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A B S T R A C T   

The present paper discusses two fuzzy Surrogate Safety Metrics (SSMs) for rear-end collision, the Proactive Fuzzy 
SSM (PFS) and Critical Fuzzy SSM (CFS). The objective is to investigate their applicability for evaluating the real- 
time rear-end risk of collision of vehicles to support the operations of advanced driver assistance and automated 
vehicle functionalities (from driving assistance systems to fully automated vehicles). The proposed Fuzzy SSMs 
are evaluated and compared to other traditional metrics on the basis of empirical observations. To achieve this 
goal, an experimental campaign was organized in the AstaZero proving ground in Sweden. The campaign con-
sisted of two main parts: a car-following experiment with five vehicles solely driven by Adaptive Cruise Control 
(ACC) systems and a safety critical experiment, testing the response of the Autonomous Emergency Braking 
(AEB) system to avoid collisions on a static target. The proposed PFS is compared with the safe distance defined 
by the well-known Responsibility Sensitive Safety (RSS) model, showing that it can produce meaningful results in 
assessing safety conditions also without the use of crisp safety thresholds (like in the case of RSS). The CFS 
outperformed the well-known Time-To-Collision (TTC) SSM in the a-priori identification of the cases, where the 
tested vehicles were not able to avoid the collision with the static target. Moreover, results show that CFS at the 
time of the first deceleration is correlated with the velocity of the vehicle at the time of collisions with the target.   

1. Introduction 

It is estimated that more than 90 % of road accidents are due to 
human error (Critical Reasons for Crashes Investigated in the National 
Motor Vehicle Crash Causation Survey, 2018). The driving ability of 
human drivers can be compromised by fatigue, distraction and other 
causes (Fountas et al., 2019). For this reason, in the last decades, there 
has been strong political will to support the deployment of Advanced 
Driving Assistance Systems (ADAS) and Automated Vehicle (AV) func-
tionalities, taking partial or complete control of the driving operation in 
specific situations (SAE International, 2017). Vehicle automation and 
connectivity is expected to significantly contribute to traffic safety, 
network efficiency, environmental sustainability and equity in access to 
transportation for road users (The Future of Road Transport, 2019). 
Without waiting for full automation, ADAS such as the Forward 

Collision Warning (FCW) and the Autonomous Emergency Braking 
(AEB) systems can reduce the risk of collision of up to 50 % (Cicchino, 
2017). However, in reality, this assumption does not take into account 
the unknown number of accidents avoided due to the proactive 
perception of human drivers and their ability to successfully deal with 
challenging driving situations. Consequently, the safety impact of 
introducing increasing levels of vehicles’ automation is still very un-
certain. It is expected that automated controllers will certainly need time 
to be at least as safe as human drivers (Shladover, 2019). 

Prior to mass deployment, highly automated vehicles need to 
demonstrate their capability to drive safely and regulators are working 
to put in place the right tools for being able to verify this aspect. Char-
acterizing the safety level of an ADAS or AV controller, however, is not a 
trivial task. In addition, automated driving behavior should not be 
bounded to very conservative rules, as the traffic conditions can 
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significantly deteriorate (Mattas et al., 2019a) and the AV acceptance in 
the case of reduced traffic efficiency would be jeopardized. Further-
more, safety should not just be demonstrated at the end of the devel-
opment phase and prior to the introduction of the vehicle to the market 
but should hold for the entire vehicle lifetime. Given the expected 
frequent updates that the software governing vehicles’ operations will 
receive, a robust, as well as, flexible solution able to guarantee vehicle 
safety in all situations within its operational design domain (ODD) is 
required. 

A possible approach recently proposed is to define a set of analytical 
rules describing a safety envelope that a vehicle is requested to respect at 
any time in order not to be responsible for causing an accident. Different 
analytical frameworks for the vehicle safety envelope have been recently 
proposed by the industry (Shalev-Shwartz et al., 2017; Safety Force Field 
for Autonomous Vehicles, 2019). In addition, a number of different 
surrogate safety metrics (SSMs) exist in the literature (Laureshyn et al., 
2010) and could also be useful to define a safety envelope. SSMs have 
been used since the late’ 60 (Hyden, 1987; Hayward, 1971), to count the 
number of conflicts and predict the number of road accidents using 
either real (for traffic monitoring) or simulated (for impact assessment 
studies) vehicle trajectories. It has been shown that the number of 
conflicts is statistically correlated to the number of accidents (Tarko, 
2018). This is an important asset of SSMs, as accident data is often of 
poor quality (Mannering and Bhat, 2014). Moreover, SSMs are also used 
by vehicle controllers of AVs or ADAS to identify safety critical situa-
tions and react accordingly (Milanés et al., 2012). For an extensive re-
view please refer to (Mahmud et al., 2017; Mullakkal-Babu et al., 2017). 
It must be noted that traditional traffic conflict techniques have been 
developed to overcome the lack of good quality accident data and have 
relied on human observers (Laureshyn et al., 2010). Hence, many pa-
rameters that are not always available are often omitted. One of the most 
significant is the reaction time that is not taken into account by many of 
the existing surrogate safety metrics, and has been shown to be critical 
when it comes to safety (Li et al., 2017; Kuang et al., 2015). Assuming 
that the response time of an automated controller can be much faster 
and more consistent than that of a human driver, this is a significant 
limitation. Moreover, most SSMs represent the proximity to an accident 
and not the severity of the accident and the safe and unsafe situations are 
not clearly distinguished (Laureshyn et al., 2017). The classification is 
usually done with crisp thresholds, that are often arbitrary. For example, 
in the case of TTC the thresholds values used in the literature vary in the 
range [1.5,4] sec (Mahmud et al., 2018). This, and other shortcomings of 
traditional SSMs have been mentioned in the literature. For example, 
Kang et al. (Kuang et al., 2015) already discussed the arbitrary thresh-
olds, boundaries regarding relative speed and ignoring the reaction 
time. They have proposed a surrogate measure named Aggregated Crash 
Index (ACI) based on a tree structure that describes 8 different conflict 
types. They have validated their model based on data from a freeway 
section of Pacific Motorway, Australia. 

