

SILVERADO'S UPGRADED 5.3L AND 6.2L V8

PROGRAM OBJECTIVES:

- EVOLVE PROVEN SMALL BLOCK ARCHITECTURE
- **EXPAND CYLINDER DEACTIVATION**
- IMPROVE OPERATING EFFICIENCY FOR GREATER PERFORMANCE WITHOUT SACRIFICES
- | MAINTAIN LEGENDARY SMALL BLOCK PERFORMANCE & DURABILITY

INTRODUCING THE WORLD'S FIRST APPLICATION OF DYNAMIC FUEL MANAGEMENT

AFM IS A PROVEN METHOD TO REDUCE PUMPING

WORK & IMPROVE FUEL ECONOMY

DFM ADDS CYLINDER DEACTIVATION CAPABILITY ON EVERY CYLINDER

ONLY USE THE CYLINDERS YOU NEED

- OPTIMIZES EFFICIENCY

17 DISTINCT FIRING FRACTIONS

REFINED N&V

ANALYSIS TIME INTENSELY ANALYZED, DEVELOPED AND OPTIMIZED SYSTEM

64 DIFFERENT FUNCTIONAL ASPECTS
OF SYSTEMS ANALYZED DUE TO
INTRODUCTION OF DFM TECHNOLOGY

12.4 MILLION CPU HOURS OF ANALYSIS FOR 5.3L AND 6.2L WITH DFM

SO ADVANCED THAT A PRESENTATION WAS REQUESTED AT THE VIENNA MOTOR SYMPOSIUM

ALGORITHM DEVELOPMENT INTENSELY ANALYZED, DEVELOPED AND OPTIMIZED SYSTEM

2,896,246 LINES OF CODE

65,904 LINES OF DFM-SPECIFIC CODE

OVER 29,000 CALIBRATION VARIABLES

DFM CYLINDER PATTERNS ARE
DETERMINED UP TO 80 DECISIONS PER
SECOND (EVERY 12.5 MSEC)

LEGENDARY DURABILITY

TESTED IN ONE OF THE LARGEST, MOST ADVANCED AUTOMOTIVE PROPULSION LABORATORIES LOCATED IN PONTIAC, MI

TESTED AND DEVELOPED TO GM'S PROPRIETARY ENGINE DURABILITY STANDARDS

LEGENDARY V8 DURABILITY

- THE 2019 SILVERADO TRUCK ENGINES WILL HAVE ACCUMULATED AN EQUIVALENT OF OVER 5 MILLION MILES OF VALIDATION TESTING
- REPEATED CYCLING BETWEEN APPROXIMATELY -13°F (-25°C) TO 239°F (115°C) COOLANT TEMPERATURE WHILE RUNNING THE ENGINE UNDER MAX POWER CONDITIONS CONTINUOUSLY FOR MONTHS
- DURABILITY OF GM'S DEACTIVATION SYSTEMS HAVE BEEN TESTED FOR TENS OF MILLIONS OF CYCLES

SUMMARY ONE OF THE MOST TECHNOLOGICALLY ADVANCED GASOLINE V8 ENGINES

SUCCESSFULLY INCORPORATED THE WORLD'S FIRST DYNAMIC FUEL MANAGEMENT SYSTEM

IMPROVED EFFICIENCY

REFINED N&V

PROVEN POWER & TORQUE

GM'S HISTORY WITH CYLINDER DEACTIVATION

2005 5.3L V8 with DoD

INTRODUCED IN 2005 ON 5.3L V8 GEN IV ENGINES IN MID-SIZE UTILITY VEHICLES UNDER NAME 'DISPLACEMENT ON DEMAND'

