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Key Messages
1. Climate change impacts on ecosystems reduce their ability to improve water quality and regulate  
 water flows.

2. Climate change, combined with other stressors, is overwhelming the capacity of ecosystems to  
 buffer the impacts from extreme events like fires, floods, and storms.

3. Landscapes and seascapes are changing rapidly, and species, including many iconic species,  
 may disappear from regions where they have been prevalent or become extinct, altering some  
 regions so much that their mix of plant and animal life will become almost unrecognizable. 

4. Timing of critical biological events, such as spring bud burst, emergence from overwintering, and  
 the start of migrations, has shifted, leading to important impacts on species and habitats.

5. Whole system management is often more effective than focusing on one species at a time,  
 and can help reduce the harm to wildlife, natural assets, and human well-being that climate  
 disruption might cause. 

ECOSYSTEMS, 
BIODIVERSITY, AND ECOSYSTEM SERVICES8

Climate change affects the living world, including people, 
through changes in ecosystems, biodiversity, and ecosystem 
services. Ecosystems entail all the living things in a particular 
area as well as the non-living things with which they interact, 
such as air, soil, water, and sunlight.1 Biodiversity refers to 
the variety of life, including the number of species, life forms, 
genetic types, and habitats and biomes (which are characteristic 
groupings of plant and animal species found in a particular 
climate). Biodiversity and ecosystems produce a rich array of 
benefits that people depend on, including fisheries, drinking 
water, fertile soils for growing crops, climate regulation, 
inspiration, and aesthetic and cultural values.2 These benefits 
are called “ecosystem services” – some of which, like 
food, are more easily quantified than others, such as 
climate regulation or cultural values. Changes in many 
such services are often not obvious to those who 
depend on them.

Ecosystem services contribute to jobs, economic 
growth, health, and human well-being. Although 
we interact with ecosystems and ecosystem 
services every day, their linkage to climate change 
can be elusive because they are influenced by so 
many additional entangled factors.3 Ecosystem 
perturbations driven by climate change have direct 
human impacts, including reduced water supply and 
quality, the loss of iconic species and landscapes, 
distorted rhythms of nature, and the potential for 
extreme events to overwhelm the regulating services 
of ecosystems. Even with these well-documented 

ecosystem impacts, it is often difficult to quantify human 
vulnerability that results from shifts in ecosystem processes 
and services. For example, although it is more straightforward 
to predict how precipitation will change water flow, it is much 
harder to pinpoint which farms, cities, and habitats will be at 
risk of running out of water, and even more difficult to say how 
people will be affected by the loss of a favorite fishing spot 
or a wildflower that no longer blooms in the region. A better 
understanding of how a range of ecosystem responses affects 
people – from altered water flows to the loss of wildflowers 
– will help to inform the management of ecosystems in a way 
that promotes resilience to climate change.

Forests absorb carbon dioxide and provide many other ecosystem services, 
such as purifying water and providing recreational opportunities.
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Key Message 1: Water

Climate change impacts on ecosystems reduce their ability to  
improve water quality and regulate water flows.

Climate-driven factors that control water availability and 
quality are moderated by ecosystems. Land-based ecosystems 
regulate the water cycle and are the source of sediment and 
other materials that make their way to aquatic ecosystems 
(streams, rivers, lakes, estuaries, oceans, groundwater). Aquatic 
ecosystems provide the critically important services of storing 
water, regulating water quality, supporting fisheries, providing 
recreation, and carrying water and materials downstream 
(Ch. 25: Coasts). Humans utilize, on average, the equivalent of 
more than 40% of renewable supplies of freshwater in more 
than 25% of all U.S. watersheds.4 Freshwater withdrawals are 
even higher in the arid Southwest, where the equivalent of 
76% of all renewable freshwater is appropriated by people.5 
In that region, climate change has likely decreased and altered 
the timing of streamflow due to reduced snowpack and lower 
precipitation in spring, although the precipitation trends are 
weak due to large year-to-year variability, as well as geographic 
variation in the patterns (Ch. 3: Water; Ch. 20: Southwest).6 
Depriving ecosystems of water reduces their ability to provide 
water to people as well as for aquatic plant and animal habitat 
(see Figure 8.1).

Habitat loss and local extinctions of fish and other aquatic 
species are projected from the combined effects of increased 
water withdrawal and climate change.7 In the U.S., 47% of 
trout habitat in the interior West would be lost by 2080 
under a scenario (A1B) that assumes similar emissions to the 
A2 scenario used in this report (Ch. 1: Overview, Ch. 2: Our 
Changing Climate) through 2050, and a slow decline thereafter.8

Across the entire U.S., precipitation amounts and intensity and 
associated river discharge are major drivers of water pollution 
in the form of excess nutrients, sediment, and dissolved organic 

carbon (DOC) (Ch. 3: Water).9 At high concentrations, nutrients 
that are required for life (such as nitrogen and phosphorus) can 
become pollutants and can promote excessive phytoplankton 
growth – a process known as eutrophication. Currently, many 
U.S. lakes and rivers are polluted (have concentrations above 
government standards) by excessive nitrogen, phosphorus, or 
sediment. There are well-established links among fertilizer use, 
nutrient pollution, and river discharge, and many studies show 
that recent increases in rainfall in several regions of the United 
States have led to higher nitrogen amounts carried by rivers 
(Northeast,10,11 California,12 and Mississippi Basin13,14). Over the 
past 50 years, due to both climate and land-use change, the 
Mississippi Basin is yielding an additional 32 million acre-feet 
of water each year – equivalent to four Hudson Rivers – laden 
with materials washed from its farmlands.15 This flows into the 
Gulf of Mexico, which is the site of the nation’s largest hypoxic 
(low oxygen) “dead” zone.4 The majority of U.S. estuaries are 
moderately to highly eutrophic.16

