.0

Quality Assurance Technician

¹ Haltermann Solutions is accredited to ISO/IEC 17025 by A2LA for the tests referred to with this footnote.
² Tested by ISO/IEC 17025 accredited subcontractor.

Gasoline and diesel specialty fuels from Haltermann Solutions shall remain within specifications for a minimum of 3 years from the date on the COA so long as the drums are sealed and unopened in their original container and stored in a warehouse at ambient conditions. Specialty fuels that have been intentionally modified for aggressive or corrosive properties are excluded.

This report shall not be reproduced, except in full, without the written consent of Haltermann Solutions.

Main Lab, 15600 West Hardy Rd., Houston, TX 77060 USA

Page 1 of 1

haltermannsolutio	ons			Ce	rtificate	e of Analysis	
Telephone: (800) 969-2542					FA	K: (281) 457-1469	-
							RECT
PRODUCT:	EPA TIER II FEDERAL R	EEE EGISTER			Batch No.:	FC2421BE10	8-18
PRODUCT CODE:	HF0437				Tank No.: Date:	Drums 6/23/2017	3-1
TEST	METHOD	UNITS	HAL	TERMANN	Specs	RESULTS	1 2
			MIN	TARGET	MAX		
Distillation - IBP	ASTM D86 ²	٩F	75		95	87	1
5%		۹F				111	
0%		۴	120		135	125	
20%		9F				145	I
30%		. v⊂				167	
40%		~				105	
50%		1	000		000	195	
1076		7	200		230	218	
00%	1	1				231	
/0%		°F				240	
30%	1	۴				258	
0%		°F	305		325	312	
5%		۴				339	
istillation - EP		٩F			415	393	
lecovery		vol %		Report		97.2	1
Residue		vol %		Report		11	
hee		vol %		Deport		1.7	
avity	ACTH DAOSO	*A D1	50 7	nepon	61.0	500	
avity	ASTM D4052	hel	0.704		07.4	38.9	
onisity	ASTM D4052	кдл	0.734		0.744	0.743	
elo vapor Pressure	ASTM D5191	psi	8.7		9.2	9.0	
arbon	ASTM D33432	wt fraction		Report		0.8658	
arbon	ASTM D5291 ²	wt fraction		Report		0.8678	
lydrogen	ASTM D5291 ²	wt fraction		Report		0.1322	
lydrogen/Carbon ratio	ASTM D5291 ²	mole/mole		Report		1.815	
toichiometric Air/Fuel Ratio	a second s			Report		14.533	
Dxygen	ASTM D48152	wt %			0.05	None Detected	
ultur	ASTM D54532	wt %	0.0025		0.0035	0.0028	
ead	ASTM D32372	g/gal			0.01	None Detected	
hosphorous	ACTM D3237	gigai			0.005	None Detected	
ilicon	ACTM 6104	grgai			0.000	None Detected	
opposition aromatica	AGTINI DI04	mg/kg			4	None Detected	
omposition, aromatics	ASTM D1319	V01 %			35	29	
omposition, oletins	ASTM D13192	vol %			10	1	
omposition, saturates	ASTM D1319 ²	vol %		Report		70	
articulate matter	ASTM D5452 ²	mg/l			1	0	
xidation Stability	ASTM D525 ²	minutes	240			1000+	
opper Corrosion	ASTM D130 ²				1	1a	
um content, washed	ASTM D3812	mg/100mls			5	<0.5	
el Economy Numerator/C Density	ASTM D52912		2401		2441	2436	
Factor	ASTM D52012			Report		1 0004	
esearch Octane Number	ASTM DOCOT		06.0	rioport		96.8	
otor Octano Number	AOTH D2099		50.0	Depart		20.0	
opeitivity	ASTM 02/00-		75	nepon		89.1	
Prioruvity	D2699/2700*		7.5	-		1.1	
et Heating Value, btu/lb	ASTM D3338	btu/lb		Report		18460	
et Heating Value, btu/lb	ASTM D240 ²	btu/lb		Report		18627	
olor	IAL ISL IAL			Report		Undwad	

¹ Haltermann Solutions is accredited to ISO/IEC 17025 by A2LA for the tests referred to with this footnote.
² Tested by ISO/IEC 17025 accredited subcontractor.

Gasoline and diesel specialty fuels from Haltermann Solutions shall remain within specifications for a minimum of 3 years from the date on the COA so long as the drums are sealed and unopened in their original container and stored in a warehouse at ambient conditions. Specialty fuels that have been intentionally modified for aggressive or corrosive properties are excluded.