4 ENGINE FAMILIES WITH 7 DISPLACEMENTS

MILLIONS OF V6, V8, OHV, OHC ENGINES WITH AFM PRODUCED, MORE THAN ANY OTHER COMPETITOR

2007 3.9L V6 with AFM

2015 4.3L V6 with AFM

FULL-SIZE AND MID-SIZE SUVS AND TRUCKS, SMALL TO LARGE SEDANS AND SPORTS CARS TOO

OVER 80 UNIQUE PATENTS

GENERAL MOTORS LEADS THE INDUSTRY IN CYLINDER DEACTIVATION

2016 3.6L V6 with AFM

COMPARISON OF V8 DFM TO AFM

ITEM	MY 2018 AFM	MY 2019 DFM			
NUMBER OF CYLINDERS WITH DEACTIVATION HARDWARE	4 (CYLS 1, 4, 6, 7) 8 DEACTIVATING LIFTERS	8 (ALL CYLINDERS) 16 DEACTIVATING LIFTERS			
SIZE OF SWITCHING WINDOW	480° CRANK	240° CRANK			
LOCATION OF OIL CONTROL VALVES	4 INTEGRATED INTO VALLEY COVER LOMA	8 INTEGRATED INTO ENGINE BLOCK NO LOMA			
NUMBER OF STEADY-STATE CYLINDER DEACTIVATION FRACTIONS	V8 & V4	17			

COMPARISON OF V8 AFM TO DFM

AFM OIL CONTROL VALVES IN LOMA / VALLEY COVER

DFM OIL CONTROL VALVES IN ENGINE BLOCK

DYNAMIC FUEL MANAGEMENT FIRING FRACTIONS

- UP TO 17 FIRING FRACTIONS
 OR PATTERNS
- ROWS ARE ENGINE CYCLES
 AND COLUMNS ARE
 CYLINDERS IN FIRING ORDER
- GREEN INDICATES THE CYLINDER IS ACTIVE

DYNAMIC FUEL MANAGEMENT FIRING FRACTIONS

FIXED PATTERN EXAMPLE, 1/2 FIRING FRACTION
4 CYLINDERS ACTIVE OUT OF 8 FIRING OPPORTUNITIES
(AFM'S V4 MODE)

THE SAME CYLINDERS ARE ACTIVE EVERY ENGINE CYCLE

DYNAMIC FUEL MANAGEMENT FIRING FRACTIONS

ROTATING DEACTIVATION PATTERN EXAMPLE, 1/3 FIRING FRACTION 1 CYLINDER ACTIVE OUT OF 3 FIRING OPPORTUNITIES THE FULL PATTERN REPEATS EVERY 3 ENGINE CYCLES

1/3 FIRING FRACTION IN DFM									
) = D	EAC	1:	= FIR	ING
FIRING OF	RDER A		В	C	D	Е	F	G	Н
CYLINDER NUM	IBER 1		8	7	2	6	5	4	3
	0		0	1	0	0	1	0	0
	1		0	0	1	0	0	1	0
	0		1	0	0	1	0	0	1

Engine Cylinder Calculated Firing Fraction 50 %

Fuel Off 11.82 %	3/5 2.77 %
0.00 %	5/8 0.58 %
1/4 10.55 %	2/3 4.19 %
0.19 %	5/7 0.74 %
7.69 %	3/4 0.24 %
0.30 %	7/9 0.15 %
2/5 9.58 %	4/5 1.99 %
0.34 %	5/6 0.19 %
1/2 15.26 %	6/7 0.12 %
0.74 %	32.62 %

5.3L DFM OPERATIONAL BENEFIT

USING INDUSTRY STANDARD TEST SCHEDULES:

THE 2019 SILVERADO 2WD WITH 5.3L DFM OPERATED WITH LESS THAN 8 ACTIVE CYLINDERS GREATER THAN 60% OF THE TIME

SYSTEM INTEGRATION KEY TO DFM SUCCESS

SEAMLESS OPERATION IN 17 CYLINDER PATTERNS

DESIGNED AND INTEGRATED AS ONE VEHICLE SYSTEM

HYDRA-MATIC 8-SPEED AND 10-SPEED CENTRIFUGAL PENDULUM ABSORBER

SUMMARY TAKE A GREAT ENGINE AND MAKE IT BETTER

GENERAL MOTORS LEADS THE INDUSTRY IN CYLINDER DEACTIVATION

DYNAMIC FUEL MANAGEMENT EXPANDS AND IMPROVES UPON AFM

17 DISTINCT CYLINDER PATTERNS

SEAMLESS VEHICLE INTEGRATION

TOM SUTTER

CHIEF ENGINEER
2.7L TURBO

2.7L TURBO OBJECTIVES

- LEADING EDGE TECHNOLOGY FOR EFFICIENT PERFORMANCE
- LEADING EDGE LOW SPEED TORQUE AND TORQUE RESPONSE WITH TURBOCHARGING
- LEADING EDGE SPECIFIC MASS
- DEMONSTRATE LEGENDARY
 CHEVROLET TRUCK DURABILITY