Those disadvantages may not be critical when the objective is to 
statistically estimate the number of accidents in a road section. Indeed, 
analytical relationships correlating the number of conflicts with the 
number of accidents on a specific road section have been statistically 
defined. However their applicability to new road designs or significant 
infrastructural modifications is still limited (Tarko, 2019). Therefore 
attempts have been made to define models that are not site specific 
(Zheng et al., 2019). However, when traffic conflict techniques are used 
to define a safety envelope around a vehicle to classify its safety in 
real-time, these limitations are no longer acceptable, as a potential error 
can be extremely dangerous. 

The scope of the paper is to present a comprehensive analytical 
framework for the assessment of the safety of ADASs and AVs for rear- 
end collisions (Mattas et al., 2018a), based on fuzzy logic, and to 
compare its performance with one of the recently proposed framework 
for safety envelope and a well-known and widely used surrogate safety 
metric using empirical observations. 

Fuzzy logic was introduced in the work of Zadeh (Zadeh (1965)), and 
has found applications in many fields, including accident modeling 
(Dimitriou and Vlahogianni, 2015). Based on this framework, two fuzzy 
SSMs have been developed, the Proactive Fuzzy Surrogate Safety Metric 
(PFS) and the Critical Fuzzy Surrogate Safety Metric (CFS) (Mattas et al., 
2019b). Fuzzy logic can bring significant added value for this type of 
analysis as it offers simple and flexible tools to cope with uncertainty. 
Counter intuitive crisp thresholds classifying situations to be certainly 
safe or unsafe are avoided. Different levels of safety are introduced, that 
can be evaluated and numerically handled using fuzzy arithmetic. 

The empirical observations have been collected from an ad-hoc 
experimental campaign organized in the AstaZero proving ground in 
Sweden (AstaZero, 2020). The campaign consists of two main parts: i) a 
car-following test involving five vehicles driven by Adaptive Cruise 
Control (ACC) systems (Makridis et al., 2020) and ii) a series of safety 
critical tests where the same vehicles use the Autonomous Emergency 
Braking (AEB) system to avoid collision with a static target. Additional 
tests were conducted to measure the hardest possible deceleration ca-
pabilities of the vehicles used. The first part was post-processed to create 
a synthetic database of events that can potentially become critical if the 
front vehicle performs a hard deceleration and it was used to assess the 
proactive metrics. The second part was used to directly assess the critical 
metrics. On the same empirical observations, apart from the proposed 
metrics, the authors implemented and tested the Responsibility Sensitive 
Safety Model (RSS) developed by Intel/Mobileye (Mobileye (2018)) on 
the first part, and the time to collision (TTC) metric, that is one of the 
most widely used critical SSMs in the literature (Mahmud et al., 2018; 
Laureshyn et al., 2016), on the second part. The SSMs are assessed based 
on individual vehicle behavior in experiments with a few vehicles. 
Therefore, in this stage no correlation can be made between conflicts 
and accident frequency. Such a study would not be trivial, considering 
the small number of vehicles with automated functionalities in the 
traffic networks today. 

The paper is organized as follows: in the next section the Fuzzy 
Surrogate Safety Metrics developed are presented. In section 3 time to 
collision (TTC) and Responsibility Sensitive Safety Model (RSS), the 
metrics to which the proposed fuzzy metrics will be compared are pre-
sented. The experimental campaign is described in section 4. The 
methodology used to compare the metrics on the empirical data is 
detailed in section 5. The results are presented in section 6. Finally, 
Section 7 presents our conclusion 

2. Fuzzy Surrogate Safety Metrics 

For two vehicles traveling in the same direction, the Fuzzy Surrogate 
Safety Metrics described in the present paper consider two critical dis-
tances, the maximum unsafe distance and the minimum safe distance, 
that will be defined later in the paper. Then, the fuzzy set “unsafe sit-
uation” is created as in Eq. (1). 

μA(d) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 , 0 ≤ d < dunsafe

0 , d ≥ dsafe

d − dsafe

dunsafe − dsafe
, dunsafe < d < dsafe

(1)  

where d is the inter-vehicle distance, dunsafe and dsafe the maximum un-
safe distance and the minimum safe distance, μA the membership 
function. Thus, a situation can be identified as certainly safe when the 
two vehicles are far enough or certainly unsafe when they are too close. 
Additionally, there is a margin where the vehicles can be unsafe with a 
membership value. For situations that are not entirely safe, a fuzzy in-
terval can be produced, representing the “unsafe distance”. The interval 
can be of type B or C as in Eqs. (2) and (3). Type B intervals are trape-
zoidal with their maximum membership value equal to 1, while Type C, 
are triangular with their maximum membership value less than 1. Both 
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are presented in Fig. 1. Different types of fuzzy intervals could be used as 
gaussian or sigmoid. The choice to use those specific shapes was made to 
facilitate further calculations. 

