The Relationship Between Pedestrian Component Legform and Full Dummy Testing in Assessing Bumper Performance

Ann Mallory, Transportation Research Center Inc. Jason Stammen, Vehicle Research and Test Center, NHTSA

2006 Government/Industry Meeting

How well do projectile tests represent pedestrian lower extremity impacts?

Prior Studies

Cesari et al, ESV, 1991 Ishikawa et al, IRCOBI, 1992 Sakurai et al, ESV, 1991 Takahashi and Kikuchi, ESV, 2001 Matsui and Takabayashi, JARI Research Journal, 2003

Focus on knee ligament injuries:

- Knee angle
- Knee moment
- Knee shear displacement

Focus of Current Study

Focus on fracture measures:Femur momentTibia momentAcceleration

Pedestrian	Projectile
Initial axial load	No foot contact or body weight
Friction at foot	No foot contact
Upper body inertia	Thigh free to move

Projectile

Polar II sled testing 48 km/h 1999 Honda Civic

Initial axial load	No foot contact or body weight
Friction at foot	No foot contact
Upper body inertia	Hip free to move

Pedestrian

Stammen and Ko "Assessment of Polar II Pedestrian Dummy for Use in Full-Scale Case Reconstructions", NHTSA report DOT HS 809 391, 2001.

Pedestrian	Projectile	-
Initial axial load	No foot contact or body weight	
Friction at foot	No foot contact	-
Upper body inertia	Hip free to move	

Upper Tibia Z Force [N]

Pedestrian	Projectile
Initial axial load	No foot contact or body weight
Friction at foot	No foot contact

μ = 0.15

 $\mu = 0.80$

Pedestrian	Projectile
Initial axial	No foot contact
load	or body weight
Friction at foot	No foot contact
Upper body	Hip free to
inertia	move

Inertial effects of upper body: Test Methods

Weight Conditions (3)

Leg only (no weight)

Two-leg stance (mid weight)

One-leg stance (high weight)

Inertial effects of upper body: Test Methods

Femur impact

Impact Locations (3)

Knee impact

Tibia impact

Inertial effects of upper body: Test Methods

Polar II Legform with Hybrid III Body

Two-leg stance, Knee impact

Femur Level Impact:

Knee Level Impact:

E = -100 -200 -300 -400 0.025 TIME[sec] 0.075 0.1

Femur X Moment

Preliminary Observations

- 1) Ground contact effects appear minimal.
- 2) Presence of body mass does have effect on bending moment.
 - Femur moment all impact heights
 - Tibia moment high-bumper impacts
- 3) Presence of body mass has less effect on acceleration.

Implications for Test Procedure

- Projectile test has potential to evaluate fracture measures
- Body weight effects on bending moment:
 - Limitations for unweighted projectile legform
- Future evaluation of bending moment should:
 - Be limited to impacts in certain height range

• Simulate the inertia of the upper body

Future work

Modeling

- Determine added mass required to simulate whole body impact
- Begin with mass recommended for knee injury measures.

Testing

- Modify legform with mass
- Compare weighted leg with fullbody tests

The Relationship Between Pedestrian Component Legform and Full Dummy Testing in Assessing Bumper Performance

Ann Mallory, Transportation Research Center Inc. Jason Stammen, Vehicle Research and Test Center, NHTSA

2006 Government/Industry Meeting