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Abstract

During historical periods in which US fuel economy standards were unchanging,

automakers increased performance but not fuel economy, contrasting with recent

periods of tightening standards and rising fuel economy. This paper evaluates the

welfare consequences of automakers forgoing performance increases to raise fuel

economy as standards have tightened since 2012. Using a unique data set and a novel

approach to account for fuel economy and performance endogeneity, we find

undervaluation of fuel cost savings and high valuation of performance. Welfare costs

of forgone performance approximately equal expected fuel savings benefits, suggesting

approximately zero net private consumer benefit from tightened standards.
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1 Introduction
Motivated by climate and energy security concerns, the US Environmental Protection

Agency (EPA) and National Highway Traffic Safety Administration (NHTSA) impose

standards for passenger vehicle greenhouse gas emissions and fuel economy. The agencies

project that the current standards will roughly double new vehicle fuel economy between

2011 and 2025, substantially reducing fuel consumption and greenhouse gas emissions.

In their benefit-cost analysis, EPA and NHTSA conclude that the standards create

climate and energy security benefits (EPA 2012; EPA et al. 2016). In addition to these

social benefits, the agencies argue that the standards create private welfare benefits

because there is a market failure for fuel economy, which is often referred to as the energy

efficiency gap: vehicle manufacturers and consumers fail to adopt technologies and increase

fuel economy even when the value of the fuel savings exceeds the adoption costs. An

extensive literature (e.g., NRC 2015) concludes that a gap exists by identifying numerous

specific fuel-saving technologies, the value of whose fuel savings exceeds the adoption costs.

The agencies argue that the standards increase consumer welfare by stimulating the

adoption of fuel-saving technologies and correcting distortions from the market failure. In

fact, the value of the fuel savings to consumers accounts for about 70 percent of the

estimated benefits of the standards. Private consumer benefits drive the overall welfare

effects; according to the agencies’ analysis, the standards would increase social welfare even

without counting energy security and climate benefits.1

The energy efficiency gap literature has focused on whether consumers undervalue fuel

savings, meaning that they are willing to pay less for fuel savings than the present discounted

value of the savings.2 Undervaluation would be consistent with the energy efficiency gap

because it would imply that manufacturers have insufficient incentive to adopt fuel-saving

technology. Earlier studies yielded a wide range of results, from approximately zero valuation

to substantial overvaluation (see literature reviews by Helfand and Wolverton 2009 and

Greene 2010), but recent studies by Busse et al. (2013) and Allcott and Wozny (2014) have

found full or nearly full valuation, implying that there is not an energy efficiency gap and

that standards are unlikely to increase private consumer welfare.

Economists and policy makers have focused on the energy efficiency gap under the

presumption that if there is a gap, tighter standards would raise private consumer welfare.

We argue that this inference is incorrect because it ignores the effects of tighter standards

1The literature has established that fuel or carbon taxes are more efficient than fuel economy or emissions standards at
reducing energy security or climate market failures (e.g., Jacobsen 2013). However, because fuel or carbon taxes do not address
the market failure associated with the energy efficiency gap Jaffe and Stavins 1994, if the gap is large enough, standards could
be more efficient than fuel and carbon taxes (Fischer 2010; Parry et al. 2007).

2A variety of factors could explain undervaluation, such as incomplete information about fuel economy (Gillingham et al.
2009) and sticky information about fuel prices (Allcott and Wozny 2014).
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on other vehicle attributes, particularly vehicle performance. Klier and Linn (2016) and

Reynaert (2015) document that tighter standards cause manufacturers to trade off

performance for fuel economy, causing performance to increase less than if standards had

not tightened. Therefore, the private welfare effects depend on the valuation of the forgone

performance. However, for reasons we explain below, estimates of willingness to pay

(WTP) for performance in the literature are likely to suffer from omitted variables bias.

Moreover, estimates of WTP for fuel economy that account for the endogeneity of fuel

economy rely on fuel price variation to identify WTP, and may not be relevant to

regulatory-induced changes in fuel economy. We present new estimates of WTP for fuel

economy and performance that address these issues. We find strong evidence that

consumers undervalue fuel economy, suggesting the presence of an energy efficiency gap.

Notwithstanding the undervaluation, once we account for changes in performance, we find

that recent tighter standards have had approximately zero net effect on private consumer

welfare.

Specifically, Knittel (2011) and Klier and Linn (2012) argue that manufacturers can

respond to tighter standards by trading off performance for fuel economy. Manufacturers

can use fuel-saving technology to increase fuel economy or performance (such as towing

capacity), for example, by retuning the engine so that the new vehicle has the same fuel

economy and greater performance than the original vehicle (Klier and Linn 2012;

Whitefoot et al. 2013; Zhou 2016).3 As we show in Section 2, during time periods when

fuel economy standards were not changing, manufacturers used fuel-saving technology to

increase performance while maintaining fuel economy, improving vehicle efficiency by about

2 percent per year (Knittel 2011). During periods when the standards tightened,

manufacturers chose to trade off performance for fuel economy.

Because of the technological trade-offs, the effects of tighter standards on private

consumer welfare depend on changes in vehicle prices, fuel economy, and performance. In

the absence of tighter standards, manufacturers adopt fuel-saving technology and boost

performance. Tighter standards have two effects on vehicle attributes. First, tighter

standards increase the incentive to adopt fuel-saving technology, raising the rate at which

manufacturers add technology, as Klier and Linn (2016) demonstrate. This effect raises

vehicle fuel economy and production costs, which may increase vehicle prices. If an energy

efficiency gap exists, the value of the fuel savings would exceed the combined vehicle cost

and price increases, implying positive private welfare benefits from this effect. On the other

hand, tighter standards cause manufacturers to trade off performance for fuel economy,

3 For example, between 1980 and 2014, Honda adopted a number of fuel-saving technologies to double the Civic’s horsepower
without changing its fuel economy.
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reducing the level of performance relative to the counterfactual of unchanging standards.

The second effect reduces private consumer welfare if consumers value performance more

highly than fuel economy.

Because of the opposing effects, it is an empirical question as to whether tighter standards

increase private consumer welfare. Whether one takes a structural or reduced-form approach

to answering this question, it is necessary to estimate consumer valuation of fuel economy

and performance. As we argue next, nearly all existing WTP estimates are likely to be biased

because they do not address a fundamental omitted variables problem. Consequently, we

focus on obtaining unbiased estimates of consumer WTP for fuel economy and performance.

We make two improvements over the existing literature. First, most studies either have

not estimated WTP for performance or have assumed that performance is uncorrelated with

unobserved vehicle attributes.4 Because vehicle manufacturers simultaneously choose fuel

economy, performance, and other attributes, fuel economy and performance are likely to be

correlated with other unobserved attributes (Klier and Linn 2012). Most earlier studies (e.g.,

Berry et al. 1995) that estimate WTP for performance assume that performance is exogenous,

but a few recent papers, such as Whitefoot et al. (2013), instrument for performance. These

recent studies primarily rely on variation from the vehicle’s fuel type or drive type (e.g.,

4-wheel-drive). However, because consumers directly value fuel type and drive type, and

not just their effects on fuel economy and performance, the instruments are likely to be

correlated with unobserved vehicle attributes. For example, automakers may provide better

(unobserved) technology packages for 4-wheel-drive vehicles than for 2-wheel-drive vehicles,

causing biased estimates.

Second, our empirical analysis pertains directly to policies that affect fuel economy and

performance in the medium to the long run. In contrast, recent estimates of consumer

valuation of fuel economy (e.g., Busse et al. 2013; Allcott and Wozny 2014) are based on

consumer responses to changes in fuel costs induced by fuel price variation, focusing on fuel

price variation in the 1990s and early 2000s, when the stringency of fuel economy standards

was unchanging. These studies are relevant to policies that directly affect fuel prices, such

as carbon or fuel taxes, and they are relevant for the short run, in which attributes of

market vehicles are held fixed. However, emissions or fuel economy standards cause fuel

economy to increase over time without directly affecting fuel prices (Whitefoot et al. 2013;

Reynaert 2015). Consumers could respond differently to fuel prices in the short run and

fuel economy in the medium and long run for a variety of reasons, such as information

or uncertainty about fuel prices and fuel economy (Metcalf and Hassett 1993; Dixit and

4Recent papers that focus on consumer valuation of fuel economy, including Busse et al. (2013), Allcott and Wozny (2014),
and Sallee et al. (2016), do not attempt to estimate WTP for performance.
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Pindyck 1994). Moreover, Leard, Linn, and McConnell (forthcoming) show that new vehicle

purchases responded differently in the late 1990s and early 2000s (when fuel prices were low

or rising) than in the late 2000s and early 2010s (when fuel prices were high and volatile,

and when fuel economy was increasing).

We use a unique data set and a novel empirical strategy to account for the endogeneity

of both fuel economy and performance, identifying WTP from changes in these attributes

rather than from changes in fuel prices. Our data include 535,124 observations of new

vehicles that were purchased or leased between the fourth quarter of 2009 and the 3rd

quarter of 2014. For each vehicle, we observe a vehicle transaction price, household

demographics, and a vehicle identification number (VIN), which we use to assign extensive

vehicle characteristics such as fuel economy, horsepower, torque, and weight. To compare

our results with the recent literature, we adapt the empirical framework of Busse et al.

(2013) to estimate average WTP for fuel economy and performance across all consumers in

the market. We adopt two strategies to account for the endogeneity. First, we include

vehicle fixed effects, defining vehicles at a highly disaggregated level, to control for

cross-sectional correlations among fuel economy, performance, and unobserved vehicle

attributes such as technology packages and safety features. Second, we use instrumental

variables (IVs) constructed from EPA microdata on fuel-saving technology adoption. The

instruments are indicators for the adoption of specific technologies in individual vehicle

trims, and they are strong predictors of fuel economy and performance, reducing concerns

about weak instruments bias. We report evidence supporting the underlying exclusion

restrictions.5

We find that consumers undervalue fuel cost savings arising from higher fuel economy.

The preferred estimates imply that consumers use a real discount rate of 12 percent to

discount future fuel cost savings, compared to reported real market interest rates of 1.3

percent in our sample. The fact that the implicit discount rate exceeds the market rates

suggests that consumers undervalue the fuel cost savings. An alternative interpretation is

that if we use market rates to discount future fuel cost savings, consumers pay 54 cents for

$1 of discounted future fuel cost savings. In contrast, Busse et al. (2013) find full valuation

and Allcott and Wozny (2014) estimate that consumers pay 76 cents for $1 of discounted

fuel cost savings. We obtain similar undervaluation as in our baseline using our data and

the methodology in Busse et al. (2013), suggesting that differences in sample period, rather

than methodology, explain the discrepancies.

5Klier and Linn (2016) report rough welfare estimates of the forgone performance, but the underlying WTP estimates
are subject to shortcomings noted in the text. The estimation in this paper improves on our previous attempts to address
endogeneity of fuel economy and performance (Klier and Linn 2012; Zhou 2016), by using actual transaction prices rather than
manufacturer suggested retail prices, and by relaxing assumptions on consumer demand and the exogeneity of power train
attributes. Copeland (2014) demonstrates the importance of using transaction prices rather than retail prices.

5



Consumers are willing to pay $94 for a 1 percent performance increase arising from fuel-

saving technology adoption. This corresponds to a WTP of $1,100 for a 1-second reduction

in the time needed to accelerate from rest to 60 miles per hour (0-to-60 time), which lies

in the middle of the range of estimates in the literature (e.g., Whitefoot and Skerlos 2012;

Greene et al. 2016). Comparing the ordinary least squares (OLS) and IV estimates, we

conclude that failing to account for the endogeneity of fuel economy and performance would

understate consumer valuation of fuel economy and performance.

The WTP estimates have three implications. First, combining our WTP estimates with

estimates of the technological trade-offs between fuel economy and performance (Knittel

2011; Klier and Linn 2016), suggests that consumers are willing to pay about three times

as much for a performance increase as for a fuel economy increase. This result is consistent

with the observation (documented below) that during the 1990s and early 2000s, when

vehicle standards were not tightening, manufacturers adopting fuel-saving technology used

the technologies to increase performance rather than fuel economy.