μB(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 , 0 ≤ x < dunsafe − d

0 , x ≥ dsafe − d

x − dsafe − d
dunsafe − dsafe

, dunsafe − d < x < dsafe − d

(2)  

μC(x) =

⎧
⎪⎨

⎪⎩

0 , x ≥ dsafe − d

x − dsafe − d
dunsafe − dsafe

, 0 ≤ x < dsafe − d
(3) 

The fuzzy intervals of type μC are subnormal, as the membership 
function never reaches the value 1. For this reason, new fuzzy intervals 
denoted μC’ are created as shown in Eq. 4, as the strong union of any of μc 
and a fuzzy singleton s where s(x) is 1 for x = 0 and zero when not. 
Those fuzzy intervals have the required attributes to be used as a fuzzy 
SSM. 

μC’(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 , x = 0

0 , x ≥ dsafe − d

x − dsafe − d
dunsafe − dsafe

, 0 < x < dsafe − d

(4) 

The produced fuzzy intervals have a number of attributes that are 

important for their function as surrogate safety metrics:  

• Support, namely he interval for which the membership function 
takes a non-zero value. The support of such fuzzy intervals is always 
finite, and represents the difference between the minimum safe dis-
tance and the actual inter-vehicle distance, hence can be used as a 
proxy of the severity of the situation.  

• Core, namely the interval for which the membership function takes 
the value 1. If the core of a fuzzy SSM is single value 0, there was no 
instance where the distance was equal or smaller to the maximum 
unsafe distance. For dangerous situations, the diameter of the core of 
a FSSM can be used as another proxy of the severity of the situation.  

• α-cuts: Any convex fuzzy set X can be defined by the α-cuts, Xα. For 
every real number α ∈ [0, 1], there is a crisp interval Xα(α), for which 
μ(x) ≥ α. The α-cuts can be interpreted as intervals of confidence 
(Hanss, 2020). Furthermore, the α-cuts are useful for fuzzy intervals 
addition using interval arithmetic (Moore and Lodwick, 2003). 

The Fuzzy SSMs developed this way are countably additive. Count-
able additivity is one of the criteria that a function should satisfy to be 
considered a measure (Measure Theory and Fine Properties of Functions, 
2019). This makes the comparison between large scenarios, composed 
by a big number of safe and unsafe instances, more straightforward. 

Two distances need to be defined, the maximum unsafe and mini-
mum safe distance, bringing up the question “What is a safe following 
distance?” . The Vienna Convention on Road Traffic defines a ‘safe 

Fig. 1. “Unsafe situation” fuzzy set and produced fuzzy intervals (a) type B, (b) type C.  
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distance’ as the distance such that “a collision between vehicles can be 
avoided if the vehicle in front performs an emergency brake” (Vanholme 
et al., 2013). However, there is also the following definition of traffic 
conflicts according to the Association for International Cooperation on 
Traffic Conflicts Techniques (Güttinger, 1984). “A traffic conflict is an 
observable situation in which two or more road users approach each other in 
space and time to such an extent that there is a risk of collision if their 
movements remain unchanged.” From the first definition, a situation is 
unsafe even if there is no imminent danger of accident, so it can be 
characterized as proactive safety. Meanwhile, according to the second 
definition a situation is unsafe if it is already critical and action must be 
taken to avoid the accident. Hence, SSMs can be categorized in proactive 
and critical safety metrics according to their formulation. When it comes 
to the safety analysis of different driving automation systems, or to their 
design, both critical and proactive surrogate safety metrics can be 
important. 

Therefore, two metrics have been developed, a Proactive Fuzzy 
Surrogate Safety Metric (PFS) and a Critical Fuzzy Surrogate Safety 
Metric (CFS). It is worth noticing that the two metrics concern rear-end 
collisions of two vehicles in car-following conditions. Therefore, the 
safety level of other traffic situations (e.g. vehicles cutting in from an 
adjacent lane, side-impacts or vehicles travelling in opposite directions) 
cannot be evaluated 

2.1. Proactive Fuzzy Surrogate Safety Metric 

Let two vehicles cf and cr traveling on the same lane with cf being the 
front vehicle and cr the rear in a car following situation. cr is obliged to 
keep enough distance so that if cf decelerates, cr he has enough time to 
perceive and react. This behavior is measured by the PFS. The formu-
lation of the maximum unsafe distance and the minimum safe distance 
are reported in Equations 5 and 6: 

dsafe(t) = ur(t)τ +
u2

r (t)
2br,comf

−
u2

f (t)
2bf ,max

(5)  

dunsafe(t) = ur(t)τ +
u2

r (t)
2br,max

−
u2

f (t)
2bf ,max

(6)  

with ur being the speed of the rear vehicle, uf the speed of the front 
vehicle, τ the reaction time of the rear vehicle, br,comf the comfortable 
deceleration of the rear vehicle, br,max the maximum deceleration of the 
rear vehicle and bf ,max the maximum deceleration of the leading vehicle. 
The front vehicle’s maximum deceleration must be considered at least as 
hard as the maximum deceleration of the rear vehicle. The assumption is 
that when the vehicle cf starts decelerating with the maximum possible 
deceleration, the vehicle cr continues driving with constant speed for 
time τ and then starts to decelerate with its comfortable deceleration. 
Both vehicles decelerate until they come to a stop, as this is the worst- 
case scenario. If the distance is enough for cr to stop and avoid the 
collision, then the distance is ‘certainly’ safe. On the other hand, if 
vehicle cr after reaction time decelerates as hard as possible and still 
does not avoid an impact, the distance is ‘certainly’ unsafe. 