Links between discharge and sediment transport are well 
established,17 and cost estimates for in-stream and off-stream 
damages from soil erosion range from $2.1 to $10 billion 
per year.18,19 These estimates include costs associated with 
damages to, or losses of, recreation, water storage, navigation, 
commercial fishing, and property, but do not include costs of 
biological impacts.18 Sediment transport, with accompanying 
nutrients, can play a positive role in the shoreline dynamics 
of coastlines and the life cycles of coastal and marine plants 
and animals. However, many commercially and recreationally 
important fish species such as salmon and trout that lay their 
eggs in the gravel at the edges of streams are especially sensitive 
to elevated sediment fluxes in rivers.20 Sediment loading in 
lakes has been shown to have substantial detrimental effects 

on fish population sizes, community composition, 
and biodiversity.21

Dissolved organic carbon (DOC) fluxes to rivers and 
lakes are strongly driven by precipitation;22 thus 
in many regions where precipitation is expected 
to increase, DOC loading will also increase. 
Dissolved organic carbon is the substance that 
gives many rivers and lakes a brown, tea-colored 
look. Precipitation-driven increases in DOC 
concentration not only increase the cost of water 
treatment for municipal use,23 but also alter 
the ability of sunlight to act as nature’s water 
treatment plant. For example, Cryptosporidium, a 
pathogen potentially lethal to the elderly, babies, 
and people with compromised immune systems, is 
present in 17% of drinking water supplies sampled ©
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in the United States.24 This pathogen is inactivated by doses 
of ultraviolet (UV) light equivalent to less than a day of sun 
exposure.25 Similarly, UV exposures reduce fungal parasites 
that infect Daphnia, a keystone aquatic grazer and food source 
for fish.26 Increasing DOC concentrations may thus reduce the 
ability of sunlight to regulate these UV-sensitive parasites. 

Few studies have projected the impacts of climate change 
on nitrogen, phosphorus, sediment, or DOC transport from 
the land to rivers. However, given the tight link between 
river discharge and all of these potential pollutants, areas 
of the United States that are projected to see increases 
in precipitation, and increases in intense rainfalls, like the 
Northeast, Midwest, and mountainous West,27 will also see 
increases in excess nutrients, DOC, and sediments transported 
to rivers. One of the few future projections available suggests 
that downstream and coastal impacts of increased nitrogen 
inputs could be profound for the Mississippi Basin. Under 
a scenario in which atmospheric CO2 reaches double pre-
industrial levels, a 20% increase in river discharge is expected 

to lead to higher nitrogen loads and a 50% increase in algae 
growth in the Gulf of Mexico, a 30% to 60% decrease in deep-
water dissolved oxygen concentration, and an expansion of 
the dead zone.28 A recent comprehensive assessment10 shows 
that, while climate is an important driver, nitrogen carried by 
rivers to the oceans is most strongly driven by fertilizer inputs 
to the land. Therefore, in the highly productive agricultural 
systems of the Mississippi Basin, the ultimate impact of more 
precipitation on the expansion of the dead zone will depend on 
agricultural management practices in the Basin.14,29

Rising air temperatures can also lead to declines in water quality 
through a different set of processes. Some large lakes, including 
the Great Lakes, are warming rapidly.30 Warmer surface waters 
can stimulate blooms of harmful algae in both lakes and 
coastal oceans,9 which may include toxic cyanobacteria that 
are favored at higher temperatures.31 Harmful algal blooms, 
which are caused by many factors, including climate change, 
exact a cost in freshwater degradation of approximately $2.2 
billion annually in the United States alone.32 

Figure 8.1. Climate change is projected to reduce the ability of ecosystems to supply water in some parts of the country. This is true 
in areas where precipitation is projected to decline, and even in some areas where precipitation is expected to increase. Compared 
to 10% of counties today, by 2050, 32% of counties will be at high or extreme risk of water shortages. Projections assume continued 
increases in greenhouse gas emissions through 2050 and a slow decline thereafter (A1B scenario). Numbers in parentheses indicate 
number of counties in each category. (Reprinted with permission from Roy et al., 2012.27 Copyright 2012 American Chemical Society).

Water Supplies Projected to Decline
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Key Message 2: Extreme Events

Climate change, combined with other stressors, is overwhelming the capacity of  
ecosystems to buffer the impacts from extreme events like fires, floods, and storms.

Ecosystems play an important role in “buffering” the effects 
of extreme climate conditions (floods, wildfires, tornadoes, 
hurricanes) on the movement of materials and the flow of en-
ergy through the environment.34 Climate change and human 
modifications often increase the vulnerability of ecosystems 
and landscapes to damage from extreme events while at the 
same time reducing their natural capacity to modulate the im-
pacts of such events. Salt marshes, reefs, mangrove forests, 
and barrier islands provide an ecosystem service of defending 
coastal ecosystems and infrastructure against storm surges.35 
Losses of these natural features – from coastal development, 
erosion, and sea level rise – render coastal ecosystems and in-
frastructure more vulnerable to catastrophic damage during or 
after extreme events (Ch. 25: Coasts).36 Floodplain wetlands, 
although greatly reduced from their historical extent, provide 
an ecosystem service of absorbing floodwaters and reducing 
the impact of high flows on river-margin lands. In the North-
east, even a small sea level rise (1.6 feet) would dramatically 

increase the numbers of people (47% increase) and property 
loss (73% increase) affected by storm surge in Long Island com-
pared to present day storm surge impacts.37 Extreme weather 
events that produce sudden increases in water flow and the 
materials it carries can decrease the natural capacity of eco-
systems to process pollutants, both by reducing the amount of 
time water is in contact with reactive sites and by removing or 
harming the plants and microbes that remove the pollutants.36

Warming and, in some areas, decreased precipitation (along 
with past forest fire suppression practices) have increased the 
risk of fires exceeding historical size, resulting in unprecedent-
ed social and economic challenges. Large fires put people liv-
ing in the wildland-urban interface at risk for health problems 
and property loss. In 2011 alone, more than 8 million acres 
burned in wildfires, causing 15 deaths and property losses 
greater than $1.9 billion.38 

Figure 8.2. Hurricanes illustrate the links among precipitation, discharge and nutrient loading to coastal 
waters. Hurricanes bring intense rainfall to coastal regions, and ensuing runoff leads to blooms of algae. 
These blooms contribute to dead zone formation after they die and decompose. Photo above shows 
Pamlico Sound, North Carolina, after Hurricane Floyd. Note light green area off the coast, which is new 
algae growth. The graph on the left shows a steep drop in salinity of ocean water due to the large influx 
of freshwater from rain after a series of hurricanes. Red arrows indicate Hurricanes Dennis, Floyd, and 
Irene, which hit sequentially during the 1999 hurricane season. The graph on the right shows a steep 
rise in the amount of surface chlorophyll after these hurricanes, largely due to increased algae growth. 
(Figure source: (top) NASA SeaWiFS; (bottom) Paerl et al. 200333).