This report shall not be reproduced, except in full, without the written consent of Haltermann Solutions.

Main Lab, 15600 West Hardy Rd., Houston, TX 77060 USA

Page 1 of 1

Table 26. Certificate of Analysis for Tier 2 test fuel used in tests 61811001–61811014

Ц			AP	RF 7/30	REC'	лия Е а	
n							
haltermannsolutions				Certificate of Analysis			
Telephone: (800) 969-2542							
					PAA:	(281) 457-1469	
PRODUCT:	EPA TIER II EE	E			Batch No.	:_GE3121GP10	
PRODUCT CODE:	FEDERAL REG						
PRODUCT CODE:	<u>HF0437</u>				Tank No.	Drums	
Date: <u>6/26/2018</u>							
TEST	METHOD	UNITS	HALT	ERMANN	Specs	RESULTS	
Construction of the second sec			MIN	TARGET	MAX	RESULTS	
Distillation - IBP	ASTM D86 ²	۴F	75		95	87	
5%		°F				110	
10%		۴F	120		135	123	
20%	1	°F				140	
30%		۴F				160	
40%		°F				187	
50%		°F	200		230	216	
60%		۴F				231	
70%		°F				242	
80%		۴F				259	
90%		۴F	305		325	316	
95%		۴F				340	
Distillation - EP		۴F			415	400	
Recovery		vol %		Report		97.5	
Residue		vol %		Report		0.7	
Loss		vol %		Report		1.8	
Gravity	ASTM D4052	°API	58.7		61.2	58.9	
Densky	ASTM D4052	kg/l	0.734		0.744	0.743	
Carbon	ASTM D5191	psi	8,7		9.2	8.9	
Carbon	ASTM D3343	wt fraction		Report		0.8665	
Carbon	ASTM D52912	wt fraction		Report		0.8663	
Hydrogen/Carbon ratio	ASTM D5291*	wt fraction		Report		0.1337	
Stoichiomatric Air/Fuel Patio	AS1M D5291-	mole/mole		Report		1.839	
Owgan	40714 D 10152	1.00		Report		14.567	
Sulfur	ASTM 04815	Wt %	0.0005		0.05	None Detected	
Lead	ASTM D5453"	WL %	0.0025		0.0035	0.0032	
Phosphorus	ASTM D3237	g/gal			0.01	None Detected	
Silicon	ASTM 54842	g/gai			0.005	None Detected	
Composition aromatics	ASTM D104	vol %			4	None Detected	
Composition, olefins	ASTM D13192	vol %			30	51	
Composition, saturates	ASTM D13102	vol %		Depart	10	1	
Particulate matter	ASTM D54522	ma/l		Report	1	09	
Oxidation Stability	ASTM D5252	minutes	240			1000+	
Copper Corrosion	ASTM D130 ²	minutos	240		1	1000+	
Gum content, washed	ASTM D3812	ma/100mls			5	10 5	
Fuel Economy Numerator/C Density	ASTM D52911		2401		2441	2432	
C Factor	ASTM D52911			Report		0.9987	
Research Octane Number	ASTM D2699 ²		96.0			97.3	
Motor Octane Number	ASTM D2700 ²			Report		88.6	
Sensitivity	D2699/2700 ²		7.5			8.7	
Net Heating Value, btu/lb	ASTM D3338 ¹	btu/lb		Report		18441	
-	100 100 100 CT						
Net Heating Value, btu/lb	ASTM D240 ²	btu/lb		Report		18623	

¹ Haltermann Solutions is accredited to ISO/IEC 17025 by ANAB for the tests referred to with this footnote.

²Tested by ISO/IEC 17025 accredited subcontractor.

Gasoline and diesel specialty fuels from Haltermann Solutions shall remain within specifications for a minimum of 3 years from the date on the COA so long as the drums are sealed and unopened in their original container and stored in a warehouse at ambient conditions. Specialty fuels that have been intentionally modified for aggressive or corrosive properties are excluded.

This report shall not be reproduced, except in full, without the written consent of Haltermann Solutions.

Main Lab, 15600 West Hardy Rd., Houston, TX 77060 USA

Page 1 of 1

(GTOTAL)

Appendix F: Test IDs to Figures Matrix

In this appendix, Table 27 specifies which test IDs were used to make the figures in the report.