2.2. Critical Fuzzy Surrogate Safety Metric 

According to the second definition of an unsafe situation, the CFS 
identifies situations where a collision is imminent and action is neces-
sary to avoid an accident. The formulation of the maximum unsafe 
distance and the minimum safety distance are presented in Equations 7 
and 12: 

a’
r(t) = max

(
ar(t), − br,comf

)
(7)  

ur(t + τ) = ur a’
r(t) (8) 

If ur(t + τ) ≤ uf (t): 

dsafe(t) = dunsafe(t) =
(
ur(t) − uf (t)

)2

2a’
r(t)

(9)  

Else if ur(t + τ) > uf (t): 

dnew =

(
(ur(t) + ur(t + τ))

2
− uf (t)

)

τ (10)  

dsafe(t) = dnew +

(
ur(t) + a’

r(t)τ − uf (t)
)2

2br,comf
(11)  

dunsafe(t) = dnew +

(
ur(t) + a’

r(t)τ − uf (t)
)2

2br,max
(12)  

with ur the speed of the rear vehicle, uf the speed of the front vehicle, τ 
the reaction time of the rear vehicle, br,comf the comfortable deceleration 
of the rear vehicle, br,max the maximum deceleration of the rear vehicle 
and bf ,max the maximum deceleration of the leading vehicle. The front 
vehicle’s maximum deceleration must be at least as hard as the 
maximum deceleration of the rear vehicle or harder. The assumption is 
that if the vehicle cf keeps constant speed, the vehicle cr continues 
driving with constant acceleration for time τ, and then starts to decel-
erate with its comfortable deceleration. If the distance is enough for cr to 
stop before crashing, the distance is certainly safe. On the other hand, if 
the vehicle cr after reaction time decelerates as hard as possible and still 
does not avoid an impact, the distance is certainly unsafe. The constant 
acceleration assumption for the follower during the reaction time sep-
arates the cases of the follower already accelerating or decelerating, 
with the former being more dangerous than the latter. 

3. Benchmark Safety Metrics 

The performance of the two FSSMs has been assessed by comparing 
them with two well know safety metrics on empirical data. In particular, 
the PFS metric was compared to the safe distance requirement of the 
Responsibility Sensitive Safety Model (RSS), while the CFS metric has 
been compared with the well-known Time to Collision (TTC). In the next 
section, these tow metrics are briefly presented for the reader’s 
convenience. 

3.1. Time to Collision (TTC) 

TTC identifies possible conflicts by calculating the time it would take 
for two vehicles to collide if they would continue their movement with 
same constant speed as shown in Equation 13 (Driver Metrics, 2020): 

TTC =
d

Δu
(13)  

with d being the distance between the two vehicles and Δu their relative 
speed. The calculation can only happen when the rear vehicle is faster 
than the front vehicle. On the basis of the TTC value, a situation is 
considered unsafe if TTC is lower than a crisp threshold quantified from 
the literature in the range [1.5,4] sec (Mahmud et al., 2018). 

3.2. Responsibility Sensitive Safety Model (RSS) 

RSS provides the mathematical formulation of the duty of care. In 
other words, an AV abiding to the RSS rules could be involved in an 
accident, but according to the formulation, cannot be responsible for it. 

The formulation of the safe longitudinal distance of RSS can be used 
as a proactive safety metric, classifying safe and potentially unsafe sit-
uations. Let two vehicles cr and cf traveling in the same direction, one 
before the other with cf being in front. The inter-vehicle distance can be 
considered as safe only if assuming that cf decelerates abruptly to come 
to a stop, cr has enough space to avoid the collision. Since cr cannot react 
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before a time equal to its reaction time, the worst case scenario is that it 
has been accelerating with its maximum acceleration. So, the minimum 
safe distance is formulated in Equation 14 (Shalev-Shwartz et al., 
2017): 

dmin =

[

urτ +
1
2
amax,accelτ2 +

(
ur + τamax,accel

)2

2amin,brake
−

u2
f

2amax,brake

]

(14)  

with ur being the speed of the rear vehicle, uf the speed of the front 
vehicle, τ the reaction time of the rear vehicle, amax,accel the maximum 
acceleration of the rear vehicle, amin,brake the deceleration of the rear 
vehicle and amax,brake the maximum deceleration of the leading vehicle. If 
the rear vehicle is inside the unsafe distance it must decelerate at least 
with amin,brake. 

In a more recent publication based on the RSS, the Automatic Pre-
ventive Braking (APB) system was proposed (Shalev-Shwartz et al., 
2018). The APB should be an ADAS that would intervene when a vehicle 
driven by a human keeps unsafe distance to the front vehicle. The APB 
would decelerate the vehicle with a constant jerk until it is stopped or 
out of the unsafe distance. The deceleration should be milder than that 
of an AEB, so the system can operate for higher speeds without requiring 
frequent emergency braking maneuvers. Moreover, the safe distance 
formula is changed as the stopping distance takes into account also a jerk 
limit. The new stopping distance of the rear vehicle is described on Eqs. 
15 and 16 (Shalev-Shwartz et al., 2018): 

dstop =

[

u0T +
1
2
a0T2 −

1
6

jmaxT3
]

+

(

u0 + a0T − 1
2jmaxT2

)2

2amin,brake
(15)  

T = min(
a0 + amin,brake

jmax
,

a0 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2

0 + 2jmaxT2
√

jmax
) (16)  

with dstop being the stopping distance, u0 and a0 the velocity and ac-
celeration of the rear vehicle, jmax the maximum absolute jerk, amin,brake 

the deceleration of the rear vehicle and T the time it takes for the vehicle 
either to reach the amin,brake or to stop. 