Second, the estimates imply that, after accounting for the welfare costs of lower

performance, recently tightened standards appear to have had approximately zero net

effect on private consumer welfare. We consider a hypothetical tightening of the standards

by 1 percent during our sample period. Using technology cost estimates from Leard et al.

(2016) (which are based on EPA 2012), and estimated trade-offs between fuel economy and

performance, we find that tighter standards reduce consumer welfare by 0.4 percent per

vehicle sold. This implication contrasts with the conclusion that one would obtain by

following the conventional approach that considers only the estimated undervaluation and

ignores performance changes. In that case, one would estimate that tighter standards raise

consumer welfare by 0.6 percent per vehicle. These results therefore demonstrate the

importance of including forgone performance in analyzing the welfare effects of the

standards.

The third implication regards the effect of fuel economy or greenhouse gas standards

on consumer demand for new vehicles. A particularly contentious aspect of the existing

standards is whether they reduce aggregate consumer demand for new vehicles, which the

marketing literature refers to as consumer acceptance of new vehicles. This possibility is a

manifestation of vintage differentiated regulation (Gruenspecht 1982; Stavins 2005)—that is,

the fact that the regulations apply to new vehicles but not existing vehicles. This form of

regulation raises the cost of purchasing a new vehicle compared with the cost of purchasing

a second-hand vehicle, reducing aggregate new vehicle demand. Lower demand reduces

manufacturer profits, and by delaying the replacement of older with newer vehicles, lower

demand also reduces the overall fuel and greenhouse gas savings of the standards (Jacobsen
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and van Benthem 2015). We find that tightening standards by 1 percent reduces WTP for

new vehicles by $236, or 0.8 percent.

The results illustrate the importance of estimating WTP for performance, and of

accounting for the endogeneity of fuel economy and performance to estimate WTP. Our

preferred estimates of fuel economy valuation contrast with other recent estimates, in that

we find strong evidence of undervaluation. Yet, once we include the welfare costs of lower

performance in the analysis, we find that tighter standards have had approximately no net

effect on private consumer welfare, which contrasts with the conclusion that one would

obtain by ignoring the costs of lower performance.

2 Data and Summary Statistics

2.1 Data
We assembled the main data set from several sources, the most important of which

includes household survey data collected by MaritzCX. Based on vehicle registration

information, MaritzCX contacts households that recently obtained new vehicles. The

survey is administered online or by mail, with a 9 percent response rate. Our data include

households that obtained new vehicles between October 2009 and September 2014. The

final sample includes 535,124 observations, which represents about 1 percent of all new

vehicles obtained during the five-year period.6

The survey includes questions about the new vehicle and household demographics. For

each transaction in MaritzCX, we use the transaction price net of state taxes, prior to a trade-

in, and without adjusting for credit. As in many other recent vehicle market analyses (e.g.,

Busse et al. 2013; Copeland 2014), we use the transaction price, rather than the manufacturer

suggested retail price (MSRP), to reflect the outcome of any price negotiation or unobserved

incentives for the vehicle. In practice, we observe substantial differences between the MSRP

and transaction price. Household demographic characteristics in the data include state of

residence, household size and income, and the respondent’s age, years of schooling, gender,

marital status, and other characteristics.

The MaritzCX survey data include a vehicle identification number (VIN) for each

observation. We use the VIN to define a unique “stub” for each vehicle, which is the

combination of a vehicle’s manufacturer, make, model name, trim/series, fuel type, drive

type, displacement, and number of cylinders. For example, a unique stub is the Toyota

Lexus HS250H Premium, with front-wheel drive and a gasoline-powered engine that has

6The raw data include 930,000 observations of new vehicle transactions. We drop 262,000 observations with missing
transaction prices, and 126,000 observations with missing vehicle attributes or fuel-saving technologies. Because of the IV
strategy, we exclude plug-in vehicles (both all-electrics and plug-in hybrids), which account for less than 1 percent of the
MaritzCX sample. As explained in the text, we weight observations in the final data set to reflect non-random sampling,
response rates, or missing data.
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four cylinders and 2.4-liter displacement. Our definition of vehicle stub is similar to

previous studies (e.g., Allcott and Wozny 2014). Note that two versions of the same stub

can have different body types, which we also observe in the data. The final sample contains

about 2,200 unique vehicle stubs and about 250 observations per stub (Table 1).

The VIN allows us to obtain an extensive set of vehicle attributes that are not found

in the MaritzCX data. We supplement the MaritzCX data with the Chrome Automotive

Descriptive Service database, and use the VIN to obtain vehicle characteristics such as vehicle

weight, horsepower, and torque.

In the empirical analysis, we use the ratio of horsepower to weight as a proxy for passenger

car performance, and the ratio of torque to weight as a proxy for light truck performance.

The performance definition follows previous studies that estimate vehicle demand, such as

Berry et al. (1995), and we use different measures for cars and light trucks. Car consumers

typically have stronger preference for acceleration (which is closely related to the ratio of

horsepower to weight) than for towing ability, whereas light-truck consumers often have

stronger preference for towing ability than acceleration (Knittel 2011). We note that several

aspects of vehicle performance may affect consumer purchasing decisions, such as the time

needed to accelerate from rest to 60 miles per hour, or the time needed to accelerate from

20 to 50 miles per hour (which is more relevant in certain situations such as merging onto a

highway). In practice, these performance measures are highly correlated with one another.

For example, the ratio of horsepower to weight accurately predicts 0-60 time (Greene et al.

2016; Linn 2016). The results are similar if we use the ratio of horsepower to weight for all

vehicles rather than just for passenger cars.

We obtain fuel economy ratings (miles per gallon, mpg) and fuel-saving technology data

from EPA.7 The technology data include indicator variables for whether the vehicle has

variable valve lift and timing, a turbocharger, a supercharger, gasoline direct injection,

cylinder deactivation, continuously variable transmission, and other advanced

transmissions. NRC (2015) concludes that each of these technologies raises a vehicle’s fuel

economy as well as production costs, holding fixed all other attributes including

performance. For example, NRC (2015) estimates that cylinder deactivation, which

effectively shuts off a subset of a vehicle’s engine cylinders when the vehicle operates under

a light load, raises fuel economy by as much as 5 percent, and raises production costs by

$118 to $133 per vehicle. Because EPA data do not recognize potential differences in fuel

economy across body types within a stub, we merge EPA data by vehicle stub. Therefore,

fuel economy and fuel-saving technologies can vary across stubs but not within stubs, and

7https://www3.epa.gov/fueleconomy/data.htm.

8

http://here


the definition of the stub preserves 99 percent of the EPA estimated fuel economy variation

across new vehicles.8

To correct for the non-random sampling of the MaritzCX survey, we obtained data on

US national vehicle registrations from Information Handling Service Market (IHS Market).

We observe the number of new vehicles registered by stub and body type for all vehicles

registered each quarter in the United States from October 2009 through September 2014.

We link the IHS to the MaritzCX data by vehicle stub, body type, year and quarter of the

transaction.

Monthly fuel prices come from the US Energy Information Administration (EIA). The

data set includes the average monthly gasoline prices and diesel fuel prices by Petroleum

Administration for Defense District (PADD), for each of four districts (Midwest, Gulf Coast,

Mountain, and West Coast), and three subdistricts on the East Coast. When constructing the

fuel cost variables described in the next section, we use gasoline prices for gasoline powered

vehicles and flex-fuel vehicles, and diesel fuel prices for diesel fuel powered vehicles.9 We

deflate all transaction and fuel prices using the Consumer Price Index, and adjust them to

2010 US dollars.

We use measures of lifetime fuel costs in post-estimation calculations. Lifetime fuel

costs are estimated from annual vehicle miles traveled (VMT) data from the 2009 National

Household Travel Survey (NHTS), and proprietary data from R. L. Polk on annual scrappage

rates from 2003-2014. Using the NHTS, we estimate average VMT by model year, income

group, and vehicle class (cars or light trucks) following the methodology in Lu (2006). With

the R. L. Polk data, we estimate a survival rate as a function of vehicle age following Lu

(2006). The estimated schedules appear in Appendix Table B.5. We assume that vehicles

have a maximum lifespan of 35 years for cars and 40 years for light trucks. Appendix A.1

explains the methodology for computing scrappage rates and VMT in more detail.

2.2 Summary statistics
We report summary statistics from the main data set, discussing vehicle attributes first

and consumer demographics second. Panel A of Table 1 provides information about the

distributions of certain vehicle characteristics. Observations are weighted by registrations,

and the table indicates that most vehicles in the sample use gasoline rather than diesel fuel

8We do not include fuel-saving technologies that were widely adopted at the beginning of the sample, such as variable valve
timing, or technologies that consumers value directly (either negatively or positively), such as stop-start ignition. The EPA data
include more detail on transmissions than Chrome. We average the technology variables across transmission type (automatic
or manual), and for most observations in the final data set the technology variables are either zero or one, implying that the
aggregation sacrifices little variation. Below we refer to the technology variables as indicator variables for convenience.

9Flex-fuel vehicles can use fuel that has a high ethanol content, but in practice few owners of flex-fuel vehicles use gasoline
with ethanol content greater than 10 percent (Anderson and Sallee 2011).
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(recall that the sample excludes plug-in vehicles). Mean fuel economy is about 23.9 mpg,

and the table indicates substantial variation in fuel economy and performance.

Figures 1 to 3 illustrate time series variation in several vehicle attributes and

technologies. We plot registration-weighted model-year averages of vehicle attributes and

technology adoption rates over time. The fuel economy standards for light trucks tightened

throughout the period, and the standards for cars began tightening in model-year 2012.

Figure 1 shows that average fuel economy increases after 2011. Horsepower, torque, and

weight fluctuate over the same period.

Figure 2 reports statistics for engine and transmission attributes. Engine size, as

measured by the number of cylinders or displacement, decreases over the sample period.

Market shares of the three drive types are fairly stable over the time period. The market

share of diesel fuel vehicles increases between model-years 2010 and 2014 (the Volkswagen

emissions scandal occurred after the end of the sample). The market shares of hybrids and

flex-fuel vehicles decrease at the end of the sample. The latter may reflect the elimination

of the flex-fuel vehicle credits that manufacturers could use to demonstrate compliance

with the fuel economy standards (Anderson and Sallee 2011).

Figure 3 shows the market shares of fuel-saving technologies that we use to instrument for

fuel economy and performance. In most cases the market shares increase over time, such as

an increase in the gasoline direct injection market share from 9 to 56 percent. Most decreases

in this figure arise from year-to-year changes in vehicle market shares rather than instances

of manufacturers removing technologies from particular vehicles. Klier and Linn (2016) and

Klier et al. (2017) suggest that tightening fuel economy standards as well as market factors

such as fuel prices explain the technology adoption.

Figures 4 and 5 illustrate monthly variation in fuel prices and vehicle prices, with each

dashed vertical line indicating the beginning of a calendar year. Although we do not use fuel

prices to identify WTP for fuel economy, for context we summarize the fuel price variation

during the sample. Panel A of Figure 4 shows that the sample includes periods of rising

fuel prices (2009 through mid-2011) and volatile or declining fuel prices (mid-2011 through

2014). Panel B shows that regional prices are positively correlated with one another, and

that prices in the West Coast and Midwest regions tend to be higher than in other regions.

Regional price differences vary somewhat over time. Both Figures 4 and 5 indicate regular

seasonal variation. Fuel prices tend to be higher in the summer than in other quarters, and

vehicle prices tend to increase over the year, before decreasing at the end of the year.

Turning to consumer attributes, Panel A of Figure B.1 displays a histogram of the

reported income distribution. The modal income is $75,000 to $100,000. Typical household

income of vehicle buyers in our sample is higher than the typical US household income
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during this period, which reflects the fact that higher-income households are more likely

than lower-income households to obtain new vehicles. The income distribution in our data

is fairly close to the income distribution of new vehicle buyers as reported in the 2009 wave

of the NHTS, which is a nationally representative survey. Panel B of Table 1 shows further

information about the households in the sample, including average household size as well as

the age, gender, urbanization, and marital status of the respondent.

Table B.1 reports information on the form of payment used to obtain the vehicle. About

two-thirds of consumers finance their purchases, with an average loan rate of 3.34 percent

for about 5 years. About one quarter of consumers purchase their vehicles entirely via cash,

and the remainder lease their vehicles.