The Aftermath of Hurricanes
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Key Message 3: Plants and Animals

Landscapes and seascapes are changing rapidly, and species, including many iconic species, 
may disappear from regions where they have been prevalent or become extinct, altering some 

regions so much that their mix of plant and animal life will become almost unrecognizable. 

Vegetation model projections suggest that much of the United 
States will experience changes in the composition of species 
characteristic of specific areas. Studies applying different 
models for a range of future climates project biome changes 
for about 5% to 20% of the land area of the U.S. by 2100.4,39 
Many major changes, particularly in the western states and 
Alaska, will in part be driven by increases in fire frequency and 
severity. For example, the average time between fires in the 
Yellowstone National Park ecosystem is projected to decrease 
from 100 to 300 years to less than 30 years, potentially 
causing coniferous (pine, spruce, etc.) forests to be replaced 
by woodlands and grasslands.40 Warming has also led to novel 
wildfire occurrence in ecosystems where it has been absent 
in recent history, such as arctic Alaska and the southwestern 
deserts where new fires are fueled by non-native annual 
grasses (Ch. 20: Southwest; Ch. 22: Alaska). Extreme weather 
conditions linked to sea ice decline in 2007 led to the ignition 
of the Anaktuvuk River Fire, which burned more than 380 
square miles of arctic tundra that had not been disturbed by 
fire for more than 3,000 years.41 This one fire (which burned 
deeply into organic peat soils) released enough carbon to the 
atmosphere to offset all of the carbon taken up by the entire 
arctic tundra biome over the past quarter-century.42

In addition to shifts in species assemblages, there will also be 
changes in species distributions. In recent decades, in both land 
and aquatic environments, plants and animals have moved to 
higher elevations at a median rate of 36 feet (0.011 kilometers) 
per decade, and to higher latitudes at a median rate of 10.5 
miles (16.9 kilometers) per decade.43 As the climate continues 
to change, models and long-term studies project even greater 
shifts in species ranges.44 However, many species may not be 
able to keep pace with climate change for several reasons, for 
example because their seeds do not disperse widely or because 
they have limited mobility, thus leading, in some places, to 
local extinctions of both plants and animals. Both range shifts 
and local extinctions will, in many places, lead to large changes 
in the mix of plants and animals present in the local ecosystem, 
resulting in new communities that bear little resemblance to 
those of today.4,8,45,46 

Some of the most obvious changes in the landscape are 
occurring at the boundaries between biomes. These include 
shifts in the latitude and elevation of the boreal (northern) 
forest/tundra boundary in Alaska;47 elevation shifts of the 
boreal and subalpine forest/tundra boundary in the Sierra 
Nevada, California;48 an elevation shift of the temperate 
broadleaf/conifer boundary in the Green Mountains, 
Vermont,49 the shift of temperate the shrubland/conifer forest 

boundary in Bandelier National Monument, New Mexico,50 and 
upslope shifts of the temperate mixed forest/conifer boundary 
in Southern California.51 All of these are consistent with recent 
climatic trends and represent visible changes, like tundra 
switching to forest, or conifer forest switching to broadleaf 
forest or even to shrubland.

As temperatures rise and precipitation patterns change, many 
fish species (such as salmon, trout, whitefish, and char) will be 
lost from lower-elevation streams, including a projected loss 
of 47% of habitat for all trout species in the western U.S. by 
2080.8 Similarly, in the oceans, transitions from cold-water fish 
communities to warm-water communities have occurred in 
commercially important harvest areas,52 with new industries 
developing in response to the arrival of new species.53 Also, 
warm surface waters are driving some fish species to deeper 
waters.54,55 

Warming is likely to increase the ranges of several invasive 
plant species in the United States,56 increase the probability 
of establishment of invasive plant species in boreal forests 
in south-central Alaska, including the Kenai Peninsula,57 and 
expand the range of the hemlock wooly adelgid, an insect that 
has killed many eastern hemlocks in recent years.58 Invasive 
species costs to the U.S. economy are estimated at $120 
billion per year,59 including substantial impacts on ecosystem 
services. For instance, the yellow star-thistle, a wildland pest 
which is predicted to thrive with increased atmospheric CO2,60 
currently costs California ranchers and farmers $17 million in 
forage and control efforts61 and $75 million in water losses.62 
Iconic desert species such as saguaro cactus are damaged or 
killed by fires fueled by non-native grasses, leading to a large-
scale transformation of desert shrubland into grassland in 
many of the familiar landscapes of the American West.63 Bark 
beetles have infested extensive areas of the western United 
States and Canada, killing stands of temperate and boreal 
conifer forest across areas greater than any other outbreak in 
the last 125 years.64 Climate change has been a major causal 
factor, with higher temperatures allowing more beetles to 
survive winter, complete two life cycles in a season rather than 
one, and to move to higher elevations and latitudes.64,65 Bark 
beetle outbreaks in the Greater Yellowstone Ecosystem are 
occurring in habitats where outbreaks either did not previously 
occur or were limited in scale.66 

It is important to realize that climate change is linked to far more 
dramatic changes than simply altering species’ life cycles or 
shifting their ranges. Several species have exhibited population 
declines linked to climate change, with some declines so 
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severe that species are threatened with extinction.67 Perhaps 
the most striking impact of climate change is its effect on 
iconic species such as the polar bear, the ringed seal, and coral 
species (Ch. 22: Alaska; Ch. 24: Oceans). In 2008, the polar bear 
(Ursus maritimus) was listed as a threatened species, with the 

primary cause of its decline attributed to climate change.68 In 
2012, NOAA determined that four subspecies of the ringed 
seal (Phoca hispida) were threatened or endangered, with the 
primary threat being climate change.69   

Key Message 4: Seasonal Patterns

Timing of critical biological events, such as spring bud burst, emergence from overwintering, 
and the start of migrations, has shifted, leading to important impacts on species and habitats.