4. Experimental campaign 

The experimental campaign has been carried out in the AstaZero 
proving ground in Sweden (AstaZero, 2020). The campaign consisted of 
two main parts: a car-platoon of five vehicles driven by Adaptive Cruise 
Control (ACC) systems and a number of safety related critical tests where 
the same vehicles use the Autonomous Emergency Braking (AEB) system 
to avoid collision with a static target. Additional tests were conducted to 
measure the hardest possible deceleration of each vehicle imposed by a 
human driver. The data acquisition system used was the RT-Range S 
multiple target ADAS measurements solution by OXTS (DGPS Archives, 
2019) with speed horizontal accuracy around 0.01 m/s and horizontal 
accuracy for the vehicles’ position around 0.02 m. 

4.1. Adaptive cruise control platooning 

Five vehicles were driving in a car-platoon formation around the 
rural road in AstaZero for 27 laps. All vehicles were driven by ACC and 
the leading vehicle kept constant desired speed of 70 km/h for 6 laps, 
while creating small perturbations accelerating and decelerating using 
only the ACC settings for the rest of the 21 laps. The perturbations were 
performed between 50 km/h and 100 km/h. More information on the 
platooning experiment, the ACC behavior, reaction time and instability 
of the fleet can be found in (Makridis et al., 2020). 

4.2. Emergency braking 

The test of the AEB involved a straight line of road were each of the 

five vehicles was manually driven to approach a soft target with constant 
speed, until the AEB applied braking in the attempt to avoid colliding 
with the target. Every vehicle has been tested by approaching the target 
with constant speed of 20, 42, 50 and 60 km/h. These tests have been 
repeated three times. In the first case the target vehicle was perfectly 
aligned with the trajectory of the vehicle under test. In the second and 
third cases the position of the target vehicle had an offset of 1 m with 
respect to the position of the vehicle under test, to the left or to the right. 
The resulted emergency braking database consisted of 49 experiments 
(not all the combinations were performed for the five vehicles under 
test). In 10 out of 49 cases, the vehicle failed to stop before reaching 
contact with the static target, leading to a collision. In one of these cases 
the safety driver, when the imminent collision was unavoidable, had to 
execute an emergency evasion maneuver to avoid serious damages to 
the vehicle. 

4.3. Vehicles’ braking capability 

The same vehicles were tested for their manual braking capabilities 
by accelerating from 0 km/h to 40 km/h, 80 km/h and 120 km/h and 
then decelerating manually as hard as possible, to model a driver per-
forming an emergency braking. 

The braking capability of the vehicles was measured to be used in the 
validation process and it was found to be similar for all five vehicles. 
This can be seen in Fig. 2, which shows the relationship between the 
stopping distance and the velocity of each vehicle at the beginning of the 
deceleration for both AEB and manual braking. Moreover, it was 
observed that the vehicles achieve stronger deceleration rates for 
manual braking than for emergency braking. In the first case, the ve-
hicles reached on average 12 m/s2 maximum deceleration and average 
jerk value of approximately 30 m/s3, while for AEB, the corresponding 
values of deceleration and jerk were 9 m/s2 and 20 m/s3 respectively. It 
is worth noting that the experiment was carried out under ideal condi-
tions, inside a test track with perfect road surface and involving well- 
maintained high-end vehicles. The maximum deceleration was on 
average 12 m/s2 and the maximum jerk 30 m/s2. For real-world con-
ditions, further investigation might be needed to adjust the above- 
mentioned values accordingly. 

Furthermore, in Fig. 2a) and b), two physical models of estimating 
the stopping distance based on the initial speed are shown against the 
data. On the green line, the stopping distance is calculated only using the 
maximum deceleration value, assuming infinite jerk. This assumption is 
made by many microsimulation models (Gipps, 1981; Kesting et al., 
2010), SSMs like the DSS (Japan Society of Traffic Engineers, 2005), the 
RSS safe distance shown in Eq. 14, and in the safe and unsafe distance for 
both proposed Fuzzy SSMs. This assumption of no minimum jerk 
boundary results in underestimating the stopping distance because in 
reality the deceleration at the first instances is softer and takes a short 
but not negligible time to reach its maximum value. The second physical 
model, represented by the blue line takes into account also the 
maximum negative jerk capability, similarly to the RSS for APB 
formulation in Eq. 15 and fits the observed values much better. It has to 
be noted that AEB in most cases works for speeds up to 20 m/s, so there 
were no data for higher speeds. When AEB will be available for higher 
speeds the behavior may be different to what is presented in Fig. 2 a), 
where it is only assumed that the maximum deceleration and jerk would 
not change. 

5. Benchmarking methodology 

In the present section, the methodology adopted to compare the two 
sets of safety metrics is described. 

