PERFORMANCE OF BUMPER SYSTEMS WITH RESPECT TO PEDESTRIAN PROTECTION AND BUMPER DAMAGEABILITY REQUIREMENTS

Jason Stammen
NHTSA

Brian Suntay

Transportation Research Center Inc.

2014 SAE Government / Industry Meeting

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.

BACKGROUND & OBJECTIVES

Pedestrian protection standards implemented globally

- GTR No. 9 adopted (2008)
- FlexGTR legform in process of being added (WP.29 vote May 2014)

Bumper damageability requirement in U.S.

Part 581 limits damage to vehicle front end in low speed impacts

Objective: Examine feasibility of passing both GTR9 and Part 581

- Test multiple versions of global platform vehicles with FlexGTR (GTR9)
- Test same vehicle configurations in Part 581
- Relate test results in 581/GTR9 conditions
- Evaluate bumper part design characteristics associated with meeting GTR9 or both GTR9 & Part 581

VEHICLES & CONFIGURATIONS

2013 Ford Fusion

2011 Chevrolet Cruze

2006 Volkswagen Passat

Overseas

VEHICLES & CONFIGURATIONS (CONT.)

2012 Ford Focus

2010 Toyota Yaris

METHODS: FLEXGTR TESTING

GTR9 Test Procedure

FlexGTR legform instead of EEVC legform

SAE INTERNATIONAL

5

RESULTS: FLEXGTR TESTS

RESULTS: FUSION

Fusion passed proposed FlexGTR IARV across bumper width

 Outboard edge < center is opposite trend from previous FlexGTR testing on other NA bumper version vehicles (outboard stiffer due to supports)

METHODS: PART 581 TESTING

- Three "global platform" vehicles that passed (or came close to passing)
 GTR9 with FlexGTR legform
 - Fusion (NA), Cruze (NA/O), Passat (NA/O)
- Only frontal pendulum portion of series
 - B Plane not used (16-20" with mid-plane center matching bumper bar height)
 - One longitudinal @ 2.5 mph, one corner @ 1.5 mph
- Part 581 criteria

RESULTS: PART 581 TESTS

	Fusion (NA)	Cruze (NA/O)	Passat (NA/O)
2.5 mph Longitudinal		VRTC F 100054 PARS 51-18	VITC \$130524- Part 6814-
Upper + Lower Plane Force (N) [Limit: 8896 N]	704	1861	1576
Mid Plane Force (N)	17783	24485	30048
1.5 mph Corner		12 ms	-100.0
Upper + Lower Plane Force (N) [Limit: 8896 N]	1043	1527	770
Mid Plane Force (N)	24791	24452	15675
Non-Bumper Damage?	No	No	No

RESULTS: FLEXGTR IARV % vs. PART 581 FORCES

2.5 MPH Longitudinal Pendulum Test

BUMPER PART OBSERVATIONS

- No drastic changes from the N.A. version of the frontend in order to conform to FlexGTR IARV & Part 581
 - Fusion needed no change
 - Cruze and Passat needed stiffened lower apron
- Different strategies employed by OEMs to meet GTR9 with EEVC legform
 - Crushable bumper bar with space between fascia and beam (Yaris)
 - Modular energy absorber (Fusion)
 - Softer energy absorber combined with stiffer lower apron or "lower leg catcher" (Focus, Passat, Cruze)
- These design strategies to meet EEVC IARV also meet FlexGTR IARV

ASSUMPTIONS & LIMITATIONS

- Part 581 assumption: overseas versions would fail,
 North American versions would pass
- Full Part 581 series was not conducted; only frontal pendulum
 - Modified systems could have sustained damage in subsequent tests
- Countermeasures expected to provide comparable improvements across bumper width
 - Fusion: lower FlexGTR measures near test zone edge than at center
- Analysis limited to global passenger cars (no large vehicles)
 - MPVs and Trucks are currently exempt from Part 581 (74 FR 28210)

SUMMARY

- Part 581, GTR9, and 581/GTR9 version bumper systems from five "global platform" vehicles tested
- One production & one slightly modified vehicle met both proposed FlexGTR IARV & Part 581 (frontal pendulum only) criteria with single bumper system
 - Modular EA, soft EA + stiff lower apron, and crushable bumper beam were observed in GTR9-passing bumper systems
- Overseas systems designed to meet GTR9 with EEVC leg also did well with FlexGTR
 - Design strategies vary but none were drastic overhauls from NA system
- Of FlexGTR injury measures, tibia bending moment had strongest correlation with Part 581 pendulum forces

PERFORMANCE OF BUMPER SYSTEMS WITH RESPECT TO PEDESTRIAN PROTECTION AND BUMPER DAMAGEABILITY REQUIREMENTS

Jason Stammen NHTSA

Brian Suntay

Transportation Research Center Inc.

2014 SAE Government / Industry Meeting

This is a work of the U.S. Government and is not subject to copyright in the United States; it may be used or reprinted without permission.