Figure	Test IDs		
Figure 1: Fuel economy trends: cars in the 3,500-lb weight class	Not applicable		
Figure 2: Summary distributions of weight and horsepower of the	Not applicable		
midsize cars included in the review.			
Figure 3: FTP fuel economy of 2018 midsize vehicles	Not applicable		
Figure 4: FTP fuel economy of 2018 midsize vehicles by vehicle	Not applicable		
Figure 5: HWFET fuel economy of 2018 midsize vehicles	Not applicable		
Figure 6: HWFET fuel economy of 2018 midsize vehicles by	Not applicable		
vehicle selected			
Figure 7: Drive cycle developed from on-road data for on dyno	Not applicable		
mileage accumulation			
Figure 8: Vehicle mounted for mileage accumulation on the	Not applicable		
AMTL two-wheel drive (2WD) chassis dynamometer			
Figure 9: Vehicle mounted for full testing inside the AMTL 4WD	Not applicable		
chassis dynamometer.			
Figure 10: Instrumentation of port and direct fuel injection	Not applicable		
systems (61808001–61808051)			
Figure 11: Direct fuel flow measurements via fuel scale and	Not applicable		
Coriolis flow meters			
Figure 12: Wiring of the Hioki Power Analyzer on the 2018	Not applicable		
Toyota Camry test vehicle			
Figure 13: CAN breakout on the 2018 Toyota Camry XLE	Not applicable		
Figure 14: Overview of steady state drive cycle with preparation	61808010		
Figure 15: Vehicle acceleration with varying constant pedal inputs	61808025		
Figure 16: Constant acceleration ramp cycles with varying	61808027		
accelerator pedal inputs	(1000000		
Figure 17: Engine mapping operation under fixed engine speed	61808039		
and varying pedal inputs			
Figure 18: Toyota Camry test vehicle mounted to the chassis	Not applicable		
Gynamometer inside of the test cell	(190900)		
Figure 19: Toyota Camry powertrain operation on cold start	61808006		
UDDS Eigung 20: Daile drive curls toot approach a superiod in the marries	(190900((1909007 (1909009		
rigule 20. Daily drive cycle test sequence executed in the morning	61808000, 01808007, 01808008,		
Figure 21: Paw fuel accommy regults: UDDS and HWEET	$\frac{1000009}{100000}$		
certification cycles from Argonne	Tier 3 88 AKI: 618080048		
certification cycles from Argonne	61808003 61808006 61808008		
	61808013 61808015		
Figure 22: Raw fuel economy results for certification cycles across	23°C avg :		
different temperature conditions	• TS#1: 61808001_61808002		
	61808003 61808004		
	• TS#2: 61808006_61808007		
	61808008, 61808009		
	• TS#3: 61808013_61808014		
	61808017, 618080118		
	-7°C:		

Table 27. Test IDs to Figures Matrix
Figure	Test IDs
	 61808034, 61808035,
	61808036, 61808037
	35 °C:
	• 61808029, 61808031 (SC03),
	61808032 (US06)
Figure 23: Cold-start engine operation on the UDDS across	61808034, 61808006, 61808029
different temperatures	
Figure 24: Powertrain and cabin temperature profiles across	• -7 °C: 61808034, 61808035,
varying ambient temperatures	61808036, 61808037
	• 23 °C: 61808001, 61808002,
	61808003, 61808004
	• 35 °C: 61808029, 61808031
	(SC03), 61808032 (US06)
Figure 25: Steady-state speed operation at 72 °F and 0% grade –	61808011
Tier 3 low-octane fuel	
Figure 26: Steady state speed operation at 72 °F and 0% grade -	61808043
Tier 2 high-octane fuel	
Figure 27: Steady-state speed operation at 95 °F and 0% grade	61808040
Figure 28: Powertrain operation during the 55-mph to 80-mph	61808022
passing maneuver on low-octane Tier 3 fuel.	
Figure 29: Powertrain operation during maximum acceleration	61808023
Figure 30: Repeat maximum acceleration runs overlaid	61808023
Figure 31: Initial 120 s of the idle fuel flow test	61808038
Figure 32: Idle fuel flow test – full duration	61808038
Figure 33: Knock feedback signals on UDDSx2 cold-start cycles	61808048
Figure 34: Spark advance comparison between Tier 2 and Tier 3	Tier 3 – 88 AKI: 61808006,
fuels	61808007, 61808008, 61808009,
	618008022, 61808023
	Tier 2 – 93 AKI: 61808048,
	61808049, 61808046, 61808050,
	61808044, 61808045
Figure 35: Powertrain thermal and cooling information between	61811006, 61811013
different testing setups.	
Figure 36: Raw fuel economy results: UDDS and HWFET	EPA test car data list
certification cycles from EPA and Argonne	Tier 2 – 93 AKI: 61808048
	Tier 3 – 88 AKI: 61808001,
	61808003, 61808006, 61808008,
	61808013, 61808015
Figure 37: Schematic of the vehicle configuration	Not applicable
Figure 38: Calculation of missing signals for component speed	Not applicable
Figure 39: Calculation of missing signals for component torque	Not applicable
Figure 40: Calculation of missing signals for component speed	Autonomie
Figure 41: Time spent in each gear number for the UDDS/HWFET/US06 cycles	Autonomie
Figure 42: All operating points according to gear number – vehicle	Autonomie
speed vs accelerator pedal position	
Figure 43: All operating points according to gear number – vehicle	Autonomie
speed vs. wheel torque	