5.1. Synthetic collision courses 

The value of PFS shows the potential of an impact and its severity if 
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the leader vehicle decelerates sharply. To test this against real data, a 
leader vehicle would have to perform an emergency braking in front of a 
following ACC vehicle, on many different scenarios. However, this could 
lead to destructive tests, bringing the vehicles to actual collision. This 
was not possible or available in the described experimental campaign. 
Therefore, synthetic emergency braking decelerations are simulated 
based on the ACC platoon data and the hard decelerations observed, to 
recognize potentially unsafe situations. 

Each vehicle pair of leader and follower is investigated separately. 
Hence, the experiment includes 4 pairs of leader and follower vehicles 
according to the experimental description provided above. The stopping 
distance models using the maximum deceleration and average jerk were 
used to simulate possible severe decelerations from the front vehicle of 
each pair. The leader vehicle’s stopping distance is modelled according 
to the hardest manual braking. Then the corresponding reaction from 
the rear vehicle was modelled assuming the AEB activation. Finally, the 
distance travelled by the rear vehicle for the initial 0.2 s is added to take 
into account an assumed reaction time of the vehicle. 

This process was done for every instance of the platooning data, and 
the cases in which the vehicles would collide according to the simulated 
braking are considered unsafe. This is just an estimation of the actual 
safety, applied in post process and using detailed data on the braking 

capabilities of each vehicle. It cannot be applied real time, but it can 
provide a benchmark for the comparison of the safety metrics under 
assessment. Out of 257,384 cases, 1,510 resulted to be unsafe, as the 
distance was not enough for the rear vehicle to react. The same calcu-
lations have been carried out for the rear vehicle decelerating with 
maximum deceleration of 3 m/s2 and 6 m/s2 to identify how hard a 
deceleration is required at any instance from the rear vehicle in the case 
of an emergency braking by the front. 

5.2. Model parameters 

For both RSS and PFS safety critical distances, the reaction time of 
the rear vehicle is an important input. For the ACC platooning, the re-
action time of the controller can be estimated by correlating a shifted 
series of the input for the controller (namely the relative velocity and 
distance of the vehicles), to the output of the controller (namely the 
acceleration). In the literature, the reaction time of commercially- 
available ACC systems is estimated to be close to 1 s or even higher 
(Makridis et al., 2018). However, to the best of the authors’ under-
standing, this is a decision of the manufacturers seeking a comfortable 
travelling experience for the passengers, and not a constraint of the 
software or mechanics of the system. Hence, for safety critical situations, 
especially considering future automated driving systems, the control-
ler’s reaction can be faster, so the reaction time value used in the present 
paper has been set to 0.2 s. 

Another input required for both RSS and PFS calculation is the 
vehicle deceleration. amax,brake (for RSS) and bf ,max (for PFS), both 
represent the maximum deceleration capability of the vehicle in front. 
This is assumed to be equal to the aforementioned average deceleration 
value of the manual braking observed, which is 12 m/s2. For PFS, br,comf 

and br,max represent the maximum comfortable deceleration and the 
maximum possible deceleration that the vehicle can achieve. ACC 
controlled vehicles have been observed not to use decelerations higher 
than 3 m/s2, which is also a value used in the existing literature (Mattas 
et al., 2018b). For this reason this value is used as br,comf as it can be 
argued that it is a good estimation of a boundary for comfortable 
deceleration. The br,max is assumed to be equal to the average deceler-
ation value of the AEB observed, which is 9 m/s2. 

For the RSS, only one deceleration value is used for the rear vehicle, 
the amin,brake, and its value is not specified by the developers of the model 
(Shalev-Shwartz et al., 2017). It is both the deceleration used for the 
evaluation of the safe distance, and the deceleration applied to the rear 
vehicle if the inter-vehicle distance becomes unsafe. Hence, it can be 
argued that a realistic value of maximum deceleration to be used to 
assess safety, as for br,max, can be 9 m/s2. However, taking into account 
that RSS and the derivative APB system are according to the authors 
designed to be proactive and not to force very hard decelerations that 
would maybe create unsafe situations to the vehicles upstream, a more 
comfortable deceleration of 3 m/s2 as per the br,comf was also used and 
two versions of the RSS model, RSS1 and RSS 2 were tested, using 
amin,brake equal to 9 m/s2 and 3 m/s2 respectively. Two more models are 
used, APB 1 and APB 2, based on the more recent definition of RSS safe 
distance that takes into account the jerk (Shalev-Shwartz et al., 2018). 
The jerk value is estimated to be 20 m/s3 as observed from the emer-
gency braking experiments and the amin,brake equal to 9 m/s2 and 3 m/s2 

as for RSS 1 and RSS 2. All the parameter values used are presented in 

Fig. 2. Stopping distance relative to initial speed for a) AEB, b) 
manual braking. 

Table 1 
SSM parameters for proactive safety.  

Model τ amin,brake  amax,brake  jerk br,comf  br,max  bf ,max  

PFS 0.2 – – – 3 m/s2 9 m/s2 12 m/s2 

RSS 1 0.2 9 m/s2 12 m/s2 – – – – 
RSS 2 0.2 3 m/s2 12 m/s2 – – – – 
APB 1 0.2 9 m/s2 12 m/s2 20 m/s3 – – – 
APB 2 0.2 3 m/s2 12 m/s2 20 m/s3 – – –  
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Table 1. 
For the calculation of CFS, the reaction time of the controller is 

assumed to be 0.2 s and the decelerations br,comf and br,max 3 m/s2 and 9 
m/s2respectively. The assumptions are the same as in the case of the 
PFS. For the calculation of TTC there are no parameter values to be 
assumed. 