Table 2 shows changes in vehicle fuel economy and horsepower since 1996 (we use data

from Leard, Linn, and McConnell (forthcoming)). Recall that fuel economy standards for

light trucks began increasing in 2005 and fuel economy for cars began increasing in 2012. The

table shows that fuel economy increased much more quickly and horsepower increased much

more slowly during periods when standards tightened; Klier and Linn (2016) demonstrate

that the standards caused these changes. This evidence motivates our analysis of the effects

of tightening standards on private consumer welfare, accounting for changes in fuel economy

as well as performance.

3 Empirical Strategy

3.1 Empirical framework
Our empirical objective is to estimate consumer valuation for fuel economy and

performance. We adapt the approach taken by Busse et al. (2013), which is to estimate

separate reduced-form price and quantity regressions, and combine the results to estimate

WTP. To illustrate this approach, we consider a hypothetical manufacturer that produces a

single type of vehicle. For convenience, we conceive of a Bertrand model with

heterogeneous products. (As we explain below, the empirical strategy does not depend on

the underlying market structure.) We abstract from fuel economy and emissions standards

for simplicity, and control for those standards in the empirical analysis as described below.

The manufacturer faces a downward-sloping residual demand curve for that vehicle. We

define the WTP for a fuel economy increase as the vertical shift of the demand curve

caused by the fuel economy increase; WTP for a performance increase is defined similarly.

The definition holds fixed all other attributes of the vehicle.

Figure 6 provides the intuition behind this approach. We describe the initial

equilibrium using demand curve D1 and marginal cost curve MC1. The manufacturer
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chooses the price such that at the resulting quantity, Q1, the marginal revenue curve

(indicated by the downward sloping dashed line) intersects the marginal cost curve MC1.

The figure illustrates a hypothetical situation in which the manufacturer adopts fuel-

saving technology and increases the vehicle’s fuel economy. The higher fuel economy reduces

fuel costs, causing the demand curve to shift to D2. The technology adoption increases

marginal costs to MC2, which results in the equilibrium price of P2 and equilibrium quantity

of Q2.

The consumer WTP for the fuel economy increase corresponds to the vertical shift of the

demand curve, which is equal to the sum l1 + l2. As explained in the next subsection, we

use a regression of the vehicle’s equilibrium price on its fuel costs to identify the first part

of the sum, l1 ≡ P2 − P1. We use a quantity regression to identify the equilibrium quantity

effect Q2 −Q1. The term l2 depends on the equilibrium quantity change, as well as the slope

of the demand curve. Therefore, to estimate WTP for fuel economy, we estimate the effects

of fuel economy on the equilibrium price and quantity, and calculate WTP by assuming a

particular slope of the demand curve. As Busse et al. (2013) note, an alternative approach

would be to estimate the demand curve directly, which would require certain assumptions on

the structure of the demand at the outset. In contrast, the reduced-form approach requires

only an assumption on the slope of the demand curve, which is made after estimating the two

equations. An advantage of the reduced-form approach is that it facilitates accounting for

the endogeneity of fuel economy and performance. Below, we show that the main conclusions

are insensitive to the assumed demand elasticity.

3.2 Price regression
This subsection describes the estimation of the equilibrium relationship between a

vehicle’s transaction price, pijt, and its attributes, where the subscript indicates that

household i obtained new passenger vehicle j in month t. The approach is similar to that

taken in the hedonic literature (e.g., Rosen 1974). Specifically, we assume a log-log

relationship between price and attributes:

ln pijt = αf ln fcijt + αp ln perfjt +Xijtδ + εijt (1)

where fcijt is the vehicle’s fuel costs; perfjt is the vehicle’s performance; Xijt is a vector of

variables described next; ejt is an error term; and the αs and δ are coefficients to be estimated.

The performance variable is the horsepower-to-weight ratio for cars and the torque-to-weight

ratio for light trucks. The vector Xijt includes PADD-month-fuel type fixed effects to account

for aggregate and regional supply and demand shocks, as well as seasonality in fuel or vehicle

prices (see Figures 4 and 5); state fixed effects to control for state-level demand or supply

shocks; a model-year fixed effect to control for macroeconomic shocks and the demand for

12



used vehicles; an indicator if the vehicle has flex-fuel capability; fixed effects of the number

of transmission speeds, as well as the interactions of these variables with an indicator equal

to one if the vehicle is a light truck; and controls for fuel economy regulatory stringency. At

the end of the subsection, we explain the motivation for controlling for transmission speeds

and flex-fuel capability.

The controls for fuel economy regulatory stringency incorporate two sources of stringency

variation. First, under the current standards, a vehicle’s fuel economy requirement depends

on its size; manufacturers selling smaller vehicles must attain a higher overall level of fuel

economy. Second, at the outset of the sample period, manufacturers varied in the difference

between the level of fuel economy required by the standards and the level of fuel economy

their vehicles actually attained (Jacobsen 2013). Stringency is measured as in Klier and Linn

(2016), by computing the difference between the fleet level fuel economy a manufacturer must

attain to meet the standards in model-year 2016 and the manufacturer’s average fuel economy

at the beginning of the sample. The stringency variable is interacted with model-year fixed

effects, to allow for the possibility that regulatory pressure varies over time.

In equation (1) we separate fuel costs and performance from the other attributes because

estimating separate consumer valuation of fuel costs and performance is the main focus of

the paper. The fuel cost variable (measured in dollars per mile) is equal to the price of

fuel in the month and the PADD region in which the vehicle is obtained, divided by the

vehicle’s fuel economy (mpg). Under the assumption that the expected real fuel price follows

a random walk, which is consistent with Anderson et al. (2013), the ratio of the fuel price to

fuel economy is proportional to the present discounted value of fuel costs over the lifetime

of the vehicle (Busse et al. 2013). The PADD-month-fuel type interactions absorb the direct

effect of fuel prices on fuel costs, because of which the coefficient αf is identified by fuel

economy variation.

Because the price, fuel costs, and performance variables enter equation (1) in logs, the

coefficients represent elasticities. We expect the fuel cost coefficient to be negative because

higher fuel costs raise the total cost of the vehicle over its lifetime, and we expect the

performance coefficient to be positive. We interpret these estimates as the effect of fuel

economy or performance on the average transaction price across all vehicles in the

market.10 The interpretation of the coefficients does not depend on the underlying demand

or competitive structure of the market.

Although equation (1) yields a straightforward economic interpretation of the

coefficients, the main identification concern is that the vehicle characteristics included in

10We have estimated versions of equation (1) that allow the fuel cost and performance coefficients to vary across vehicles,
such as by car or light truck. Although we find some evidence that the coefficients vary across vehicles, in many cases the
differences are imprecisely estimated.
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the regression may be correlated with omitted vehicle or household characteristics. For

example, vehicles with high performance may include more comfortable seating or better

entertainment devices than vehicles with lower performance. Although our data include an

extensive set of characteristics, and more than the vehicle demand literature has typically

used, we do not observe all vehicle characteristics that consumers value. For example, we

observe seating material (cloth vs. leather), but overall seating comfort depends on other

factors, such as lower back support, which our data do not include. OLS estimates of

equation (1) would be biased if we fail to include all vehicle attributes that consumers

value.

For expositional purposes we use the term quality to refer to the combined effect of

all unobserved vehicle characteristics on the equilibrium price. The term includes seating

comfort, entertainment devices, and anything else about the vehicle that consumers value

but that is not measured in our data. Quality also depends on consumer perceptions of

the unobserved attributes. Using this definition, quality can vary across vehicles and within

a vehicle over time. Obtaining unbiased estimates of WTP for fuel costs or performance

therefore amounts to controlling for quality.

One approach to control for quality would be to include a full set of stub fixed effects—i.e.,

to adapt the approach taken in Busse et al. (2013) and several other recent studies of new

vehicle demand. The fixed effects control for time-invariant vehicle quality, but they do not

fully address the potential omitted variables bias because within-stub changes over time in

fuel economy or performance may be correlated with changes in quality. Specifically, when a

manufacturer redesigns its vehicle and alters its fuel economy or performance, it may change

other vehicle quality attributes at the same time; the fixed effects do not control for such

changes. Moreover, the fixed effects do not control for changes in consumer perceptions over

time.

We could include interactions of stub fixed effects and model year, and identify the

fuel cost coefficient by cross-sectional and time series variation in fuel prices. However,

there would be two problems with this approach. The first is that the coefficient would be

identified by fuel price variation rather than fuel economy variation. As we argued in the

introduction, the consumer response to fuel economy is directly relevant to standards that

affect fuel economy and not fuel prices, and consumers may respond differently to the two

sources of variation in fuel costs. The second problem is that it is not possible to identify

the performance coefficient because the stub by year interactions would be perfectly colinear

with performance.
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Given these considerations, we address potential omitted variables bias in equation (1)

by adding vehicle stub fixed effects and instrumenting for fuel costs and performance. The

estimating equation is

ln pijt = αf ln fcijt + αp ln perfjt +Xijtδ + ηj + εijt (2)

where ηj denotes a fixed effect for vehicle stub j. There is no fuel economy variation within

a stub and model year, but fuel economy can vary across stubs and within a stub over

time. The fixed effects absorb the vehicle’s fuel type and whether the power train is a

hybrid, but they do not absorb the number of transmission speeds or whether the vehicle is

flex-fuel capable. Consequently, we include those attributes in Xijt. The instruments are

the fuel-saving technologies shown in Figure 3: variable valve lift and timing, turbocharger,

supercharger, gasoline direct injection, cylinder deactivation, continuously variable

transmission, and other advanced transmissions. EPA (2014) and NRC (2015) identify

these technologies as improving the efficiency of the engine or transmission. We interact

the instruments with an indicator equal to one if the vehicle is a light truck, which allows

for the possibility that the technologies have different effects on fuel economy or

performance across cars and light trucks (NRC 2015). The fact that fuel costs and

performance enter equation (2) in logs is consistent with engineering assessments of the

technologies that indicate that they affect fuel economy proportionately.

Variation of the instruments arises from the tightening fuel economy and emissions

standards, combined with the timing of vehicle redesigns. During the period of analysis,

fuel economy standards tightened by about 4 to 5 percent per year after a long period in

which they were unchanged. As Klier and Linn (2016) show, the tighter standards doubled

the rate at which technologies were adopted, causing adoption to be more widespread

across vehicles in the market than previously observed. Vehicles are typically redesigned in

4- to 6-year cycles, and manufacturers stagger the redesigns across vehicles. Because of the

staggering, manufacturers do not adopt technologies simultaneously on all of their vehicles.

Note that because we control for regulatory stringency, the first stage is identified by

variation induced by the tightening standards interacting with staggered vehicle redesign.

The IV strategy is valid if the instruments predict fuel economy and performance and

are uncorrelated with the error term in equation (2). Failing to satisfy the first condition

would raise concerns about weak instruments bias. However, the results reported in the next

section indicate a strong correlation among the instruments, fuel economy, and performance,

minimizing such concerns. Moreover, the results in the next section indicate that the values

of fuel costs and performance predicted in the first stage are sufficiently uncorrelated with

one another that we can identify the coefficients on fuel costs and performance in the second

stage, equation (2).
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The second condition is supported both by theoretical arguments that we present in

this section and by empirical evidence that we present in the next section. First, we choose

technology variables that consumers do not value per se (as opposed to the fuel economy or

performance increase that they enable). If consumers valued the technologies, the

technologies would violate the second condition because they would be correlated with the

error term in equation (2). For this reason, we exclude technologies for which there are

widespread reports of consumer dissatisfaction. For example, the Atkinson cycle

gasoline-powered engine that Mitsubishi installed in some of its vehicles received negative

reviews from consumers because it harmed performance or other vehicle attributes.11 This

feature of the IVs represents an improvement over other studies, such as Whitefoot et al.

(2013), which have used power train characteristics as instruments because consumers

likely value those characteristics directly, yielding biased WTP estimates.

Second, the fact that the standards roughly doubled the rate of technology adoption

implies that manufacturers focused more on adopting technology during redesigns than

they do typically. The source of technology variation is distinct from typical decisions

about whether to install technology, when manufacturers may be more likely to redesign

the vehicle to adopt technology as well as improve quality. For example, given time and

resource constraints for redesigning vehicles, during our sample period a manufacturer is

less likely to change vehicle quality in response to a demand shock than during prior

periods in which standards were not tightening. Therefore, the tightening standards,

combined with staggered redesigns, reduces the likelihood that the technology variables are

correlated with quality.