The effect of climate change on phenology – the pattern of 
seasonal life cycle events in plants and animals, such as timing 
of leaf-out, blooming, hibernation, and migration – has been 
called a “globally coherent fingerprint of climate change 
impacts” on plants and animals.70 Observed long-term trends 
towards shorter, milder winters and earlier spring thaws are 
altering the timing of critical spring events such as bud burst 
and emergence from overwintering. This can cause plants and 
animals to be so out of phase with their natural phenology that 
outbreaks of pests occur, or species cannot find food at the 
time they emerge.

Recent studies have documented an advance in the timing 
of springtime phenological events across species in response 
to increased temperatures.71 Long-term observations of lilac 
flowering indicate that the onset of spring has advanced 
one day earlier per decade across the northern hemisphere 
in response to increased winter and spring temperatures72 
and by 1.5 days per decade earlier in the western United 
States.73 Other multi-decadal studies for plant species have 
documented similar trends for early flowering.74,75 In addition, 
plant-pollinator relationships may be disrupted by changes in 
nectar and pollen availability, as the timing of bloom shifts in 
response to temperature and precipitation.76,77 

As spring is advancing and fall is being delayed in response 
to regional changes in climate,78 the growing season is 

lengthening. A longer growing season will benefit some crops 
and natural species, but there may be a timing mismatch 
between the microbial activity that makes nutrients available 
in the soil and the readiness of plants to take up those nutrients 
for growth.78,79 Where plant phenology is driven by day length, 
an advance in spring may exacerbate this mismatch, causing 
available nutrients to be leached out of the soil rather than 
absorbed and recycled by plants.80 Longer growing seasons 
also exacerbate human allergies. For example, a longer fall 
allows for bigger ragweed plants that produce more pollen 
later into the fall (see also Ch. 9: Health).81

Changes in the timing of springtime bird migrations are well-
recognized biological responses to warming, and have been 
documented in the western,82 midwestern,83 and eastern 
United States.84,85 Some migratory birds now arrive too late 
for the peak of food resources at breeding grounds because 
temperatures at wintering grounds are changing more slowly 
than at spring breeding grounds.86 

In a 34-year study of an Alaskan creek, young pink salmon 
(Oncorhynchus gorbuscha) migrated to the sea increasingly 
earlier over time.87 In Alaska, warmer springs have caused 
earlier onset of plant emergence, and decreased spatial 
variation in growth and availability of forage to breeding 
caribou (Rangifer tarandus).

Key Message 5: Adaptation

Whole system management is often more effective than focusing on one species  
at a time, and can help reduce the harm to wildlife, natural assets, and  

human well-being that climate disruption might cause.  

Adaptation in the context of biodiversity and natural resource 
management is fundamentally about managing change, 
which is an inherent property of natural ecosystems.4,88,89 
One strategy – adaptive management, which is a structured 
process of flexible decision-making under uncertainty that 
incorporates learning from management outcomes – has 
received renewed attention as a tool for helping resource 
managers make decisions relevant to whole systems in response 
to climate change.89,90 Other strategies tinclude assessments of 
vulnerability and impacts,91 and scenario planning,92 that can 

be assembled into a general planning process that is flexible 
and iterative. 

Guidance on adaptation planning for conservation has 
proliferated at the federal92,93,94 and state levels,95 and 
often emphasizes cooperation between scientists and 
managers.94,96,97 Ecosystem-based adaptation98,99 uses 
“biodiversity and ecosystem services as part of an overall 
adaptation strategy to help people adapt to the adverse 
effects of climate change.”99 An example is the explicit use of 
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storm-buffering coastal wetlands or mangroves rather than 
built infrastructure like seawalls or levies to protect coastal 
regions (Ch. 25: Coasts).100 An additional example is the use of 
wildlife corridors to connect fragmented wildlife habitat.101

Adaptation strategies to protect biodiversity include: 1) habitat 
manipulation, 2) conserving populations with higher genetic 
diversity or more flexible behaviors or morphologies, 3) re-
planting with species or ecotypes that are better suited for 
future climates, 4) managed relocation (sometimes referred to 
as assisted migration) to help move species and populations 
from current locations to those areas expected to become 
more suitable in the future, and 5) offsite conservation such as 
seed banking, biobanking, and captive breeding.92,94,96,97,102,103 
Additional approaches focus on identifying and protecting 
features that are important for biodiversity and are less 
likely to be altered by climate 
change. The idea is to conserve 
the “stage” (the biophysical 
conditions that contribute to 
high levels of biodiversity) for 
whatever “actors” (species and 
populations) find those areas 
suitable in the future.104 

One of the greatest challenges 
for adaptation in the face of 
climate change is the revision 
of management goals in 
fundamental ways. In particular, 
not only will climate change 
make it difficult to achieve 
existing conservation goals, it will 
demand that goals be critically 
examined and potentially altered 
in dramatic ways.102,105 Climate 
changes can also severely 
diminish the effectiveness of 
current strategies and require 
fresh approaches. For example, 
whereas establishing networks 
of nature reserves has been a 
standard approach to protecting 
species, fixed networks of 
reserve do not lend themselves 
to adjustments for climate 
change.105 Finally, migratory 
species and species with 
complex life histories cannot be 
simply addressed by defining 

preferred habitat and making vulnerability assessments. Often 
it could be specific life history stages that are the weak point in 
the species, and it is key to identify those weak links.106

While there is considerable uncertainty about how climate 
change will play out in particular locations, proactive measures 
can be taken to both plan for connectivity96,107 and to identify 
places or habitats that may in the future become valuable 
habitat as a result of climate change and vegetation shifts.108 
It is important to note that when the Endangered Species Act 
(ESA) was passed in 1973, climate change was not a known 
threat or factor and was not considered in setting recovery 
goals or critical habitat designations.109 However, agencies are 
actively working to include climate change considerations in 
their ESA implementation activities. 