Figure	Test IDs
Figure 44: Transmission shifting points – upshifting	Autonomie
Figure 45: Transmission shifting points – downshifting	Autonomie
Figure 46: Torque converter lockup operation – wheel torque vs.	Autonomie
vehicle speed	
Figure 47: Torque converter lockup operation – engine speed vs.	Autonomie
vehicle speed	
Figure 48: Torque converter operation points for lockup vs. non-	Autonomie
lockup for each gear (1 to 4)	
Figure 49: Torque converter operation points for lockup vs. non-	Autonomie
lockup for each gear (5 to 8)	
Figure 50: Torque converter operation points for lockup	Autonomie
Figure 51: Operation of the DFCO when the braking is active	Autonomie
Figure 52: Operation of the DFCO for each gear	Autonomie
Figure 53: Operating behavior of the fuel injection mode	Autonomie
Figure 54: Operating behavior of the fuel injection mode (when	Autonomie
the engine coolant temperature is between 35 °C and 60 °C)	
Figure 55: Operating behavior of the fuel injection mode (when	Autonomie
the engine coolant temperature is above 60 °C)	
Figure 56: Engine fuel rate map according to engine speed and	Autonomie
torque	
Figure 57: Torque pedal map for each gear (1 to 4)	Autonomie
Figure 58: Torque pedal map for each gear (5 to 8)	Autonomie
Figure 59: Engine operation at the launch of the vehicle differs	Autonomie
according to the engine coolant temperature	
Figure 60: Engine idle speed is controlled according to the coolant	Autonomie
temperature	
Figure 61: Behaviors of engine coolant temperatures on UDDS	Autonomie
under different test conditions	
Figure 62: Operating behavior of the fuel injection mode under	Autonomie
cold ambient temperature	
Figure 63: Fuel system operation at vehicle start under different	Autonomie
ambient temperatures	
Figure 64: Fuel rate of engine according to engine power for	Autonomie
different coolant temperatures	
Figure 65: Fuel rate of engine according to engine throttle position	Autonomie
for cold coolant temperature	
Figure 66: Accumulated fuel consumption trajectories on UDDS	Autonomie
under different test conditions	
Figure 67: Electrical consumption when the vehicle is fully	Autonomie
stopped	
Figure 68: Example of energy calculation for one component on	Not applicable
Autonomie	* *
Figure 69: Energy balance diagram on UDDS in Autonomie	Autonomie
Figure 70: Energy balance diagram on HWFET in Autonomie	Autonomie
Figure 71: Validation process for the 2018 Toyota Camrv in	Not applicable
Autonomie	FF
Figure 72: Simulation results and test data for the UDDS cvcle	Autonomie
Figure 73: Simulation results and test data for the HWFET cycle	Autonomie

Figure	Test IDs
Figure 74: Simulation results and test data for the US06 cycle	Autonomie
Figure 75: Torque converter locked vehicle speed	Autonomie
Figure 76: Comparison of torque converter lockup status	Autonomie
Figure 77: Engine fuel cutoff vehicle speed	Autonomie
Figure 78: Comparison of engine fuel cutoff status	Autonomie
Figure 79: Comparison of engine operating points on the UDDS	Autonomie
cycle	
Figure 80: Comparison of engine operating points on the HWFET	Autonomie
cycle	
Figure 81: Comparison of engine operating points on the US06	Autonomie
cycle	
Figure 82: Fuel consumption and error between test data and	Autonomie
simulation result	

Appendix G: Comments from External Reviewers

This document contains the comments from external reviewers on the vehicle testing and validation reports for the following four vehicles.

- 1. Infiniti QX50, 2L Turbo VCR, CVT
- 2. 2019 Acura MDX Sport Hybrid, 3L V6 VTEC, 7 spd DCT
- 3. Toyota Camry, 2.5L I4, 8 spd AT
- 4. Honda Accord, 1.5L turbo VTEC, CVT

Reviewer 1

Prof. Giorgio Rizzoni

Ford Motor Company Chair in ElectroMechanical Systems, is a Professor of Mechanical and Aerospace Engineering and of Electrical and Computer Engineering at Ohio State University (OSU).