Note that this consideration reduces concerns that household demographics, which

equation (2) does not include, may be correlated with quality. For example, high-income

households may have higher WTP for seating comfort. The fact that the standards drove

fuel-saving technology adoption during the sample period reduces the likelihood that

omitted demographics are correlated with quality; in the robustness analysis below, we

show that the instruments are uncorrelated with demographics.

Third, manufacturers sometimes adopt fuel-saving technology in luxury vehicles before

adopting it in other vehicles. This behavior would cause technology adoption to be

correlated with unobserved quality at any point in time. For example, manufacturers may

adopt technology first for luxury versions of a particular model, or they may adopt

technology first for higher-end models prior to lower-end models (such as a Lexus sedan

11There have been a few negative reports related to consumer perceptions of continuously variable transmission and cylinder
deactivation. We prefer to include them because these technologies have been widely adopted (see Figure 3), and because
the negative reports are scarce. In the robustness analysis we show that the coefficient estimates are similar if we omit these
variables as instruments.
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prior to a Toyota sedan). The stub fixed effects address cross-sectional and time-invariant

correlations between quality and technology adoption. For example, the fixed effects

control for situations in which a luxury vehicle has a fuel-saving technology throughout the

sample period, whereas another vehicle does not have the technology during the period.

The main remaining concern is that manufacturers simultaneously change quality and

adopt technology. We have argued that this is less likely to be the case during our sample

than during historical periods of technology adoption. Moreover, Section 4.3 shows that the

results are robust to adding several proxies for quality to equation (2).

3.3 Quantity regression
The empirical strategy for the quantity regression is similar to that for the price regression.

We use the log of quarterly registrations as the dependent variable and estimate the equation

at the household level:

ln qjt = βf ln fcijt + βp ln perfjt +Xijtγ + ξj + νijt (3)

where the independent variables are the same as in equation (2). The identification of the

fuel cost and performance coefficients is the same as for the price regression. We use vehicle

fixed effects and the same instruments to account for the endogeneity of fuel economy and

performance. Note that vehicle fixed effects ξj are defined by trim, fuel type, drive type, and

body type, to match the aggregation of the registration data.

The fact that the fuel cost and performance coefficients in equation (3) are identified

by the same variation as the corresponding coefficients in equation (2) is an important

aspect of our empirical strategy because it implies that the coefficients are identified by the

same underlying consumer preferences and manufacturer supply responses. Consequently, we

interpret the coefficients in both equations as the average equilibrium effects across vehicles in

the market. In contrast, if we were using different estimation samples or empirical strategies

for the two equations, one might be concerned that the coefficients represent averages across

different sets of vehicles, in which case it would not be appropriate to combine the results to

infer WTP for fuel economy and performance.

An important difference between interpreting the price and quantity regressions is that for

the quantity regressions the signs of the fuel cost and performance coefficients are ambiguous.

On the one hand, an increase in fuel economy (or performance) causes the demand curve to

shift away from the origin, increasing equilibrium quantity (see Figure 6). This effect would

cause a negative fuel cost coefficient and a positive performance coefficient. On the other

hand, because the manufacturer adopts technology to raise fuel economy or performance,

marginal costs increase, which reduces equilibrium quantity and pushes the coefficients in
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the opposite direction as the demand curve shift. The net equilibrium effect on quantity is

ambiguous.

4 Estimation Results

4.1 Baseline estimates of willingness to pay for fuel cost savings

and performance
Table 3 reports the main coefficient estimates. Column 1 shows the OLS estimates of

equation (1) and the corresponding quantity regression, and column 2 includes stub fixed

effects instead of the vehicle attributes that define the stub. We report the OLS results

for comparison with our preferred IV estimates of equations (2) and (3) in column 3. The

regressions include the independent variables indicated in the table notes, which control

for demand and supply shocks at the regional, monthly, or state level, as well as for the

stringency of fuel economy standards. The stub fixed effects in columns 2 and 3 control for

stub-level unobservables that may be correlated with fuel costs or performance. Table B.2

reports the first stage estimates for fuel costs and performance.

Because the transaction price, fuel costs, and performance enter equations (2) and (3) in

logs, we interpret the fuel cost and performance coefficients as elasticities. Panel A reports

the estimates of the price regression, equation (2). Comparing columns 1 and 2 shows that

the stub fixed effects increase the magnitude of the fuel cost coefficient. Comparing

columns 2 and 3, the OLS estimate of the fuel cost coefficient is -0.156, and the IV estimate

is -0.354, both of which are negative and statistically significant at the one percent level. In

both columns the fuel cost coefficient is identified by fuel economy variation because the

other independent variables absorb the fuel price variation. The larger magnitude of the IV

estimate suggests that time-varying quality is positively correlated with fuel costs (and

negatively correlated with fuel economy), which biases the OLS estimate toward zero. The

OLS estimate of the performance coefficient in column 2 is negative, implying

counterintuitively that in equilibrium consumers pay less for vehicles with better

performance (i.e., those having a higher ratio of horsepower or torque to weigh). In

contrast, the IV estimate of the performance coefficient is 0.203, which is positive and

significant at the one percent level, suggesting that consumers are willing to pay for better

performance. Comparing the OLS and IV estimates of the performance coefficient in

columns 2 and 3 suggests that when stub fixed effects are included, unobserved quality is

negatively correlated with performance. Thus, failing to account for the endogeneity of fuel

costs and performance yields substantially biased estimates; adding stub fixed effects to the

OLS equation in column 1 does not address the omitted variables bias.
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Panel B reports the estimated coefficients from the quantity regression, equation (3).

In column 3 the IV coefficient on fuel costs is -0.338 and the coefficient on performance is

0.371, both of which are statistically significant at the one percent level. Whereas Busse

et al. (2013) find larger quantity than price responses, we find quantity and price responses

of comparable magnitudes to one another. Below we discuss potential explanations for the

differences between our results and theirs.

We briefly discuss the economic magnitudes of the estimated coefficients on fuel costs

and performance. The baseline estimates in column 3 suggest that a 1 percent fuel economy

increase (which reduces fuel costs by 1 percent) raises the equilibrium transaction price and

quantity by about 0.3 percent. A 1 percent performance increase raises the transaction price

by 0.2 percent and raises the quantity by 0.4 percent. To convert these estimates to WTP, we

first compute the marginal equilibrium price effect (l1 in Figure 6) using the price regression

coefficients. Then we adjust for the quantity change (l2 in Figure 6) using the the quantity

regression coefficients and the assumed own-price elasticity of demand. For the baseline we

assume an elasticity of -3, which lies in the middle of the range considered in Busse et al.

(2013).

Panel C converts the coefficient estimates to estimates of the WTP for a 1 percent fuel

economy or performance increase. The baseline estimates suggest that consumers are willing

to pay about $134 for a 1 percent fuel economy increase and about $94 for a one percent

performance increase. The OLS estimates in column 1 are positive, as expected, but they

are smaller than the IV estimates. The OLS estimates in column 2 yield a larger WTP

for fuel economy than the preferred IV estimate, but an implausibly negative WTP for

performance. For the IV estimates, Appendix Table B.4 reports estimates of l1 and l2; l1

explains 76 percent of the WTP for fuel economy and 62 percent of the WTP for performance.

Using the estimated relationship between the ratio of horsepower to weight and 0-to-60 time

from Greene et al. (2016), the performance coefficient estimate implies that consumers are

willing to pay about $1,100 for a 1-second decrease in 0-to-60 time, which is similar to many

estimates in the literature.12

4.2 Do consumers undervalue fuel cost savings?
In this section we use two measures of consumer valuation from the literature to

interpret the magnitude of the fuel cost coefficients in column 3 of Table 3. The next

12In theory, households expecting to drive their vehicles intensively should have higher WTP for fuel economy than other
households. We test this hypothesis using survey information about the household’s expected annual miles traveled for the
new vehicle. We compute the average mileage by household income group and vehicle type (car or light truck). We add to the
baseline specification the interaction of this variable with log fuel costs. The interaction term has the expected positive sign
(see Table B.9). The magnitude of the interaction coefficient implies relatively little variation across households. The estimated
WTP for performance is similar to the baseline.
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section compares this magnitude with the performance estimate and draws implications for

the energy efficiency gap.

The first measure is the valuation ratio, which is the amount the marginal consumer is

willing to pay for a 1 percent fuel economy increase divided by the present discounted value

of the associated future fuel cost savings. If the ratio equals one, the consumer fully values

the fuel economy improvement; a value less than one implies undervaluation and a value

greater than one implies overvaluation.

The amount the consumer pays for the fuel economy increase is reported in Panel C

of Table 3, i.e., $134. For a vehicle purchased in year y, the present discounted value of

future fuel costs is given by PDVfc =
∑y+T

τ=y
πτVτfτ
m(1+r)τ

, where T is the maximum lifetime of the

vehicle, πτ is the probability that the vehicle is not retired before year τ (which is sometimes

referred to as the survival probability rate), Vτ is the number of miles the vehicle is driven

in year τ , fτ is the real fuel price in year τ , m is the vehicle’s fuel economy, and r is the

real discount rate. See Section 2.1 for a summary of the methodology for estimating T ,

πτ , and Vτ , and Appendix Sections A.1 and A.2 for details. The real discount rate r is

computed using the observed average annual percentage rate (APR) adjusted by the average

inflation rate. For consumers who lease or finance their purchases, the rate represents the

opportunity cost of the monthly lease or loan payments. For consumers paying by cash,

the rate represents the opportunity cost of investing the cash in other financial instruments

(Allcott and Wozny 2014). In our sample, the average borrowing rate is about 3.3 percent

and the average inflation rate is 2.0 percent, implying a 1.3 percent real borrowing rate. We

set household discount rates equal to this real borrowing rate.13 Given the evidence reported

in Anderson et al. (2013), we assume that real fuel prices follow a random walk, in which

case the current price equals the expected real future price. We note that Allcott and Wozny

(2014) and Sallee et al. (2016) directly estimate the valuation ratio, whereas we estimate the

WTP and calculate the valuation ratio subsequently; inferences for consumer undervaluation

do not depend on the approach. We choose this approach because it facilitates computation

of multiple measures of consumer valuation that we can compare with the literature.

Panel A of Table 4 reports the valuation ratio results. The baseline calculation of the

fuel cost savings is $249. Combining this with the WTP in Table 3 Panel C, we compute a

valuation ratio of 54 percent, meaning that the marginal consumer pays 54 cents for $1 of

present discounted fuel cost savings (where future fuel costs are discounted using the market

13Alternatively, for households paying cash and not taking out an auto loan, we could impute their discount rate using other
market rates, such as the real rate of return of stocks or bonds. We prefer to use the APR because households that paid for their
vehicle with cash could have taken out an auto loan that would have had a similar APR to the average APRs we observe. The
decision not to take out a loan reveals that the APR is an upper bound to the opportunity cost of funds for these households.
That is, if the opportunity cost of funds were higher than the APR, we would observe these households taking out auto loans
and purchasing higher-yield investments. We evaluate the sensitivity of this assumption as a robustness check.
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rate). This valuation ratio is lower than the 76 percent reported in Allcott and Wozny

(2014) and 100 percent in Sallee et al. (2016), but as we noted in the introduction, the

broader literature has yielded a wide range of valuation ratios, from close to zero to much

greater than 100 percent.

Computing the valuation ratio requires a number of assumptions, and we report

alternative calculations based on differing assumptions. Busse et al. (2013) evaluate the

extent of consumer undervaluation using the same methodology from Lu (2006), but using

older data than we use. If we use their data instead of ours, the present discounted value of

fuel cost savings declines from $249 to $184. Using their data we obtain a valuation ratio of

73 percent, showing that the undervaluation is robust to the choice of data.

Table B.6 shows that the undervaluation is robust to other demand elasticities. The table

also reports results using alternative discount rates that have been used in the literature, of 5,

7, and 10 percent. The 10 percent discount rate would seem to indicate full valuation, but this

discount rate is much higher than those observed in our sample, making it inappropriate for

discounting fuel cost savings. Moreover, we find undervaluation if, instead of assuming that

fuel prices follow a random walk, we use projected fuel prices from the Energy Information

Administration’s Annual Energy Outlook. Thus, we consistently find undervaluation when

we vary the survival probability, miles traveled, demand elasticity, discount rate, and fuel

price projection.