Figure 8.3. Iterative approaches to conservation planning require input and 
communication among many players to ensure flexibility in response to climate 
change. (Figure source: adapted from the National Wildlife Federation, 2013142).

Adaptation Planning and Implementation Framework
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Case study of the 2011 las ConChas, new mexiCo fire

In the midst of severe drought in the summer of 2011, Arizona and New Mexico suffered the largest wildfires in their 
recorded history, affecting more than 694,000 acres. Some rare threatened and endangered species, like the Jemez 
salamander, were damaged by this unusually severe fire.110 Fires are often part of the natural disturbance regime, but 
if drought, poor management, and high temperatures combine, a fire can be so severe and widespread that species 
are damaged that otherwise might even be considered to be fire tolerant (such as spotted owls). Following the fires, 
heavy rainstorms led to major flooding and erosion, including at least ten debris flows. Popular recreation areas were 
evacuated and floods damaged the newly renovated, multi-million dollar U.S. Park Service Visitor Center at Bandelier 
National Monument. Sediment and ash eroded by the floods were washed downstream into the Rio Grande, which sup-
plies 50% of the drinking water for Albuquerque, the largest city in New Mexico. Water withdrawals by the city from 
the Rio Grande were stopped entirely for a week and reduced for several months due to the increased cost of treatment. 

These fires provide an example of how forest ecosystems, biodiversity, and ecosystem services are affected by the im-
pacts of climate change, other environmental stresses, and past management practices. Higher temperatures, reduced 
snowpack, and earlier onset of springtime are leading to increases in wildfire in the western United States,111 while 
extreme droughts are becoming more frequent.112 In addition, climate change is affecting naturally occurring bark 
beetles: warmer winter conditions allow these pests to breed more frequently and successfully.113,114 The dead trees 
left behind by bark beetles may make crown fires more likely, at least until needles fall from killed trees.114,115 Forest 
management practices also have made the forests more vulnerable to catastrophic fires. In New Mexico, even-aged, 
second-growth forests were hit hardest because they are much denser than naturally occurring forest and consequently 
consume more water from the soil and increase the availability of dry above-ground fuel.

Figure 8.4. Map of selected 
obser ved and pro jec ted 
biological responses to climate 
change across the United 
States. Case studies listed 
below correspond to observed 
responses (black icons on 
map) and projected responses 
(white icons on map, bold 
i tal ic ized statements). In 
genera l ,  because future 
climatic changes are projected 
to exceed those experienced 
in the recent past, projected 
biological impacts tend to be 
of greater magnitude than 
recent observed changes. 
Because the observations and 
projections presented here 
are not paired (that is, they 
are not for the same species 
or systems), that general 
difference is not illustrated.  
(Figure source: Staudinger et 
al., 20124).

BiologiCal responses to Climate Change

Continued
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BiologiCal responses to Climate Change (Continued)

Continued

1. Mussel and barnacle beds have declined or disappeared along parts of the Northwest coast due to higher tempera-
tures and drier conditions that have compressed habitable intertidal space.116 

2. Northern flickers arrived at breeding sites earlier in the Northwest in response to temperature changes along migra-
tion routes, and egg laying advanced by 1.15 days for every degree increase in temperature, demonstrating that 
this species has the capacity to adjust their phenology in response to climate change.117 

3. Conifers in many western forests have experienced mortality rates of up to 87% from warming-induced changes in 
the prevalence of pests and pathogens and stress from drought.118

4. Butterflies that have adapted to specific oak species have not been able to colonize new tree species when climate 
change-induced tree migration changes local forest types, potentially hindering adaptation.119

5. In response to climate-related habitat change, many small mammal species have altered their elevation ranges, 
with lower-elevation species expanding their ranges and higher-elevation species contracting their ranges.120

6. Northern spotted owl populations in Arizona and New Mexico are projected to decline during the next century and 
are at high risk for extinction due to hotter, drier conditions, while the southern California population is not pro-
jected to be sensitive to future climatic changes.121

7. Quaking aspen-dominated systems are experiencing declines in the western U.S. after stress due to climate-
induced drought conditions during the last decade.122

8. Warmer and drier conditions during the early growing season in high-elevation habitats in Colorado are disrupting 
the timing of various flowering patterns, with potential impacts on many important plant-pollinator relationships.77

9. Population fragmentation of wolverines in the northern Cascades and Rocky Mountains is expected to increase as 
spring snow cover retreats over the coming century.123

10. Cutthroat trout populations in the western U.S. are projected to decline by up to 58%, and total trout habitat in the 
same region is projected to decline by 47%, due to increasing temperatures, seasonal shifts in precipitation, and 
negative interactions with non-native species.8 

11. Comparisons of historical and recent first flowering dates for 178 plant species from North Dakota showed signifi-
cant shifts occurred in over 40% of species examined, with the greatest changes observed during the two warmest 
years of the study.75 

12. Variation in the timing and magnitude of precipitation due to climate change was found to decrease the nutritional 
quality of grasses, and consequently reduce weight gain of bison in the Konza Prairie in Kansas and the Tallgrass 
Prairie Preserve in Oklahoma.124 Results provide insight into how climate change will affect grazer population dy-
namics in the future. 