Argonne National Lab (ANL) has operated the Advanced Mobility Technology Laboratory (AMTL, formerly Advanced Powertrain Research Facility, APRF) for over 20 years. This reviewer is quite familiar with the operation and characteristics of the AMTL, having served as an Associate Technical Team Member of the Vehicle Systems Analysis Technical Team of the U.S. DRIVE Partnership between 2013 and 2016. During this time, I had the opportunity to participate in numerous program reviews of the work done by ANL-APRF in characterizing and evaluating the fuel economy, energy efficiency and emissions of a number of vehicles, mostly with focus on alternative fuels and powertrains. During the course of these reviews, it became apparent that the test capabilities and instrumentation of the AMTL are of the highest quality, and far exceed the minimum requirements for certification testing. The four-wheel-drive chassis dynamometer is operated in an environmental chamber capable of low- and high-temperature testing, and the available instrumentation permits both non-intrusive and intrusive testing to evaluate not only the fuel economy and emissions of the vehicle, but also to perform distinct and specific tests to evaluate the energy efficiency and power consumption of specific subsystems and components in the vehicle. In addition, the APRF team has developed considerable software analysis capabilities that allow the team to present results in comprehensive and carefully thought-out graphical and tabular forms. In my 35-year career as an automotive researcher, I have not come across a public-domain test facility of this kind that matches the capabilities of the AMTL. The work presented in this report is of the highest quality.

The test plan is quite comprehensive, designed to address specific questions related to the fuel economy impact of the operation of various automotive subsystems, and far exceeds the minimum requirements of certification testing. I have no suggestions for further improvement.

The tests conducted in the study were comprehensive and evaluated vehicle fuel economy under different environmental conditions (72, 20, and 95 °F, the last with solar radiation emulation), and with fuels with different octane ratings (regular and premium). In addition to performing fuel economy tests following regulatory driving cycles (UDDS, HWFET, US06, and SC03, LA92 and JCo8), the testing included steady speed tests at different grades, tests during passing maneuvers, and wide-open throttle and idle fuel consumption tests. The test program is as comprehensive as one could expect to implement in a chassis dynamometer test cell. The comparison with EPA CAFE test results is very valuable.

The graphical and tabular summary of the test results give a clear and concise representation of the results. I made some recommendations on minor improvements that I believe will be incorporated in the final report. The only item that is important to note is the lack of consistency in the units used throughout the report. This is an industry-wide problem, wherein SI and English units are both used and not always both shown next to one another.

The energy analysis, including both fuel economy and overall efficiency, is comprehensive and includes consideration of thermal environment (both ambient temperature as well as cold and hot start conditions), and of different vehicle modes of operation (accel/decel, cruise, stop). The visual presentation of these results is excellent and gives the reader the opportunity to understand the results of complex tests.

As part of the peer review process, I took the time to carefully review the report, and made a number of editorial suggestions that, in my opinion, further enhanced the already excellent quality of the report. I believe that the final product is a well-organized, readable, clear and accurate report.

Vehicle specific comments:

Infinity QX50:

This report provides testing results for a 2019 Infiniti QX50 equipped with a turbocharged 2.0 liter in-line four-cylinder Variable Compression Ratio (VCR) Atkinson cycle-capable engine with dual fuel injection, coupled to the driveline by a CVT. The combination of features in this powertrain is novel, to best of this reviewer's knowledge, and is a very appropriate choice for testing and analysis at Argonne.

The additional analysis presented in the report on: details of VCR engine operation; dual fuel injection strategies; transmission operating strategy; torque converter lock-up strategies; vehicle performance (acceleration and passing maneuvers); fuel cut-off strategies; cycle thermal test conditions; comparison of fuels with different AKI ratings; and accessory load operation further enhances the quality and completeness of the report. The Autonomie Model Validation section is a valuable addition to the testing results and is very well executed.