We report a second valuation measure, which is the implicit discount rate. This is the

discount rate that implies a valuation ratio equal to one. In other words, if a consumer

uses the implicit discount rate to discount future fuel cost savings, the consumer would be

willing to pay $134 (i.e., the amount reported in Panel C of Table 3) for a 1 percent fuel

economy increase. An implicit discount rate equal to market borrowing rates would imply

full valuation of fuel economy increases; a discount rate higher than market rates would

imply undervaluation; and a discount rate below market rates would imply overvaluation.

Panel B in Table 4 reports the baseline estimated implicit discount rate of 12 percent. This is

much higher than the average reported real borrowing rate in our data, which is 1.3 percent,

implying undervaluation of fuel economy improvements.

Our conclusion that the implicit discount rate exceeds market borrowing rates contrasts

with Busse et al. (2013), who estimate implicit discount rates that are roughly equal to

market borrowing rates. The second column in Table 4 shows that this difference does not

arise from the fact that our baseline estimate is based on differing assumptions on vehicle

miles traveled and survival probability. Using their assumptions yields a similar implicit

discount rate to our baseline.
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Another possible explanation for the difference between our results and theirs is that they

identify consumer valuation from fuel cost variation induced by fuel price variation. If the

consumer response to fuel price induced changes in fuel costs differs from the response to

fuel economy induced changes in fuel costs, this could explain the discrepancy between our

results and theirs.

However, our replication of their methodology using our data suggests otherwise (see

Tables B.7 and B.8 for the estimation results). Table 5 shows that whereas Busse et al. (2013)

report discount rates of -4.0 to 9.8 percent, using our data and their methodology we estimate

higher discount rates of 2.1 to 25 percent (see Table B.6). Thus, we find consistent evidence

of consumer undervaluation regardless of the estimation strategy or parameter assumptions.

Differences in the sample period could explain these results, if WTP depends on fuel prices

(which were higher during our sample), on macroeconomic conditions (our sample includes

the recovery from the 2008 to 2009 recession), or on other factors that differed between the

two sample periods.14

4.3 Addressing potential sources of bias
As discussed in Section 3, the IV strategy would yield biased estimates if time-varying

vehicle quality is correlated with the technology instruments, after controlling for average

quality of each vehicle stub. This subsection provides evidence supporting the validity of the

IV estimates.

If the instruments are correlated with quality, we would expect that the fuel economy and

performance estimates would change if we add variables that are likely to be correlated with

quality. For example, consider vehicles that have (unobserved) automated safety features,

such as blind spot detection. If manufacturers add automated safety features at the same time

as adopting technology, quality would be correlated with the instruments. But, in this case

quality would also be correlated with income and household size, as one expects households

that have higher income or that include children to have higher WTP for automated safety

features. Based on this reasoning, we add to the baseline IV specification of equations

(2) and (3) six demographic controls: respondent’s age, household size, male indicator,

urban indicator, fixed effects for the respondent’s education group (12 groups), and fixed

effects for 23 household income groups. Note that the sample is smaller than the baseline

because of missing demographics data. Column 2 of Table 6 reports the coefficient estimates

when including these controls (column 1 repeats the baseline estimates for convenience),

14Another commonly used measure of consumer valuation of fuel economy is the payback period. We follow the definition of
payback period that EPA and NHTSA use, and compute the number of years from the time of purchase until the discounted
stream of fuel savings equals the estimated WTP for a 1 percent fuel economy increase. Under our baseline assumption, the
payback period for 1 percent fuel economy increase is 7 years. Under assumptions used in Busse et al. (2013), the payback
period is 9 years.
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with Panel A reporting price regressions and Panel B reporting quantity regressions. The

estimates are similar to the baseline. We have also estimated equations (2) and (3) with

additional demographic controls in column 3, including the number of wage earners, number

of children, an indicator equal to one if the respondent’s spouse is employed, fixed effects

for the respondent’s race (6 categories), and fixed effects for the respondent’s occupation (20

categories). The additional demographics further reduce the sample size, but the coefficient

estimates are similar to the baseline.

As an alternative approach, we use several consumer-reported vehicle attributes in the

MaritzCX survey that may be correlated with vehicle quality. The variables record on a scale

of 1 to 5 the consumer’s perception of: overall appearance, usefulness for carrying passengers,

performance of the entertainment system, exterior styling and workmanship, overall front

seat room, interior material including seating, interior styling, quietness inside the vehicle,

anti theft equipment, and exterior workmanship and attention to detail. We include these

11 variables as additional controls and report results in column 4. Including these proxies

for quality does not affect the results.

Quality may also vary geographically over time. Returning to the safety example, we may

expect residents of the Northeast to have higher WTP for safety features because of the poor

weather conditions in that region. The state fixed effects control for the average probability

that the vehicles contain these features, but preferences or costs of the features may vary over

time. If preference or cost changes are correlated with technology adoption, the IV estimates

would be biased. In column 5 we include richer time fixed effects by interacting state fixed

effects with model-year fixed effects, and interacting state fixed effects with month-of-year

fixed effects. The coefficient estimates are similar to the baseline.

Above, we noted that there have been a few negative reports of consumer experiences

with continuously variable transmissions and cylinder deactivation, particularly when these

technologies first entered the market. If consumers value (either negatively or positively)

these technologies for reasons other than their effects on fuel economy and performance,

the IV estimates would be biased because the instruments would be correlated with quality.

Column 6 shows that omitting these variables as instruments does not affect the point

estimates, reducing such concerns.

If households face borrowing constraints, changes in financial market conditions could

affect borrowing costs and the composition of households that choose to purchase a new

vehicle. If WTP varies across households and the variation is correlated with borrowing

costs, the WTP estimates could be biased. However, column 7 shows that controlling for

financing arrangement and payment type does not affect the results, reducing this concern.
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As a final validation of the IV strategy, we report the reduced-form relationship between

transaction prices and the fuel-saving technology instruments. Because the technologies can

increase both fuel economy and performance, we expect a positive and monotonic relationship

between a vehicle’s price and the number of technologies it contains. In contrast, although we

expect a positive correlation between the number of technologies and quality, the relationship

between the number of technologies and quality is not necessarily monotonic. Therefore, if

quality is correlated with the instruments, we may observe a non monotonic relationship

between the number of fuel-saving technologies in a vehicle and its transaction price. We

compute the number of technologies for each vehicle in the sample (we top-code the count

at five because few observations contain more than five technologies). We regress the log of

the transaction price on the same independent variables as in the baseline specification of

equation (2), as well as fixed effects for the number of fuel-saving technologies. The top panel

of Figure 7 plots the coefficients and 95 percent confidence intervals. The figure illustrates a

positive and monotonic relationship between the transaction price and the technology count.

We estimate a second reduced-form regression of the transaction price on indicator

variables for each technology. If the instruments are valid, each technology should increase

the transaction price. However, if quality is positively correlated with some instruments

and negatively correlated with others, we could observe negative correlations among

transaction price and the latter technologies. The bottom panel of Figure 7 reports the

estimated coefficients and confidence intervals. All coefficients are positive and most are

statistically significant at the 5 percent level. Overall, both sets of reduced-form regressions

support the IV strategy.

5 Implications
In this section we discuss the implications of our estimates for the effects of fuel economy

and greenhouse gas emissions standards on consumer welfare. The approach is to consider

small hypothetical changes in fuel economy and emissions standards, and to use the empirical

estimates to infer the consumer welfare implications. For simplicity and consistency with

EPA and NHTSA benefit-cost analysis, we assume that markets are imperfectly competitive

with free entry and exit. Manufacturers pass to consumers cost changes, and profits are

unaffected in these examples.

5.1 Comparing consumer valuation of fuel economy and

performance
In this subsection we compare the magnitudes of the WTP for fuel economy and

performance. Manufacturers can use fuel-saving technology, such as variable valve lift and
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timing, to increase fuel economy or performance. Historically, during periods of time in

which the stringency of fuel economy standards was not changing, manufacturers have

adopted fuel-saving technology and retuned engines to improve performance while

maintaining fuel economy. Between 1990 and 2005 the standards did not change, and the

market-wide average fuel economy was unchanged while the ratio of horsepower to weight

increased by 33 percent (Klier and Linn 2012). Above, we showed in Table 2 that when

light truck standards began to tighten in 2005, the rate of horsepower improvements slowed

while fuel economy began increasing. For cars, standards began to tighten in 2011, and we

observe the same shift from horsepower to fuel economy improvements. Klier and Linn

(2016) show that the tightening standards caused a shift to improving fuel economy and a

shift away from improving other vehicle attributes. Because manufacturers typically use

fuel-saving technology to raise performance when fuel economy standards are not

tightening, these patterns suggest that consumers value performance more than fuel

economy.

To assess whether our WTP estimates are consistent with these patterns, we combine the

estimates with the estimated technological trade-off between fuel economy and performance

from the literature. Our WTP estimates suggest that consumers would pay $134 for 1

percent fuel economy increase. Alternatively, suppose a manufacturer uses the same fuel-

saving technology that would raise fuel economy by 1 percent, and increases performance

rather than fuel economy. Knittel (2011) and Klier and Linn (2016) estimate technical

trade-offs among fuel economy, horsepower, and other attributes. These estimates imply

that, holding weight and marginal costs constant, rather than increasing fuel economy by

1 percent the manufacturer could increase performance by 3 to 6 percent (depending on

market segment and the estimates from the two previous articles). Our WTP estimates

suggest that consumers would pay about $394 for the performance increase, far exceeding

the value of the fuel economy increase. Consumers would value vehicles more if automakers

use fuel-saving technology to raise performance rather than fuel economy. Our estimates are

therefore consistent with historical patterns of manufacturer attribute choices.

5.2 How do tighter standards affect private consumer welfare?
In this subsection we use our WTP estimates to assess the effect on private consumer

welfare of tightening standards. Klier and Linn (2016) show that tighter standards cause

manufacturers to adopt fuel-saving technology more quickly than they would have if

standards had not tightened. The additional technology adoption raises fuel economy as

well as vehicle production costs and vehicle prices. This channel may imply an increase in

consumer welfare, if an energy efficiency gap exists. As for the second channel, Klier and

Linn (2016) show that the tighter standards cause manufacturers to trade off performance
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for fuel economy, implying that performance is lower than if standards had not tightened.

This channel implies a reduction in consumer welfare because consumers prefer

performance to fuel economy, as we showed in the previous subsection. Whether tighter

standards increase private consumer welfare depends on consumer valuation of fuel

economy and performance, technological trade-offs between fuel economy and performance,

and the cost of adopting fuel-saving technology.

To estimate the effects of tighter standards on private consumer welfare, this paper focuses

on providing reliable estimates of consumer valuation. For technological trade-offs, as in the

previous subsection we use the estimated technology trade-offs from Klier and Linn (2016).

We use technology adoption cost estimates from EPA (2012) and Leard et al. (2016).

For consistency with the marginal WTP estimates, we focus on the changes in vehicle

attributes and prices caused by a 1 percent tightening of the standards in a single year.

The estimates in Klier and Linn (2016) imply that, in response to a 1 percent fuel economy

tightening, manufacturers adopted technology that increased vehicle efficiency and fuel

economy by 0.12 percentage points more than they would have if the standards had not

been tightened. Manufacturers trade off performance for fuel economy to attain the

remaining 0.88 percentage points, and tighter standards cause manufacturers to forgo

increases in performance. Therefore, the total cost of the 1 percent fuel economy increase

includes the cost of adopting the fuel-saving technology, as well as the welfare cost of the

lower performance. We compare these costs with the present discounted value of the fuel

savings.

In Section 4.2, we reported that this fuel economy increase yields a present discounted

value of fuel savings of $249. Based on technology cost estimates in EPA (2012), Leard et al.

(2016) estimate that increasing fuel economy by 0.12 percent, while holding other attributes

constant, raises costs by $11 per vehicle (this estimate includes the increase in marginal

costs as well as average fixed costs).15 Using the same assumptions as in the last subsection,

the welfare cost of reducing performance to increase fuel economy by 0.88 percent is $347.