13. (a and b) Climatic fluctuations were found to influence mate selection and increase the probability of infidelity in 
birds that are normally socially monogamous, increasing the gene exchange and the likelihood of offspring sur-
vival.125 

14. Migratory birds monitored in Minnesota over a 40-year period showed significantly earlier arrival dates, particularly 
in short-distance migrants, indicating that some species are capable of responding to increasing winter tempera-
tures better than others.126 

15. Up to 50% turnover in amphibian species is projected in the eastern U.S. by 2100, including the northern leopard 
frog, which is projected to experience poleward and elevational range shifts in response to climatic changes in the 
latter quarter of the century.127

16. Studies of black ratsnake (Elaphe obsoleta) populations at different latitudes in Canada, Illinois, and Texas suggest 
that snake populations, particularly in the northern part of their range, could benefit from rising temperatures if 
there are no negative impacts on their habitat and prey.128

17. Warming-induced hybridization was detected between southern and northern flying squirrels in the Great Lakes 
region of Ontario, Canada, and in Pennsylvania after a series of warm winters created more overlap in their habitat 
range, potentially acting to increase population persistence under climate change.129 
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18. Some warm-water fishes have moved northwards, and some tropical and subtropical fishes in the northern Gulf of 
Mexico have increased in temperate ocean habitat.130 Similar shifts and invasions have been documented in Long 
Island Sound and Narragansett Bay in the Atlantic.131 

19. Global marine mammal diversity is projected to decline at lower latitudes and increase at higher latitudes due to 
changes in temperatures and sea ice, with complete loss of optimal habitat for as many as 11 species by mid-
century; seal populations living in tropical and temperate waters are particularly at risk to future declines.132

20. Higher nighttime temperatures and cumulative seasonal rainfalls were correlated with changes in the arrival times 
of amphibians to wetland breeding sites in South Carolina over a 30-year time period (1978-2008).133 

21. Seedling survival of nearly 20 resident and migrant tree species decreased during years of lower rainfall in the 
Southern Appalachians and the Piedmont areas, indicating that reductions in native species and limited replace-
ment by invading species were likely under climate change.134 

22. Widespread declines in body size of resident and migrant birds at a bird-banding station in western Pennsylvania 
were documented over a 40-year period; body sizes of breeding adults were negatively correlated with mean re-
gional temperatures from the preceding year.85 

23. Over the last 130 years (1880-2010), native bees have advanced their spring arrival in the northeastern U.S. by an 
average of 10 days, primarily due to increased warming. Plants have also showed a trend of earlier blooming, thus 
helping preserve the synchrony in timing between plants and pollinators.135 

24. In the Northwest Atlantic, 24 out of 36 commercially exploited fish stocks showed significant range (latitudinal and 
depth) shifts between 1968 and 2007 in response to increased sea surface and bottom temperatures.55 

25. Increases in maximum, and decreases in the annual variability of, sea surface temperatures in the North Atlantic 
Ocean have promoted growth of small phytoplankton and led to a reorganization in the species composition of 
primary (phytoplankton) and secondary (zooplankton) producers.136 

26. Changes in female polar bear reproductive success (decreased litter mass and numbers of yearlings) along the 
north Alaska coast have been linked to changes in body size and/or body condition following years with lower avail-
ability of optimal sea ice habitat.137 

27. Water temperature data and observations of migration behaviors over a 34-year time period showed that adult pink 
salmon migrated earlier into Alaskan creeks, and fry advanced the timing of migration out to sea. Shifts in migra-
tion timing may increase the potential for a mismatch in optimal environmental conditions for early life stages, and 
continued warming trends will likely increase pre-spawning mortality and egg mortality rates.87 

28. Warmer springs in Alaska have caused earlier onset of plant emergence, and decreased spatial variation in growth 
and availability of forage to breeding caribou. This ultimately reduced calving success in caribou populations.138 

29. Many Hawaiian mountain vegetation types were found to vary in their sensitivity to changes in moisture availability; 
consequently, climate change will likely influence elevation-related vegetation patterns in this region.139

30. Sea level is predicted to rise by 1.6 to 3.3 feet in Hawaiian waters by 2100, consistent with global projections of 
1 to 4 feet of sea level rise (see Ch. 2: Our Changing Climate, Key Message 10). This is projected to increase wave 
heights, the duration of turbidity, and the amount of re-suspended sediment in the water; consequently, this will 
create potentially stressful conditions for coral reef communities.140
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Process for Developing Key Messages
The key messages and supporting chapter text summarize exten-
sive evidence documented in the Ecosystems Technical Input Re-
port, Impacts of Climate Change on Biodiversity, Ecosystems, and 
Ecosystem Services: Technical Input to the 2013 National Climate 
Assessment.4

 This foundational report evolved from a technical 
workshop held at the Gordon and Betty Moore Foundation in Palo 
Alto, CA, in January 2012 and attended by approximately 65 sci-
entists. Technical inputs (127) on a wide range of topics related to 
ecosystems were also received and reviewed as part of the Federal 
Register Notice solicitation for public input. 

Key message #1 Traceable accounT

Climate change impacts on ecosystems reduce 
their ability to improve water quality and regulate 
water flows.

Description of evidence base
The author team digested the contents of more than 125 technical 
input reports on a wide array of topics to arrive at this key mes-
sage. The foundational Technical Input Report

4
 was the primary 

source used. 

Studies have shown that increasing precipitation is already result-
ing in declining water quality in many regions of the country, par-
ticularly by increasing nitrogen loading.

10,11,12,13,14
 This is because 

the increases in flow can pick up and carry greater loads of nutri-
ents like nitrogen to rivers.

11,12,13,14
 

One model for the Mississippi River Basin, based on a doubling of 
CO2, projects that increasing discharge and nitrogen loading will 
lead to larger algal blooms in the Gulf of Mexico and a larger dead 
zone.

28
 The Gulf of Mexico is the recipient system for the Missis-

sippi Basin, receiving all of the nitrogen that is carried downriver 
but not removed by river processes, wetlands, or other ecosys-
tems.

Several models project that declining streamflow, due to the com-
bined effects of climate change and water withdrawals, will cause 
local extinctions of fish and other aquatic organisms,

7
 particularly 

trout in the interior western U.S. (composite of 10 models, A1B 

8: ECOSYSTEMS, BIODIVERSITY, AND ECOSYSTEM SERVICES

scenario).
8
 The trout study

8
 is one of the few studies of impacts on 

fish that uses an emissions scenario and a combination of climate 
models. The researchers studied four different trout species. Al-
though there were variations among species, their overall conclu-
sion was robust across species for the composite model.

Water quality can also be negatively affected by increasing tem-
peratures. There is widespread evidence that warmer lakes can 
promote the growth of harmful algal blooms, which produce tox-
ins.