Acura MDXSH

This report provides testing results for a 2019 Acura MDX Sport Hybrid equipped with a 3.0 V6 Variable Valve Timing and Lift Electronic Control (VTEC) engine coupled through a 7-speed dual clutch transmission (DTC) and a three-motor hybrid system. The 2019 Acura MDX sport hybrid "super-handling" all-wheel drive (SH-AWD) system includes a 143-kW engine coupled to a 7-speed dual clutch transmission (DCT) and a 35-kW electric motor in the front and two 27-kW electric motors on the rear axle, capable of driving each wheel independently, thus replacing the rear differential. The 3.0L V6 engine is port fuel injected and can perform cylinder deactivation for each bank to achieve higher low-load efficiencies. The configuration of the rea electric machines permits the implementation of torque-vectoring strategies and enable superior vehicle handling. This choice of this vehicle is appropriate as it represents a trend towards achieving improved fuel economy while also providing improved performance.

Camry:

The vehicle tested in this report is equipped with a 2.5 L in-line four-cylinder engine coupled to an 8-speed automatic transmission. The engine is a high expansion ratio Atkinson cycle engine

with very high peak thermal efficiency (40%), dual variable valve timing, cooled EGR. The 8speed transmission is a new development that replaces the previously employed 6-speed transmission. The vehicle is claimed to offer outstanding fuel economy while delivering impressive performance. The results presented in the report clearly support these statements and suggest that the technologies embodied in this vehicle are representative of future trends for conventional (i.e.: non-hybrid) powertrains in mid-size sedans.

Accord

The vehicle tested in this report is equipped with a best-in-class powertrain, featuring a turbocharged 1.5 L in-line four-cylinder engine with variable valve timing and lift electronic control (VTEC) paired with a direct injection system and a continuously variable transmission. The Honda's VTEC turbo technology is marketed as part of the powertrain technologies marketed by Honda as "Earth Dreams Technology." The vehicle is claimed to offer outstanding fuel economy while delivering impressive performance. The results presented in the report clearly support these statements and suggest that the technologies embodied in this vehicle are representative of future trends for conventional (i.e.: non-hybrid) powertrains in mid-size sedans.

The additional analysis presented in the report on: transmission and torque converter operating strategy (including different transmission operating modes); vehicle performance (acceleration and passing maneuvers); start-stop operation; vehicle fuel injection strategies; fuel cut-off strategies; cycle thermal test conditions; comparison of fuels with different AKI ratings; and accessory load operation further enhances the quality and completeness of the report. The Autonomie Model Validation section is a valuable addition to the testing results, and is very well executed.

Reviewer 2

Prof. David Foster

Phil and Jean Myers Professor Emeritus, Department of Mechanical Engineering, University of Wisconsin-Madison

The experimental protocols and quality of the data taken is very good. It was also nice to see the extra dyno test runs that were developed to probe the vehicle control systems and performance for a more extensive range of operating conditions than the standardized certification tests. The use of this data to fit the Autonomie simulation was impressive as were the correlations between the simulation predictions and the certification cycle test data. Very nice work.

I have made many comments throughout the four reports. Some were generic to the descriptions of the experimental procedure and simulation tuning. Relative to these comments, I sometimes repeated them in the individual reports and other times merely said I had made a comment on the item being described in one of the reports previously reviewed. I hope that the individual teams will share the generic comments about operating procedure, etc. with each other.

Finally, I also had suggestions which I thought would increase the impact of this work. I think that the detail of the operating characteristics of the specific components of each vehicles powertrain contained in Autonomie puts you are in a position to quantify the incremental improvement each of the advanced powertrain technologies makes in the vehicles' fuel economy and performance relative to previous model vehicles as well as competitor vehicles. This is what I expected as part of the discussion on the insights gained from vehicle testing. I inferred this from reading the contract statement: "The focus of the evaluation was to understand the use of critical powertrain components and their impact on the vehicle efficiency," given in the introduction and/or conclusion of each report. In conclusion of each report I made an extended comment further detailing this thought – usually with specific reference to the technologies used in the vehicle reported on in the report.

Below is a copy of my conclusive comment from the Acura Performance Report:

"This is a similar comment to that made in the reports I have previously reviewed.

This is very good work. The experimental protocol, procedures and data taking techniques are of high quality. The component data extracted from the tests were used to tune Autonomie which was then used to simulate the vehicle with excellent results.

The reporting of the data in this report was pretty much just that; here is the data we got; we can see the different aspect of the powertrain engaging and disengaging; here are the results for the two different octane fuels that were tested, etc. However, there was very little discussion of, or attempts to quantify, the impact on fuel economy and performance improvement of the individual advanced technologies used in the vehicle. Also, to me it was disconcerting that when the testing showed no difference between the manufacturer's recommended high-octane fuel and the less expensive low octane fuel almost no discussion ensued. To me this was a significant finding.