Therefore, the tighter standards reduce private consumer welfare by $109 per vehicle, or 0.4

percent of the average transaction price in the sample. The negative estimate is robust to

statistical uncertainty in Klier and Linn (2016); we have redone the calculations using the

95 percent confidence intervals from Klier and Linn (2016), which yields changes of private

consumer welfare of -0.3 to -0.5 percent.

15Implicit in our analysis is the assumption that manufacturers comply with tighter fuel economy standards by adopting
technology. In practice, they may also reduce the relative prices of vehicles with low fuel economy (Goldberg 1998), which
would reduce the cost relative to our estimate. However, Klier and Linn (2012) suggest that this effect would be small in
magnitude.
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We make two observations about this result. The first is that the estimate is much

different from the estimate one would obtain by ignoring the costs of forgone performance.

Contrary to recent evidence in the literature, in their benefit-cost analysis of the standards

EPA and NHTSA assume that tighter standards do not cause manufacturers to trade off

performance for fuel economy. Instead, to meet the 1 percent fuel economy increase required

in this example, manufactures adopt sufficient fuel-saving technology to increase fuel economy

by 1 percent. Using the same technology cost assumptions as in the preceding calculation,

tighter standards raise vehicle prices by $91 per vehicle. Accounting for the value of the fuel

savings, tightening standards by 1 percent would increase private consumer welfare by $158

per vehicle, or about 0.6 percent of the average transaction price.

Second, the consumer welfare effects depend on the effect of the standards on the rate

of technology adoption. The more that standards increase this rate, the less manufacturers

trade off performance for fuel economy, causing the standards to have less of a negative effect

on consumer welfare. Our estimate of -$109 per vehicle is based on the estimated effect of

standards on technology adoption from the post-2010 time period. Estimates from Klier and

Linn (2016) for earlier periods indicate larger technology adoption effects of tighter standards.

Those estimates imply that tightening standards by 1 percent changes consumer welfare by

-$25 per vehicle, or 0.1 percent of average transaction price. The calculations imply negative

consumer welfare effects and indicate some of the uncertainty around the point estimate

of -$109. Overall, we conclude that tighter standards are unlikely to substantially improve

consumer welfare, and our central estimate is that tighter standards have approximately zero

effect.

These conclusions are subject to several caveats. The technology cost estimates are based

on interpolations described in Leard et al. 2016. The reduction in consumer welfare refers to

the private welfare of new vehicle consumers; it does not include the social benefits arising

from improved energy security or climate—that is, the current standards may increase social

welfare, even if standards do not noticeably increase private consumer welfare. Moreover, this

conclusion does not account for potential induced innovation caused by tighter standards,

market failures associated with insufficient market incentives for innovation (e.g., Fischer

2010; Porter and van der Linde 1995), market failures associated with imperfect competition

(such as the possible underprovision of fuel economy), and interactions between the new and

used vehicle markets (Jacobsen and van Benthem 2015). Finally, the conclusion does not

account for transitional dynamics. Klier and Linn (2016) find that tighter standards increase

the rate of technology adoption, implying that standards may trade off higher fuel economy

in the near term for lower performance in the long term. Accounting for these effects would

require a dynamic analysis of new vehicle standards, which remains for future research.
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5.3 Tighter standards and consumer acceptance
A contentious issue regarding the fuel economy and greenhouse gas emissions standards

is whether the standards reduce overall consumer demand for new vehicles. If the

standards reduce demand, tighter standards could cause some consumers to forgo obtaining

a new vehicle and instead obtain a used vehicle or continue using their existing vehicles

longer than they would have. Lower demand would reduce the total number of new

vehicles that manufacturers sell and their profits. In addition, lower demand would

decrease the rate at which lower-emitting new vehicles replace higher-emitting existing

vehicles, reducing equilibrium social welfare benefits of the standards.

We estimate the effects of tighter standards on consumer demand for a typical new

vehicle—i.e., the marginal change in consumer surplus for the new vehicle—accounting for

changes in vehicle prices, fuel economy, and performance. These calculations are identical

to those used in the previous section, except that we use the WTP for fuel economy to

value the fuel economy increase, rather than the discounted value of the fuel cost savings.

This change is appropriate because consumers choose vehicles based on WTP rather than

the discounted value of fuel savings. This measure is relevant to the effects of standards on

consumer acceptance of new vehicles and aggregate vehicle demand.

Our estimates suggest that tighter standards reduce consumer demand in the short run.

Specifically, tightening standards by 1 percent in our sample causes fuel economy to increase

by the same amount, which increases WTP by $134. However, the same tightening of the

standards raises vehicle prices by $11 and reduces WTP for performance by $347. Overall,

consumer WTP for new vehicles, net of vehicle price, fuel economy, and performance changes,

decreases by $227 per vehicle, or 0.8 percent of the average transaction price.

The result carries the same caveats as in the previous subsection. We leave for future

work quantifying the welfare implications of this effect of fuel economy standards on total

sales.

6 Conclusion
If an energy efficiency gap exists for passenger vehicles, new vehicle fuel economy or

greenhouse gas emissions standards would increase private welfare of new vehicle consumers

and producers. NHTSA and EPA argue that a gap exists and conclude that the benefits of

the fuel savings from existing standards exceed the costs of achieving the standards; these

benefits account for about 70 percent of the total benefits of the standards.

To draw welfare implications for standards, the literature has assessed whether there is

an energy efficiency gap by asking whether consumers undervalue fuel economy. However,

we argue that the literature has focused narrowly on consumer valuation of fuel economy
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and has not considered the welfare costs of forgone performance increases. Manufactures

can use those fuel-saving technologies to increase either fuel economy or performance.

There are certain fuel-saving technologies that manufacturers adopt regardless of whether

standards tighten. If manufacturers use those technologies to increase performance if

standards do not tighten, and if tighter standards cause manufacturers to use those

technologies to increase fuel economy instead of performance, manufacturers forgo the

opportunity to increase performance. The forgone performance reduces consumer welfare,

opposing the positive consumer welfare effect of fuel savings caused by standards.

We use a unique data set and novel identification strategy to estimate consumer valuation

of fuel economy and performance. Consumers are willing to pay about 54 cents for $1 of

discounted future fuel savings. This estimate is smaller than Busse et al. (2013) and Allcott

and Wozny (2014), which likely reflects differences in sample period rather than methodology.

The performance estimates imply that consumers pay about $94 for a 1 percent performance

increase, which corresponds to $1,100 for a 1-second reduction in 0-to-60 time.

The estimated undervaluation of fuel economy would seem to suggest that tighter

standards increase private consumer welfare. However, the estimated consumer valuation of

performance is sufficiently large that the entire welfare cost of increasing fuel economy,

including costs of adopting technology and reducing performance, approximately equals the

value of the fuel savings. This conclusion is subject to the caveats we discuss in Section 5.2,

and we note that standards may increase social welfare after accounting for the energy

security and climate benefits.

Our WTP estimates suggest two puzzles related to technology adoption costs. First, the

estimated cost of adopting fuel-saving technology and raising performance by 1 percent is $89.

In Section 5.1 we calculated that consumers would pay $394 for the performance increase,

suggesting that manufacturers should adopt fuel-saving technology more quickly than they

do. Second, the WTP for performance implies that manufacturers would avoid trading off

performance for fuel economy because consumers value the performance so highly. Yet, the

patterns in Table 2 as well as estimates in Klier and Linn (2016) suggest that manufacturers

do make this trade-off when facing tighter standards. Future research can investigate whether

hidden costs, consumer preference heterogeneity, or other factors explain these apparent

puzzles.

Although fuel economy standards may not increase consumer welfare, other policies could

improve consumer welfare by targeting the cause of the undervaluation. For example, if

consumers lack information about fuel cost savings, and the lack of information causes them

to undervalue savings, then improving information could increase consumer welfare. Future
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research could attempt to determine the cause of undervaluation and identify appropriate

policies to correct market failures.

The results have implications for the effects of fuel economy and emissions standards on

demand for new vehicles. Our estimates imply that tightening standards by 1 percent reduces

consumer valuation by 0.8 percent per vehicle, although we suggest that these results should

not be extrapolated far out of sample because they are based on marginal WTP. Future work

could incorporate these effects in a comprehensive welfare analysis of the standards.
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Figures

Figure 1: Fuel Economy, Weight, Horsepower, and Torque by Model Year,
2010–2014

Panel A. Registration-weighted averages
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Notes: Panel A reports registration weighted average fuel economy, weight (in pounds, lb), horsepower, and torque (newton
meters, nm) by model year. Panel B reports percent changes in these variables since the 2010 model year.
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Figure 2: Engine and Transmission Variables by Model Year, 2010–2014
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Note: The figure shows registration-weighted number of cylinders and engine displacement, as well as the market shares of drive
train type and fuel type.
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Figure 3: Market Penetration of Selected Fuel-Saving Technologies, 2010–2014
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the IVs.
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Figure 4: Monthly Fuel Prices, 2009–2014
Panel A. National average monthly gasoline and diesel fuel prices
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Figure 5: Vehicle Transaction Prices, 2009–2014
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Figure 6: Effects of Fuel Economy Increase on Equilibrium Prices and Quantities
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Figure 7: Reduced-Form Relationships: Prices and Fuel-Saving Technologies
Panel A. Number of fuel-saving technologies

0
.1

.2
.3

.4
.5

lo
g 

pr
ic

e 
(2

01
0 

U
S

D
)

1 2 3 4 5
Number of technologies adopted

confidence interval is 95% CI

Panel B. Individual fuel-saving technologies

0
.2

5
.5

lo
g 

pr
ic

e 
(2

01
0 

U
S

D
)

Super
charger

Turbo
charger

Gasoline
direct

injection
(GDI)

Variable
valve time
and lifting

(VVLT)

Cylinder
deactivation

Continuous
variable
timing
(CVT)

Advanced
transmission

confidence interval is 95% CI

Notes: Panel A reports the coefficients on fixed effects for the number of fuel-saving technologies from a regression of log
transaction price on the count fixed effects and the other independent variables from column 3 of Table 3. The number of
technologies is top-coded at five because fewer than 1 percent of observations have more than five technologies. Panel B reports
results from a similar regression, except that the count fixed effects are replaced by fixed effects for each technology. The vertical
lines indicate 95 percent confidence intervals.

36



Tables

Table 1: Summary Statistics
Mean Std. dev. Min. Max.

Panel A. Price and vehicle characteristics

Transaction price (2010 USD) 28,693 11,402 5,998 191,622

Fuel economy (miles/gallon) 23.9 6.6 12 50

Horsepower (hp) 226 78 70 662

Torque (newton meter, nm) 306 113 92 856

Weight (pounds, lb) 4,055 1,264 1,808 8,200

Engine displacement (liters) 3.0 1.2 1 8.4

Hybrid 0.05 0.21 0 1

Flex fuel 0.11 0.32 0 1

All-wheel/4-wheel-drive 0.37 0.48 0 1

Panel B. Demographics of respondent

Household size 2.5 1.2 1 6

Age (years) 52.6 15.4 15 99

Male 0.61 0.49 0 1

Urban 0.55 0.50 0 1

Number of unique vehicle models 450

Number of unique vehicle trims 1,351

Number of unique vehicle stubs 2,166

Number of observations 535,130

Notes: Panel A reports the registration-weighted average, standard deviation, minimum, and maximum of the variables indicated
in the row headings. Engine displacement is the volume of the engine cylinders, in liters. Hybrid, and flex fuel are indicator
variables for whether the vehicle has a hybrid power train, or is capable of using E85 fuel. All-wheel/4-wheel-drive is an
indicator for whether the vehicle has all-wheel- or 4-wheel-drive. A unique model has a unique company name, manufacturer
name, vehicle series name, and vehicle “nameplate” description. A unique trim is a unique model and a unique trim name.
A unique stub is a unique trim with a unique combination of drive train specification (front-wheel-drive, rear-wheel-drive, or
all/4-wheel-drive), fuel type (gasoline, diesel fuel, or other), displacement, and number of cylinders.