5.3. Examining the suitability of SSMs 

5.3.1. Proactive fuzzy surrogate safety metric 
For the Proactive SSMs, there is a need to correctly identify situations 

that are potentially dangerous. Using the synthetic emergency breaking, 
PFS and all the RSS derivative formulas have been used to classify the 
situations into safe and unsafe. The accuracy and precision of the clas-
sification are used to evaluate the different models. For the PFS metric, 
for the sake of comparison, every case that is unsafe with membership 
value larger or equal to 0.95 is considered unsafe and all others are safe, 
creating a threshold value and denoted as PFS 0.95. Afterwards, the 
complete spectrum of PFS membership value was shown against the 
result of the synthetic collision courses with different deceleration 
values, to present the advantage of using a fuzzy SSM. 

5.3.2. Critical fuzzy surrogate safety metric 
The CFS identifies conditions where the collision is imminent. As 

such it will be examined using the trajectories of the experiments where 
vehicles used AEB in front of a static target and will be compared to the 
TTC. For the Critical SSMs correct and timely identification of danger 
and activation of emergency braking is desirable. The time of activation 
of the AEB for every experiment was identified in the data. The critical 
safety metrics CFS and TTC were evaluated at that instance. The capa-
bility of each metric to predict the outcome was investigated. After-
wards, for the cases were the collision was not avoided, the crash 
severity was assumed to be relative to the speed of the vehicle at the 
moment of collision. That was correlated to the CFS core and the TTC 
value, to examine any possible indications of accident severity. 

6. Results 

6.1. Proactive fuzzy surrogate safety metric 

From the synthetic emerging braking, every instance of car following 
is classified as safe or unsafe. As already mentioned, this resulted into 
255,874 cases classified as safe and 1,510 classified as unsafe. Then all 
the instances were evaluated with the use of PFS, RSS 1, RSS 2, APB 1 
and APB 2. The rate of true positives and true negatives for each model is 
presented in Table 2. The models RSS 2 and APB 2, using amin,brake equal 
to 3 m/s2 are shown to be very conservative, identifying unsafety on the 
larger part of the experiment. RSS 1 and PFS 0.95 models had a small 
false positive rate of 0.02 % and 0.87 % respectively. However, there 
existed a large amount of false negatives, classifying a situation to be 
safe while in fact it was unsafe, as only 72.85 % unsafe cases were 
correctly classified by the RSS 1 and 94.97 % by the PFS 0.95. This is 
related to the fact that both metrics do not take into account the jerk on 
the deceleration and underestimate the effective safety distance. 

Finally, APB 1 correctly classified all the unsafe situations while it 

misclassified 2.59 % of the safe ones, as the maximum jerk is taken into 
account. It must be noted that the model of the simulation of the stop-
ping distance used to create the benchmark of safe and unsafe situations 
is very similar to the logic used for APB 1. So, the results of APB are not 
very representative. Also, the relatively high amount of false positives is 
due to the fact the RSS stopping distance assumes the vehicle acceler-
ating with its maximum acceleration during the reaction time, which is 
not always the case. Additionally, according to the APB system, a vehicle 
that finds itself in unsafe distance must decelerate at least with 
amαx,brake, so even with APB 1 the vehicle should decelerate with 9 m/s2. 
This would be more similar to the AEB and not really proactive. 
Otherwise, according to the APB 2 it would decelerate comfortably for 
too many cases. For any other parameter value between 3 and 9 m/s2 

there will be a tradeoff between decelerating very hard or very often. 
Situations may be misclassified because of small differences on the 

reaction, as in the case for PFS 0.95, or because of the lack of jerk, as in 
the case of RSS 1, or due to unrealistic accelerations during reaction time 
as for the APB 1. This shows some of the problems related to the use of 
safety metrics adopting crisp thresholds. The proposed PFS metric is 
fuzzy to avoid the use of thresholds such as the one used above. In Fig. 3 
all the situations are classified according to the deceleration needed by 
the rear vehicle to avoid an accident in case of hard deceleration of the 
front vehicle. The different distributions respectively refer to the cases 
where deceleration of 3 m/s2 is sufficient, when the deceleration needed 
is between 3 m/s2 and 6 m/s2, between 6 m/s2 and 9 m/s2 and finally 
over 9 m/s2 which are the most dangerous conditions. It is shown that 
even without taking into account the jerk, the majority of the really 
dangerous situations were identified to be unsafe with degree of truth 
more than 0.935, with few outliers going down to 0.88 (rightmost dis-
tribution in the Figure). Totally safe situations where mostly identified 
as such, with outliers going up to 0.2 (leftmost distribution in the 
Figure). In the two cases where not extremely hard accelerations are 
needed, it is shown that again PFS provides a meaningful comparison, 
with the milder cases having median value of 0.53 and maximum of 
0.77, while the harder ones had median value of 0.86 and minimum of 
0.70. Moreover, this result is in agreement with the diamond shaped 
severity hierarchy proposed by Svensson (Svensson (1998)). The events 
of absolute safety are not the most frequent in driver interactions, as 
drivers accept “medium severity” risks, to facilitate traffic flow. 

This attribute of the PFS can be very useful. The reaction of the 
system doesn’t have to be too hard and the system does not need to react 
too often as the reaction can be scaled as well, imposing decelerations 
proportional to the PFS degree of truth, or even bounding the maximum 
acceleration for situations that are identified as unsafe with a small 
degree of truth. 