I think you are well situated to make these assessments. The Autonomie simulation has energy flows and performance evaluation criteria for most, if not all, of the components and subsystems of the vehicle. I thought it would be possible to use the simulation, which reproduces the data well, to partition the energy flow from the fuel to the wheels for the various driving conditions tested and quantify the impact of the different technologies on fuel economy and performance.

By doing this for the different vehicles tested you would be able to offer a look-up type categorization of the potential benefits of different technologies, used either separately or synergistically, on overall vehicle performance.

Such an analysis would be a tremendous contribution to the technical and regulatory community, and it is what I inferred what the NHTSA was interested in. It is why I offer this comment on the highlighted phrase."

The testing of the impact of the fuels octane number was particularly surprising. In general the octane number did not make a significance difference in the vehicles performance. In fact in the Acura, where the manufacturer recommends high octane gasoline, the low octane gasoline showed better performance. This is a significant finding which I do not understand. It was not discussed in any detail in the report.

There is no reason to discount the data in your tests. However, if this is true, why would the manufacturers recommend high octane gasoline when better performance could be obtained with a less expensive fuel? I made comments of this nature in the different vehicle reports because I think this is a significant finding. It is also one that your laboratory should make absolutely sure that nothing is strange with the data. I even suggested asking Honda about this. To that end, I think one needs to be sure that there are no caveats to this data before it is disseminated more widely in the public arena. This result is significant!

For more detail on this I am also including the extended comment I made in the fuels testing section of the Acura Performance report:

"Considering these tests relative to the fuel test results given in the Infinity makes me more confused. It seems to me that the most important test to perform for this evaluation is the one using the manufacturer's recommended octane rating fuel – which should to be the focus of your results.

If the manufacturer recommends the lower octane fuel isn't it safe to assume that they have optimized the engine for the lower-octane fuel, and have not included technologies that would optimize for higher octane? For example, the range of spark advance might be limited, the chosen compression ratio might not be optimal if a higher-octane fuel were used, In other words, using a high-octane fuel could very well result in significant knock margin being 'left on the table' because of this non optimal operation. In which case it would be easy to interpret results of such tests out of context and come to a more general conclusion that higher octane is not worth very much.

I commented in the Infinity testing that an opportunity may have been missed by not running a lower octane fuel in the vehicle which specifies high-octane. It might more clearly inform us on the magnitude of performance improvements that are available through the use of a high-octane fuel in a vehicle which has been optimized of that fuel. Or conversely, it could inform us of the performance degradation that will be experienced from using a low octane fuel in a vehicle designed for high octane fuel.

For this vehicle it appears that you are doing what I suggested in the Infinity report. (Although because of confusion in how the fuel specifications are given in Appendix D, I got confused trying to interpret the results.) I was hoping your data, when combined with the fuel testing data from the other vehicle performance evaluations, would show the performance detriments that may occur when an engine optimized for higher octane fuel is run on low octane fuel. It could also give information about using a lower octane fuel in an engine optimized for high octane relative to the performance of an engine/vehicle optimized for a lower octane number fuel using the low octane fuel. And finally, it could assess if there is any benefit to using a high-octane fuel in an engine optimized for low octane.

Partitioning these efficiency contributions of both engine technology and fuel specifications would be a significant contribution to the larger technical community, regulatory agencies, and the public in general."

Perhaps the level of energy flow partitioning I was hoping for is outside of the scope of the contract with NHTSA. If it is, fine, but I still think these data and the subsequent Autonomie simulation capabilities give ANL and unique opportunity to offer some quantification of the efficiency improvement potential for a wide array of advanced technology components that are being incorporated into new vehicles.

Reviewer 3

Prof. Douglas Nelson

Department of Mechanical Engineering, Virginia Tech

Comments on Toyota Camry report:

The ANL report documents vehicle testing and model development for the 2018 Toyota Camry XLE $2.5\mathrm{L}$

PFI/DI engine coupled to an eight-speed automatic transmission. This vehicle was select ed to evaluate these technologies and to develop models in support of NHTSA's CAFE work. Overall, the report is of high quality and achieves the objectives set out in the report. The following comments are intended to help improve the report.

The report should add an Executive Summary that clearly states the results of the report. The Conclusions should also be revised and extended to include what is significant about the results; does the work provide new and better data, models, and control? Does this engine have improved efficiency beyond previous versions of direct and port fuel injection engines? Does the Atkinson cycle used in a conventional vehicle rather than a hybrid have any issues with operation of the engine?

The given reference [8] does not seem to be available (yet?) to the public. The data provided in the report is of very high quality and high value, but the errors and uncertainty are not adequately addressed. The excellent repeatability of some data has been shown. Even if the details are provided in [8] a brief summary of the overall testing data quality/uncertainty should be included in the report.