2.7L TURBO AMONG BEST LOW SPEED TORQUE IN SEGMENT

348 LB-FT PEAK TORQUE AVAILABLE BETWEEN 1,500 - 4,000 RPM

2.7L TURBO TIME TO 90% TORQUE AT 1,500 RPM IS BEST IN SEGMENT

LOW MASS EQUATES TO BETTER EFFICIENCY, PAYLOAD AND PERFORMANCE

LEGENDARY DURABILITY

- THE 2019 SILVERADO TRUCK ENGINES WILL HAVE ACCUMULATED AN EQUIVALENT OF OVER 5 MILLION MILES OF VALIDATION TESTING
- REPEATED CYCLING BETWEEN
 APPROXIMATELY -13°F (-25°C) TO
 239°F (115°C) COOLANT TEMPERATURE
 WHILE RUNNING THE ENGINE UNDER
 MAX POWER CONDITIONS
 CONTINUOUSLY FOR MONTHS
- DURABILITY OF GM'S DEACTIVATION
 SYSTEMS HAVE BEEN TESTED FOR
 TENS OF MILLIONS OF CYCLES

SUMMARY TECHNOLOGICALLY ADVANCED TRUCK ENGINE WITH PERFORMANCE AND EFFICIENCY

SUCCESSFULLY ACHIEVED:

LEADING EDGE TECHNOLOGY FOR EFFICIENT PERFORMANCE

| LEADING EDGE LOW SPEED TORQUE AND TORQUE RESPONSE WITH TURBOCHARGING

LEADING EDGE SPECIFIC MASS

CHEVROLET TRUCK DURABILITY

2.7LTURB0 TECHNOLOGY HIGHLIGHTS

TURBOCHARGING SYSTEM

- DUAL-VOLUTE TURBINE

- ELECTRIC WASTE-GATE

FRICTION REDUCTION

• ECM-CONTROLLED CONTINUOUSLY VARIABLE OIL PUMP

- SELECT FIT MAIN BEARINGS
- OFFSET CRANKSHAFT

MASS REDUCTION

- ALUMINUM HIGH PRESSURE DIE CAST BLOCK
- LOWER CRANKCASE EXTENSION
- COMPOSITE INTAKE AIR FUEL MODULE AND OIL PAN

- THREE MODES

COMBUSTION SYSTEM

- HIGH TUMBLE
- HIGH ENERGY IGNITION
- 3,000 PSI DIRECT INJECTION
- TRIPLE PULSE INJECTION

AUTO STOP/START

- TANDEM SOLENOID STARTER
- SYSTEM WORKS WITH TRANSMISSION

ACTIVE THERMAL MANAGEMENT

- INTEGRAL EXHAUST MANIFOLD
- COOLANT CONTROL VALVE
- ELECTRIC WATER PUMP

2.7L TURBO VALVETRAIN INNOVATIVE VALVETRAIN PROVIDES REAL WORLD EFFICIENCY AND POWER AND WHEN YOU NEED IT

SHIFTING GROOVE USED TO SLIDE CAM LOBE

TRI-MODES:

- 1. HIGH VALVE LIFT FULL POWER
- 2. LOW VALVE LIFT CRUISE
- 3. NO VALVE LIFT ACTIVE FUEL MANAGEMENT

MODE 2: LOW VALVE LIFT -CRUISE

2.7L TURBO EFFICIENCY IMPROVEMENT OF VALVETRAIN MODES

2.7L TURBO ACTIVE THERMAL MANAGEMENT (ATM)

BENEFITS

COLD START FRICTION REDUCTION:

- FASTER WARM-UP
- TRANSMISSION AND ENGINE OIL WARMING

WARM OPERATION:

- IMPROVES COMBUSTION EFFICIENCY
- EXHAUST COOLING FOR TURBO DURABILITY

ELECTRIC WATER PUMP

COOLANT CONTROL VALVE

DUAL-VOLUTE TURBOCHARGER WITH ELECTRICAL ACTUATED WASTEGATE

DESCRIPTION:

ELECTRONIC BOOST CONTROL

TRI-PORT EXHAUST

DUAL VOLUTE TURBINE

BENEFITS:

FAST BOOST RESPONSE

IMPROVED ENGINE EFFICIENCY

2.7L DUAL VOLUTE TURBINE FLOW

2.7LTURBO RESPONSIVENESS