31
 

New information and remaining uncertainties
Recent research has improved understanding of the relative im-
portance of the effects of climate and human actions (for example, 
fertilization) on nitrogen losses from watersheds,

10,12
 and how the 

interactions between climate and human actions (for example, wa-
ter withdrawals) will affect fish populations in the west.

7,8
 However, 

few studies have projected the impacts of future climate change 
on water quality. Given the tight link between river discharge and 
pollutants, only areas of the U.S. that are projected to see in-
creases in precipitation will see increases in pollutant transport 
to rivers. It is also important to note that pollutant loading – for 
example, nitrogen fertilizer use – is often more important as a 
driver of water pollution than climate.

10,12

Assessment of confidence based on evidence 
Given the evidence base and uncertainties, there is high confi-
dence that climate change impacts on ecosystems reduce their 
ability to improve water quality and regulate water flows.

It is well established that precipitation and associated river dis-
charge are major drivers of water pollution in the form of excess 
nutrients, sediment, and dissolved organic carbon (DOC) transport 
into rivers. Increases in precipitation in many regions of the coun-
try are therefore contributing to declines in water quality in those 
areas. However, those areas of the country that will see reduced 
precipitation may experience water-quality improvement; thus, 
any lack of agreement on future water-quality impacts of climate 
change may be due to locational differences.

SUPPLEMENTAL MATERIAL
TRACEABLE ACCOUNTS
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Key message #2 Traceable accounT

Climate change, combined with other stressors, 
is overwhelming the capacity of ecosystems to 
buffer the impacts from extreme events like fires, 
floods, and storms.

Description of evidence base
The author team digested the contents of more than 125 technical 
input reports on a wide array of topics to arrive at this key mes-
sage. The foundational Technical Input Report

4
 was the primary 

source used. 

Fires: Climate change has increased the potential for extremely 
large fires with novel social, economic, and environmental impacts. 
In 2011, more than 8 million acres burned, with significant hu-
man mortality and property damage ($1.9 billion).

38
 Warming and 

decreased precipitation have made fire-prone ecosystems more 
vulnerable to “mega-fires” – large fires that are unprecedented 
in their social, economic, and environmental impacts. Large fires 
put people living in the urban-wildland interface at risk for health 
problems and property loss.

Floods: Natural ecosystems such as salt marshes, reefs, man-
grove forests, and barrier islands defend coastal ecosystems and 
infrastructure against flooding due to storm surges. The loss of 
these natural features due to coastal development, erosion, and 
sea level rise render coastal ecosystems and infrastructure more 
vulnerable to catastrophic damage during or after extreme events 
(see Ch. 25: Coasts).

36
 Floodplain wetlands, which are also vul-

nerable to loss by inundation, absorb floodwaters and reduce the 
impact of high flows on river-margin lands. In the Northeast, a sea 
level rise of 1.6 feet (within the range of 1 to 4 feet projected for 
2100; Ch. 2: Our Changing Climate, Key Message 9) will dramati-
cally increase impacts of storm surge on people (47% increase) 
and property loss (73% increase) in Long Island.

37
 

Storms: Natural ecosystems have a capacity to buffer extreme 
weather events that produce sudden increases in water flow and 
materials. These events reduce the amount of time water is in con-
tact with sites that support the plants and microbes that remove 
pollutants (Chapter 25: Coasts).

36

New information and remaining uncertainties
A new analytical framework was recently developed to generate in-
sights into the interactions among the initial state of ecosystems, 
the type and magnitude of disturbance, and effects of distur-
bance.

34
 Progress in understanding these relationships is critical 

for predicting how human activities and climate change, including 
extreme events like droughts, floods, and storms, will interact to 
affect ecosystems.

Uncertainties: The ability of ecosystems to buffer extreme events 
is extremely difficult to assess and quantify, as it requires un-
derstanding of complex ecosystem responses to very rare events. 
However, it is clear that the loss of this buffering ecosystem ser-
vice is having important effects on coastal and fire-prone ecosys-
tems across the United States. 

Assessment of confidence based on evidence 
Given the evidence base and uncertainties, there is high confi-
dence that climate change, combined with other stressors, is over-
whelming the capacity of ecosystems to buffer the impacts from 
extreme events like droughts, floods, and storms.

Ecosystem responses to climate change will vary regionally. For 
example, whether salt marshes and mangroves will be able to ac-
crue sediment at rates sufficient to keep ahead of sea level rise 
and maintain their protective function will vary by region.

Climate has been the dominant factor controlling burned area 
during the 20

th
 century, even during periods of fire suppression 

by forest management,
40,111

 and the area burned annually has in-
creased steadily over the last 20 years concurrent with warming 
and/or drying climate. Warming and decreased precipitation have 
also made fire-prone ecosystems more vulnerable to “mega-fires” 
– large fires that are unprecedented in their social, economic, and 
environmental impacts. Large fires put people living in the urban-
wildland interface at risk for health problems and property loss. 
In 2011 alone, 8.3 million acres burned in wildfires, causing 15 
deaths and property losses greater than $1.9 billion.

38

Confidence Level
Very High

Strong evidence (established 
theory, multiple sources, consistent 

results, well documented and 
accepted methods, etc.), high 

consensus

High

Moderate evidence (several sourc-
es, some consistency, methods 

vary and/or documentation limited, 
etc.), medium consensus

Medium

Suggestive evidence (a few 
sources, limited consistency, mod-
els incomplete, methods emerging, 
etc.), competing schools of thought

Low

Inconclusive evidence (limited 
sources, extrapolations, inconsis-
tent findings, poor documentation 
and/or methods not tested, etc.), 
disagreement or lack of opinions 

among experts
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Key message #3 Traceable accounT

Landscapes and seascapes are changing rap-
idly, and species, including many iconic species, 
may disappear from regions where they have been 
prevalent or become extinct, altering some regions 
so much that their mix of plant and animal life will 
become almost unrecognizable. 

Description of evidence base
The analysis for the Technical Input Report applied a range of 
future climate scenarios and projected biome changes across 5% 
to about 20% of the land area in the U.S. by 2100.