6.2. Critical fuzzy surrogate safety metric 

For each case, the instant in which the AEB started to decelerate was 
identified and both CFS and TTC were calculated. In Fig. 4 for each case, 
the CFS and TTC values are presented. The x-axis represents the 
maximum deceleration achieved by the vehicle. The green dots repre-
sent the tests in which the vehicle managed to stop before reaching the 
target, while the red “x” markers represent the tests in which the vehicle 
collided with the static target. The CFS correctly predicted all cases 
where there was a contact with the static target, having a membership 
value of 1, using only information at the beginning of the deceleration. 
Moreover, there have been cases with CFS membership value of 1 or 
very close, for which the vehicle managed to stop before reaching the 
target, but for all of them the vehicle managed to reach decelerations 
harder than 9 m/s2, which was the assumed value. Furthermore, from 
the corresponding diagram of the TTC values at the time of the AEB 
activation, no such correlation is observed, as there have been cases 
where the deceleration started at TTC 0.4 s and the contact was avoided, 
while for cases when the deceleration started with TTC more than 0.8 s it 
wasn’t avoided. 

Table 2 
Accuracy for proactive SSMs on classifying the trajectory data.   

Cases RSS 1 RSS 2 APB 1 APB 2 PFS 
0.95 

True 
Negative 
Rate 

255874 99.98 
% 

13.93 % 97.41 % 15.76 % 99.13 
% 

True Positive 
Rate 

1510 72.85 
% 

100.00 
% 

100.00 
% 

100.00 
% 

94.97 
%  
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Fig. 3. PFS membership value for different cases of decelerations needed.  

Fig. 4. Value of CFS (a) and TTC (b) at time of AEB activation to maximum deceleration of each experiment. Green dots represent the tests where the vehicle was 
able to stop before reaching the target while red crosses represent the ten cases in which the vehicles collided with the target (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article). 

Fig. 5. Vehicles velocity at contact scatter plot with the CFS core (a) and with the TTC value (b) at time of AEB activation.  
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Furthermore, the fuzzy interval developed and used as a safety 
metric, apart from the membership value, has other attributes as the 
core and the support that hold information about the severity of a po-
tential conflict. For nine out of the ten cases of the vehicle colliding with 
the static target, the velocity at the time of contact can be gathered from 
the data (as already mentioned, in one of the cases the driver steered 
away from the target to avoid the collision). For each of the nine cases, 
the diameter of the core of the CFS calculated at the first instance of 
deceleration is correlated to the velocity of the vehicle at the moment of 
the collision. Results are reported in Fig. 5 (a). Fig. 5 (b) displays the 
respective velocity at contact over the TTC value at the time of AEB 
reaction. For the TTC, the points are more scattered and in any case the 
pattern is counterintuitive because for the highest collision velocities the 
TTC was larger, indicating less dangerous situations. The correlation 
between the CSF core and the collision speed provide an important 
insight that can be used to further assess the safety of automated driving 
systems. 

7. Conclusions 

The present paper introduces two fuzzy Surrogate Safety Metrics 
(SSMs) for rear-end collision, the Proactive Fuzzy Surrogate Safety 
Metric (PFS) and the Critical Fuzzy Surrogate Safety Metric (CFS) and 
assess their performance. The distinction is based on two different def-
initions of safety. Critically unsafe is considered to be a condition in 
which an evasive maneuver is required in order to avoid an accident. 
Proactively unsafe is considered to be a situation in which if the front 
vehicle starts an emergency deceleration, the rear vehicle will not have 
enough space to perceive and react to the danger without an accident. 
The fuzzy SSMs have been proposed and investigated on synthetic data 
in (Mattas et al., 2019b). 

The study investigates the applicability of the two metrics for 
assessing the safety level of automated functionalities or AV controllers, 
both during system development and controller design. To achieve this 
goal, an experimental campaign was organized in the AstaZero proving 
ground in Sweden. The campaign consisted of two main parts: a car- 
following experiment including five vehicles solely driven by their 
Adaptive Cruise Control (ACC) system and a number of experiments to 
test the performance of the Autonomous Emergency Braking (AEB) 
system implemented in the vehicles to avoid collision with a static 
target. Additional tests were conducted to measure the hardest possible 
deceleration of each vehicle, imposed by a human driver. 

The first part was used to assess the performance of the PFS, in 
comparison with four different implementations of the Responsibility 
Sensitive Safety model. Results show that adopting crisps thresholds to 
classify safe and unsafe conditions can produce reasonable results. 
However, there is always a non-negligible amount of false positive and 
false negative classifications, leading to problems if used for vehicle 
controllers. On the contrary, PFS shows superior classification capabil-
ities, and its characteristics based on fuzzy logic would not require the 
vehicle to decelerate very sharply or very often. 

The second part of the campaign was used to assess the performance 
of the CFS in comparison with the TTC. The CFS was able to recognize all 
10 occurrences in which the vehicles collided with the target, while the 
TTC was not. Moreover, the CFS demonstrated additional attributes as 
its core holds information about the severity of a potential conflict. Both 
features make the CSF suitable to assess the safety of advanced driving 
assistance and automation systems. 

In the future, further investigation of the CFS and PFS attributes on 
real-life data should be carried out, using also moving targets. Moreover, 
an investigation on the use of the maximum jerk in the calculation of CFS 
and PFS can be carried out, as it has been observed that it has significant 
influence on the stopping distance. Finally, a fuzzy controller can be 
developed using PFS and CFS for carrying out different automated 
functionalities safely and efficiently. 
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