Table 2: Annual Percent Growth of Vehicle Attributes by Time Period
Cars Light trucks

Fuel economy Horsepower Weight Fuel economy Horsepower Weight

1996–2000 -0.6 1.9 0.6 0.2 4.0 1.3

2001–2004 0.4 1.8 0.7 -0.6 4.7 3.2

2005–2011 0.2 1.2 0.4 1.0 1.0 -0.3

2012–2015 2.1 0.2 1.2 2.5 0.7 -0.9

Notes: The table reports annual percent growth rates for cars and light trucks by time period. The data are from Leard, Linn,
and McConnell (forthcoming).
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Table 3: Willingness to Pay for Fuel Cost Savings and Performance

(1) (2) (3)

Estimated by OLS OLS IV

Panel A. Dependent variable is log transaction

price

Log fuel cost (dollars/mile) -0.113*** -0.156*** -0.354***

(0.018) (0.020) (0.075)

Log performance (hp/lb or nm/lb) 0.068*** -0.230*** 0.203***

(0.014) (0.020) (0.074)

Stub fixed effect Yes Yes

Number of observations 457,525 535,124 535,124

RMSE 0.13 0.13 0.13

F-stat (fuel cost or fuel economy, excl var) - - 185.5

F-stat (performance, excl var) - - 243.4

Panel B. Dependent variable is log new

registrations

Log fuel cost (dollars/mile) -1.651*** -0.636*** -0.338***

(0.119) (0.045) (0.116)

Log performance (hp/lb or nm/lb) -0.578*** -0.030 0.371***

(0.061) (0.028) (0.083)

Stub fixed effect Yes Yes

Number of observations 457,525 535,124 535,124

RMSE 0.6 0.39 0.39

F-stat (fuel cost or fuel economy, excl var) - - 112.1

F-stat (performance, excl var) - - 150.1

Panel C. Willingness to pay (2010 USD)

For 1 percent increases in

• fuel economy 190.5 105.7 133.9

• performance -35.8 68.9 93.9

* p<0.10 ** p<0.05 *** p<0.01

Notes: Robust standard errors in parentheses, clustered by vehicle model-by-state. Performance for cars is the ratio of
horsepower to weight and performance for trucks is the ratio of torque to weight. All specifications include as independent
variables fixed effects for number of transmission speeds and a dummy variable for flex fuel capability, as well as the interactions
of these variables with a dummy variable for light trucks. All specifications include fixed effects for state, model year, and
PADD region-month-fuel type, as well as a lease dummy and a CAFE stringency variable interacted with model-year fixed
effects (see text for details). In all price regressions, observations are weighted by the number of registrations, and all quantity
regressions are not weighted. In column 1, regressions include trim fixed effects, displacement, weight, length, width, height,
fuel tank volume, maximum number of passengers, and wheelbase. Column 1 in Panel A includes the number of cylinders and
fixed effects for drive type and fuel type. Column 1 in Panel B includes fixed effects for body type, drive type, and fuel type.
For column 2 and column 3, price regressions include stub fixed effects as defined in the Maritz data and Panel B includes stub
fixed effects as defined in the IHS data. Column 1 and 2 are estimated by OLS and column 3 by IV. In column 3, log fuel costs
and performance are instrumented using indicator technologies for the fuel-saving technologies from Figure 3, as well as the
interactions of the indicator variables with a light truck indicator variable. First-stage results for price regressions are in Table
B.7, and quantity regressions are in Table B.8. Panel C reports the change in WTP caused by a one percent increase in fuel
economy or performance, assuming an own-price elasticity of demand equal to -3.
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Table 4: Valuation Ratios and Implicit Discount Rates

Our assumptions Busse et al. (2013)

assumptions

Panel A. Valuation ratio (percentage)

Real discount rate = real reported APR 1.3 percent

Demand elasticity = 3

53.8 73.0

Panel B. Implicit discount rate (percentage)

Demand elasticity = 3 12.15 7.20

Notes: Panel A reports the valuation ratio, which is the ratio of the estimated WTP for a 1 percent fuel economy increase to
the present discounted value of future fuel cost savings. Panel B reports the implicit discount rate, which is the discount rate
that results in a valuation ratio of one. Both the valuation ratio and implicit discount rate are reported in percentages. The
first column uses the baseline parameter assumptions and the second column uses the assumptions from Busse et al. (2013).
See text for details on calculations and parameter assumptions.

Table 5: Implicit Discount Rates Using Busse et al. (2013) Methodology

Assumed demand elasticity Implicit discount rate

Results reported in

Busse et al. (2013)

Our results using Busse

et al. (2013) methodology

-2 -4.0 2.1

-3 1.0 9.8

-4 5.5 17.6

-5 9.8 25.3

Notes: The implicit discount rate is computed by comparing vehicles in the fourth fuel economy quartile (highest fuel economy)
with vehicles in the first fuel economy quartile (lowest fuel economy) assuming the own-price demand elasticities indicated in
each row. Busse et al. (2013) results are repeated from their Table 9 column “NHTSA VMT and NHTSA PSR” and rows
“Q1 versus Q4”. To produce our results using their methodology, we estimate a price regression in Table B.7 (column 4) and
quantity regression in Table B.8. We convert our estimates to implicit discount rates using the spreadsheet provided by Busse
et al. (2013).
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Table 6: Including Proxies for Vehicle Quality
(1) (2) (3) (4) (5) (6) (7)

Baseline

Panel A. Dependent variable is log transaction price

Log fuel cost -0.354*** -

0.351***

-

0.352***

-0.312*** -0.356*** -0.387*** -0.333***

(0.075) (0.055) (0.056) (0.054) (0.054) (0.083) (0.055)

Log performance 0.203*** 0.221*** 0.228*** 0.205*** 0.207*** 0.200*** 0.215***

(0.074) (0.048) (0.050) (0.048) (0.046) (0.050) (0.045)

Control for vehicle quality Demo-

graphic

Demo-

graphic

Consumer

experience

ratings

Richer

time fixed

effect

Drop CVT,

cylinder

deactivation

Finance control Yes

Number of observations 535,124 497,867 450,515 454,660 535,124 535,124 515,994

RMSE 0.13 0.13 0.13 0.13 0.13 0.13 0.13

F-stat (fuel cost) 185.5 182.3 181.0 174.6 186.3 68.4 187.9

F-stat (performance) 243.4 239.9 233.4 216.0 247.2 290.8 229.6

Panel B. Dependent variable is log new registrations

Log fuel cost -0.338*** -

0.348***

-

0.334***

-0.319*** -0.325*** -0.055 -0.339***

(0.116) (0.116) (0.118) (0.115) (0.037) (0.142) (0.116)

Log performance 0.371*** 0.363*** 0.345*** 0.320*** 0.356*** 0.505*** 0.371***

(0.083) (0.084) (0.083) (0.084) (0.022) (0.136) (0.083)

Control for vehicle quality Demo-

graphic

Demo-

graphic

Consumer

experience

ratings

Richer

time fixed

effect

Drop CVT,

cylinder

deactivation

Finance control Yes

Number of observations 535,124 497,867 450,515 454,660 535,124 535,124 515,994

RMSE 0.39 0.40 0.40 0.39 0.39 0.40 0.39

F-stat (fuel cost) 112.1 111.2 109.2 110.8 112.5 77.9 112.9

F-stat (performance) 150.1 147.6 143.0 141.9 149.5 127.3 149.8

* p<0.10 ** p<0.05 *** p<0.01

Notes: Robust standard errors in parentheses, clustered by vehicle model by state. Column 1 repeats the baseline in Table
3. Column 2 adds to column 1 six demographic controls: respondent’s age, household size, indicator for male, urbanization
indicator, 12 respondent education group fixed effects, and 23 household income group fixed effects. Column 3 adds to column
2 five additional demographic controls: number of wage earners, number of children, indicator equaling one if the respondent’s
spouse is employed, six respondent race fixed effects, and 20 respondent occupation fixed effects. Column 4 adds controls
of consumers’ experience rating on a scale of 1 to 5: overall appearance; usefulness for carrying passengers; performance of
entertainment system; exterior styling and workmanship; overall front room; interior material including seating and interior
styling; quietness inside the vehicle; well equipped to prevent theft and vandalism; and exterior workmanship and attention
to detail. Column 5 includes state by model-year fixed effects and state by month-of-year fixed effects. In column 6, we drop
continuously variable transmission, cylinder deactivation, and their interactions with truck as instruments. In column 7, we
include fixed effects for financing source (arrange own financing, finance via dealership, or do not finance) and fixed effects
for payment type (automaker’s loan/lease, bank loan/lease, friend/relative, cash, credit union loan, another finance company
loan/lease, or other).
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Appendix for Online Publication

A Vehicle Miles Traveled and Survival Rate

A.1 Vehicle Miles Traveled Schedules
We estimate vehicle miles traveled (VMT) over the lifetime of each vehicle by building on the

models presented in Lu (2006). The data source we use to estimate VMT schedules is the 2009

National Household Travel Survey (NHTS). We use the publicly available data files on vehicle and

household information, which contain 309,163 individual vehicles held by 150,147 surveyed

households. We estimate the relationship between VMT and two variables: vehicle age and

household income. We include household income as a covariate to account for the effect that the

recession had on driving. We follow Lu (2006) in specifying a cubic relationship between VMT

and vehicle age, where vehicle age is measured in years. We take a semi parametric approach in

specifying the relationship between VMT and household income. We create 13 bins of household

income, which correspond to bins present in both the NHTS and Maritz survey data, and we

aggregate bins where necessary to make the bins consistent between the surveys. Furthermore, we

convert income bins from the NHTS to 2014$ corresponding to bins in the 2014 wave of the

Maritz survey data. We do this to be able to apply our estimated VMT model to households in

the Maritz data, which we convert all incomes to 2014$. We estimate a separate intercept for each

income group by regressing VMT on a fixed effect for each group. We also interact these fixed

effects with a linear age variable to capture differences in VMT across income groups for different

vehicle vintages. The interaction effects model the possibility that household driving intensity

over the lifetime of a vehicle varies by income. Following Lu (2006), we estimate separate VMT

models for cars and light trucks. We aggregate vehicle/household level observations to vehicle age

by household income bin averages, giving us a total of 869 and 785 observations for the car and

light truck specifications, respectively. The estimates for both models appear in Appendix Table

B.11.

The estimates are plausible and most are statistically significant. For both vehicle classes, VMT

increases with household income. The vehicle age/household income interaction terms are mostly

negative and significant and are decreasing in household income. This implies that the marginal

reduction in VMT from a vehicle aging by one year is larger for high-income households. This seems

plausible given the preferences that high income households have for driving new vehicles more

frequently by substituting miles away from their older vehicles to their newer vehicles. Conversely,

low-income households tend to keep vehicles longer and drive them more when they are older. This

relationship is apparent by plotting VMT schedules as a function of vehicle age for high- and low-

income groups. Appendix Figure A.1 illustrates this effect for cars and light trucks, respectively.

To account for the effect of fuel prices on VMT, we adjust the estimated VMT schedules by the

change in national average fuel prices between the period of the 2009 NHTS (March 2008 to April

2009) and each year of the Maritz sample, assuming an elasticity of VMT to fuel prices of -0.1.
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Figure A.1: Estimated Vehicle Miles Traveled by Vehicle Age and Household
Income

Passenger cars Light trucks

A.2 Vehicle Survival Schedules
We update the vehicle survival schedules in Lu (2006) using R. L. Polk data on vehicle

registrations from 2002 to 2014. The R.L. Polk data are disaggregated by vehicle class (e.g., car

and light truck), vehicle age, and year, where registrations are recorded for each vehicle age up to

age 14. We drop observations with age 1 due to the increase in some vehicle counts from vehicle

ages 1 and 2 across consecutive years, which would imply survival rates above 1. We estimate the

following model:

ageit = γ0 + γ1 ln(− ln(1 − rateit))

The variable is the survival rate of vehicles of age in year and is computed as the number of registered

vehicles of age in year divided by the number of registered vehicles of age in year. Inverting the

above equation yields a model that is comparable to the coefficient estimates in Lu (2006):

rateit = 1 − exp(− exp(−γ0/γ1 + ageit/γ1))

Defining A = −γ0/γ1 and B = 1/γ1, Appendix Table B.12 presents estimates comparable to Lu

(2006).

Appendix Figure A.2 plots the survival schedules for cars and light trucks, respectively. The

figure illustrates that cars and light trucks are lasting longer than they have been historically. This

is consistent with Lu (2006), who documents longer survival schedules than earlier time periods.