4
 Other analy-

ses support these projections.
39

 Studies predict that wildfire will 
be a major driver of change in some areas, including Yellowstone 
National Park

40
 and the Arctic.

41
 These biome shifts will be associ-

ated with changes in species distributions.
43

Evidence indicates that the most obvious changes will occur at 
the boundaries between ecosystems.

47,48,49,51
 Plants and animals 

are already moving to higher elevations and latitudes in response 
to climate change,

43
 with models projecting greater range shifts

8,46
 

and local extinctions in the future, leading to new plant and animal 
communities that may be unrecognizable in some regions.

4,45,46
 

One study on fish
8
 used global climate models (GCMs) simulating 

conditions in the 2040s and 2080s under the A1B emissions 
scenario, with the choice of models reflecting predictions of high 
and low climate warming as well as an ensemble of ten models. 
Their models additionally accounted for biotic interactions. In a 
second study, a 30-year baseline (1971-2000) and output from 
two GCMs under the A2 scenario (continued increases in global 
emissions) were used to develop climate variables that effectively 
predict present and future species ranges.

46
 Empirical data from 

the Sonoran Desert (n=39 plots) were used to evaluate species 
responses to past climate variability.

Iconic species: Wildfire is expected to damage and kill iconic des-
ert species, including saguaro cactus.

63
 Bark beetle outbreaks, 

which have been exacerbated by climate change, are damaging 
extensive areas of temperate and boreal conifer forests that are 
characteristic of the western United States.

64 

New information and remaining uncertainties
In addition to the Technical Input Report, more than 20 new stud-
ies of observed and predicted effects of climate change on biomes 
and species distribution were incorporated in the assessment.

While changes in ecosystem structure and biodiversity, including 
the distribution of iconic species, are occurring and are highly 
likely to continue, the impact of these changes on ecosystem ser-
vices is unclear, that is, there is uncertainty about the impact that 
loss of familiar landscapes will have on people.

Assessment of confidence based on evidence 
Based on the evidence base and uncertainties, confidence is high 
that familiar landscapes are changing so rapidly that iconic spe-
cies may disappear from regions where they have been prevalent, 
altering some regions so much that their mix of plant and animal 
life will become almost unrecognizable. Many changes in species 
distribution have already occurred and will inevitably continue, 
resulting in the loss of familiar landscapes and the production of 
novel species assemblages. 

Key message #4 Traceable accounT

Timing of critical biological events, such as spring 
bud burst, emergence from overwintering, and the 
start of migrations, has shifted, leading to impor-
tant impacts on species and habitats.

Description of evidence base
The key message and supporting text summarizes extensive evi-
dence documented in the Ecosystems Technical Input, Phenology 
as a bio-indicator of climate change impacts on people and eco-
systems: Towards an integrated national assessment approach.

71
 

An additional 127 input reports, on a wide range of topics related 
to ecosystems, were also received and reviewed as part of the 
Federal Register Notice solicitation for public input. 

Many studies have documented an advance in springtime phe-
nological events of species in response to climate warming. For 
example, long-term observations of lilac flowering indicate that the 
onset of spring has advanced one day earlier per decade across 
the northern hemisphere in response to increased winter and 
spring temperatures, and by 1.5 days per decade earlier in the 
western United States.

72,73
 Other multi-decadal studies for plant 

species have documented similar trends for early flowering.
74,75

 
Evidence suggests that insect emergence from overwintering may 
become out of sync with pollen sources,

77
 and that the beginning 

of bird and fish migrations are shifting.
82,83,84,85,86,87

New information and remaining uncertainties
In addition to the Ecosystems Technical Input

71
 many new stud-

ies have been conducted since the previous National Climate As-
sessment,

141
 contributing to our understanding of the impacts of 

climate change on phenological events. Many studies, in many 
areas, have shown significant changes in phenology, including 
spring bud burst, emergence from overwintering, and migration 
shifts.

A key uncertainty is “phase effects” where organisms are so out of 
phase with their natural phenology that outbreaks of pests occur, 
species emerge and cannot find food, or pollination is disrupted. 
This will vary with specific species and is therefore very difficult 
to predict.

70
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Assessment of confidence based on evidence 
Given the evidence base and uncertainties, there is very high con-
fidence that the timing of critical events, such as spring bud burst, 
emergence from overwintering, and the start of migrations, has 
shifted, leading to important impacts on species and habitats.  

Key message #5 Traceable accounT

Whole system management is often more effec-
tive than focusing on one species at a time, and 
can help reduce the harm to wildlife, natural assets, 
and human well-being that climate disruption might 
cause. 

Description of evidence base
Adaptation planning for conservation at federal

92,93,94
 and state 

levels,
95

 is focused on cooperation between scientists and manag-
ers.

34,94,96,97
 Development of ecosystem-based whole system man-

agement
98

 utilizes concepts about “biodiversity and ecosystem 
services to help people adapt to climate change.”

99
 An example 

is the use of coastal wetlands or mangroves rather than built in-
frastructure like seawalls or levees to protect coastal regions from 
storms (Chapter 25: Coasts).

100

New information and remaining uncertainties
Adaptation strategies to protect biodiversity include: 1) habitat 
manipulations, 2) conserving populations with higher genetic di-
versity or more plastic behaviors or morphologies, 3) changing 
seed sources for re-planting to introduce species or ecotypes 
that are better suited for future climates, 4) managed relocation 
(sometimes referred to as assisted migration) to help move species 
and populations from current locations to those areas expected to 
become more suitable in the future, and 5) ex-situ conservation 
such as seed banking and captive breeding.

92,94,96,97,102
 Alternative 

approaches focus on identifying and protecting features that are 
important for biodiversity and are projected to be less altered by 
climate change. The idea is to conserve the physical conditions 
that contribute to high levels of biodiversity so that species and 
populations can find suitable areas in the future.

104

Assessment of confidence based on evidence 
Given the evidence and remaining uncertainties, there is very high 
confidence that ecosystem-based management approaches are in-
creasingly prevalent, and provide options for reducing the harm to 
biodiversity, ecosystems, and the services they provide to society. 
The effectiveness of these actions is much less certain, however.