Comments on Infiniti QX50 report

The ANL report documents vehicle testing and model development for the 2019 Infinity QX50 2.0L variable compression ratio (VCR) turbocharged engine coupled to a continuously variable transmission (CVT). This vehicle was selected to evaluate these technologies and to develop models in support of NHTSA's CAFÉ work. Overall, the report is of high quality and achieves the objectives set out in the report. The following comments are intended to help improve the report.

The Executive Summary should clearly state the results of the modeling and validation sections of the report. The Conclusions should also be revised and extended to include what is significant about the results; does the work provide new and better data, models, and control? Does this engine have improved efficiency beyond previous versions of direct and port fuel injection engines? Does the Atkinson cycle used in this conventional vehicle rather than a hybrid have any issues with operation of the engine? What are the advantages of VCR for efficiency vs performance? The given reference [4] does not seem to be available (yet?) to the public. The data provided in the report is of very high quality and high value, but the errors and uncertainty are not adequately addressed. The excellent repeatability of some data has been shown. Even if the details are provided in [4] a brief summary of the overall testing data quality/uncertainty should be included in the report.

Overall, the testing sections have good documentation and presentation of the complex interactions of

VCR, boost, DI and ignition timing. The following comments are provided in the order of the report, and are not in any order of significance. In several places in the vehicle comparison, the term "adjusted" fuel economy is used. The fuel economy results available from the EPA test car list (tcl) data (as referenced) are broadly understood to be unadjusted values that correspond to specific dive cycles and phases, while the label fuel economy available from fueleconomy.gov are adjusted. CAFE is based on unadjusted fuel economy directly available from the EPA test car list data. That tcl data does have a header that says RND_ADJ_FE, but that ADJ is not in the same context. If you use the term adjusted with respect to the tcl data, please very specifically define what the adjustment means in this context. Is it the weighting of the cold start and hot start phases 1 and 3 of the UDDS test results to get the FTP? Then why are HwFET results also (sometimes) referenced as adjusted? Please just be very clear about this term as there is a lot of confusion about CAFÉ vs Label fuel economy.

The mix of using superscripted numbers for both footnotes and references is a bit confusing – suggest using references in [#] format as in the other reports.

Comments on the Accord report

The ANL report documents vehicle testing and model development for the 2018 Honda Accord LX 1.5L turbocharged engine coupled to a continuously variable transmission (CVT). This vehicle was selected to evaluate these technologies and to develop models in support of NHTSA's CAFE work. Overall, the report is of high quality and achieves the objectives set out in the report. The following comments are intended to help improve the report.

The report should add an Executive Summary that clearly states the results of the report. The conclusions should also be revised and extended to include what is significant about the results; does the work provide new and better data, models, and control? Does this engine have improved efficiency beyond previous versions of turbocharged four-cylinder engines? Does the CVT have reduced losses in addition to improving the operation of the engine?

The given reference [8] does not seem to be available (yet?) to the public. The data provided in the report is of very high quality and high value, but the errors and uncertainty are not adequately addressed. The excellent repeatability of some data has been shown. Even if the details are provided in [8] a brief summary of the overall testing data quality/uncertainty should be included in the report.

Comments on Acura MDXSH

The ANL report documents vehicle testing and model development for the 2019 Acura MDX SH 3.0L VTEC engine coupled to a 7-speed dual clutch transmission and a 3- motor hybrid electric system. This AWD hybrid vehicle was selected to evaluate these technologies and to develop models in support of NHTSA's CAFE work. Overall, the report is of high quality and achieves the objectives set out in the report. The following comments are intended to help improve the report.

The Executive Summary should clearly state the results of the modeling and validation sections of the report. The Conclusions should also be revised and extended to include what is significant about the results; does the work provide new and better data, models, and control? Does this hybrid vehicle have improved engine efficiency beyond previous hybrids? Does the DCT with integrated motor have significant fuel consumption benefits? What are the advantages of rear motors for efficiency vs performance?

The given reference [4] does not seem to be available (yet?) to the public. The data provided in the report is of very high quality and high value, but the accuracy and uncertainty are not adequately addressed. The excellent repeatability of some data has been shown. Even if the details are provided in [4] a brief summary of the overall testing data quality/uncertainty should be included in the report.

Overall, the testing sections have good documentation and presentation of the complex interactions of hybrid strategy and components.

DOT HS 813 160 July 2021

U.S. Department of Transportation

National Highway Traffic Safety Administration

15320-070721-v2a