The figures also highlight the importance of using more recent data for estimating vehicle survival

schedules, as the newer data suggest greater VMT–and hence greater expected fuel costs–over

vehicle lifetimes.
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Figure A.2: Vehicle Survivability Schedule
Passenger cars Light trucks
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B Additional Summary Statistics, First-stage Results,

and Robust Results

Figure B.1: Distributions of Income and Education
Panel A. Household income
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Table B.1: Summary Statistics on Financing and Purchase Terms, 2009–2014
Payment method Share of

vehicles (%)

Annual percentage

rate (%)

Length

(months)

Monthly

payment (USD)

Down payment

(USD)

Panel A. Purchased

1. Financed 63.7 3.34 59.6 471 2,884

2. Cash 23.6 NA NA NA NA

Panel B. Leased 12.7 NA 37.0 423 9,417

Notes: Annual percentage rate, length of the loan or lease, and payment information are weighted by registrations.

Table B.2: First-Stage Coefficient Estimates from Baseline Price Specification
Dependent variable Log fuel cost Log performance

Supercharger 0.013** (0.006) 0.156*** (0.003)

Turbocharger -0.006** (0.003) 0.086*** (0.027)

Gasoline direct injection -0.055*** (0.007) 0.070*** (0.004)

Var. valve lift and timing 0.023*** (0.005) 0.001 (0.002)

Cylinder deactivation 0.033*** (0.006) 0.006*** (0.002)

Cont. variable transmission -0.126*** (0.004) -0.035*** (0.006)

Advanced transmission -0.024*** (0.004) -0.011*** (0.004)

Supercharger × truck -0.002 (0.007) -0.177*** (0.019)

Turbocharger× truck -0.029*** (0.007) 0.110*** (0.031)

Gasoline direct inject. × truck 0.056*** (0.009) -0.042*** (0.005)

Var. valve lift and timing × truck -0.088*** (0.006) 0.021*** (0.004)

Cylinder deactivation × truck -0.015** (0.006) -0.014*** (0.002)

Cont. variable transmission × truck 0.026*** (0.007) 0.047*** (0.006)

Advanced transmission × truck -0.019*** (0.005) 0.002 (0.005)

Num. of observations 535,124 535,124

F-stat (1st stg excl var.) 185.5 243.4

* p<0.10 ** p<0.05 *** p<0.01

Notes: Robust standard errors in parentheses, clustered by vehicle model and state. The table reports the first stage coefficient
estimates for the baseline specification from column 3 of Table 3, Panel A. The bottom row reports the F-statistic on the test
that the instruments are jointly equal to zero.
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Table B.3: First Stage Coefficient Estimates from Baseline Quantity Specification
Dependent variable Log fuel cost Log performance

Supercharger 0.053*** (0.014) 0.270*** (0.021)

Turbocharger -0.081*** (0.006) -0.033*** (0.012)

Gasoline direct injection 0.016*** (0.005) 0.103*** (0.009)

Var. valve lift and timing -0.033*** (0.008) 0.006 (0.009)

Cylinder deactivation 0.109*** (0.007) 0.216*** (0.011)

Cont. variable transmission -0.096*** (0.009) -0.056*** (0.011)

Advanced transmission 0.007* (0.004) -0.014 (0.008)

Supercharger × truck -0.066*** (0.021) -0.098*** (0.023)

Turbocharger × truck -0.020* (0.010) 0.149*** (0.015)

Gasoline direct inject. × truck -0.004 (0.008) -0.093*** (0.012)

Var. valve lift and timing × truck 0.040*** (0.010) 0.014 (0.012)

Cylinder deactivation × truck -0.076*** (0.008) -0.102*** (0.014)

Cont. variable transmission × truck 0.071*** (0.015) 0.024* (0.013)

Advanced transmission × truck -0.008*** (0.001) 0.005*** (0.001)

Num. of observations 535,124 535,124

F-stat (1st stg excl var.) 112.1 150.1

* p<0.10 ** p<0.05 *** p<0.01.

Notes: Robust standard errors in parentheses, clustered by vehicle model and state. The table reports the first stage coefficient
estimates for the baseline specification from column 3 of Table 3, Panel B. The bottom row reports the F statistic on the test
that the instruments are jointly equal to zero.

Table B.4: Composition of Willingness to Pay for Fuel Cost Savings and
Performance

Willingness to pay (2010 USD) for 1 percent increases in Fuel economy Performance

(1) (2)

Panel A. WTP (Baseline)

• price effect l1 101.5 58.4

[98.7, 104.2] [56.3, 60.5]

• quantity effect l2, assuming elasticity = 3 32.3 35.5

[28.5, 36.1] [31.5, 39.4]

• overall equilibrium effect, assuming elasticity = 3 133.9 93.9

Panel B. Average alternative elasticity

• overall equilibrium effect, assuming elasticity = 2 150.2 111.6

• overall equilibrium effect, assuming elasticity = 4 125.9 84.9

• overall equilibrium effect, assuming elasticity = 5 121.1 79.6

Notes: For equilibrium price effect l1 and additional price from quantity effect l2, we report 95% confidence interval in
parentheses using delta method.
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Table B.5: Assumptions for Implicit Discount Rate Calculations
Our assumptions Assumptions of Busse et al. (2013)

Vehicle age

(years)

VMT

cars

VMT

trucks

Survival

rate cars

Survival

rate trucks

VMT

cars

VMT

trucks

Survival

rate cars

Survival

rate trucks

1 13,379 14,821 0.9972 0.9982 14,231 16,085 0.9900 0.9741

2 12,963 14,334 0.9944 0.9964 13,961 15,782 0.9831 0.9603

3 12,563 13,864 0.9897 0.9933 13,669 15,442 0.9731 0.9420

4 12,179 13,409 0.9823 0.9885 13,357 15,069 0.9593 0.9190

5 11,810 12,969 0.9714 0.9813 13,028 14,667 0.9413 0.8913

6 11,456 12,545 0.9564 0.9711 12,683 14,239 0.9188 0.8590

7 11,117 12,136 0.9367 0.9574 12,325 13,790 0.8918 0.8226

8 10,792 11,742 0.9122 0.9399 11,956 13,323 0.8604 0.7827

9 10,482 11,363 0.8828 0.9184 11,578 12,844 0.8252 0.7401

10 10,185 10,997 0.8488 0.8927 11,193 12,356 0.7866 0.6956

11 9,902 10,646 0.8168 0.8724 10,804 11,863 0.7170 0.6501

12 9,633 10,309 0.7650 0.8345 10,413 11,369 0.6125 0.6040

13 9,376 9
”
985 0.7093 0.7922 10,022 10,879 0.5094 0.5517

14 9,131 9675 0.6515 0.7466 9,633 10,396 0.4142 0.5009

15 8,900 9,377 0.5932 0.6986 9,249 9,924 0.3308 0.4522

16 8,680 9,093 0.5357 0.6493 8,871 9,468 0.2604 0.4062

17 8,471 8,821 0.4804 0.5996 8,502 9,032 0.2028 0.3633

18 8,274 8
”
561 0.4280 0.5505 8,144 8,619 0.1565 0.3236

19 8,088 8314 0.3791 0.5027 7,799 8,234 0.1200 0.2873

20 7,913 8,078 0.3341 0.4568 7,469 7,881 0.0916 0.2542

21 7,748 7,854 0.2931 0.4133 7,157 7,565 0.0696 0.2244

22 7,593 7,642 0.2562 0.3724 6,866 7,288 0.0527 0.1975

23 7,448 7,440 0.2231 0.3343 6,596 7,055 0.0399 0.1735

24 7,312 7,250 0.1938 0.2992 6,350 6,871 0.0301 0.1522

25 7,186 7,070 0.1679 0.2670 6,131 6,739 0.0227 0.1332

26 7,068 6
”
900 0.1451 0.2377 6,663 0.1165

27 6,959 6,740 0.1252 0.2111 6,648 0.1017

28 6,857 6,591 0.1079 0.1871 6,648 0.0887

29 6,764 6,451 0.0928 0.1655 6,648 0.0773

30 6,678 6,320 0.0797 0.1462 6,648 0.0673

31 6,600 6,199 0.0684 0.1290 6,648 0.0586

32 6,528 6,086 0.0587 0.1137 6,648 0.0509

33 6,463 5,982 0.0503 0.1001 6,648 0.0443

34 6,404 5,887 0.0431 0.0880 6,648 0.0385

35 6,352 5,800 0.0369 0.0773 6,648 0.0334

36 5,720 0.0679 6,648 0.0290

37 5,648 0.0596

38 5,584 0.0522

39 5,527 0.0458

40 5,477 0.0401

Notes: The table reports the estimated vehicle miles traveled (VMT) and survival probability for cars and light trucks by vehicle
age. Our estimates are from the 2009 wave of the National Household Travel Survey following the methodology of Lu (2006).
The four columns on the right of the table show the assumptions from Busse et al. (2013).



Table B.6: Alternative Assumptions for Computing Valuation Ratios and Implicit
Discount Rates

Our assumptions of

VMT and survival

probability

Assumptions of Busse

et al. (2013)

Panel A. Valuation ratio (percentage)

A.1 Alternative demand elasticity

A.1.1 Real discount rate = 1.3 percent, demand elasticity = 2 60.3 81.8

A.1.2 Real discount rate = 1.3 percent, demand elasticity = 3 (base) 53.8 73.0

A.1.3 Real discount rate = 1.3 percent, demand elasticity = 4 50.6 68.6

A.1.4 Real discount rate = 1.3 percent, demand elasticity = 5 48.6 66.0

A.2 Alternative real discount rate

A.2.1 Real discount rate = 1.3 percent, demand elasticity = 3 (base) 53.8 73.0

A.2.2 Real discount rate = 5 percent, demand elasticity = 3 69.6 89.9

A.2.3 Real discount rate = 7 percent, demand elasticity = 3 78.2 99.1

A.2.4 Real discount rate = 10 percent, demand elasticity = 3 91.1 112.9

A.3 Alternative future gasoline price assumptions

A.3.1 Gasoline price follows random walk (base) 53.8 73.0

A.3.1 Gasoline price follow EIA AEO projection 57.7 77.9

Panel B. Implicit discount rate (percentage)

Alternative demand elasticity

B.1 Real discount rate = 1.3 percent, demand elasticity = 2 9.62 4.86

B.2 Real discount rate = 1.3 percent, demand elasticity = 3 (base) 12.15 7.20

B.3 Real discount rate = 1.3 percent, demand elasticity = 4 13.68 8.60

B.4 Real discount rate = 1.3 percent, demand elasticity = 5 14.71 9.53

Notes: The table reports valuation ratios in Panel A and implicit discount rates in Panel B, in percentages. The calculations
use the same assumptions as in Table 4, except as indicated in the column and row headings.



Table B.7: Price Regression Using Busse et al. (2013) Methodology
Dependent variable: price (1) (2) (3) (4)

Gas prices × MPG quartile 1 (least efficient) -142.052*** -149.354*** -104.193*** -112.484***

(25.341) (25.611) (23.813) (24.062)

Gas prices × MPG quartile 2 -22.614* -25.443** -20.104* -24.213**

(11.584) (11.171) (11.102) (10.967)

Gas prices × MPG quartile 3 -40.029** -40.828** -37.303** -38.539**

(15.435) (17.662) (16.854) (18.531)

Gas prices × MPG quartile 4 (most efficient) 25.754 31.412* 6.596 12.342

(16.824) (18.694) (18.303) (20.767)

State FE Yes Yes

Model-year FE Yes Yes

Month-of-year FE Yes Yes

State × year FE Yes Yes

State × month-of-year FE Yes Yes

Include demographics Yes Yes

Number of observations 535,130 457,324 535,130 457,324

R-squared 0.90 0.90 0.90 0.90

Differences in WTP of Q1 versus Q4 $167 $180 $110 $135

* p<0.10 ** p<0.05 *** p<0.01

Notes: Standard errors in parentheses, clustered by trim. The specifications are similar to Busse et al. (2013). The dependent
variable is the transaction price, and the reported independent variables are interactions of the fuel price with fixed effects for
the vehicle’s fuel economy quartile. Observations are weighted by registrations, and regressions include stub fixed effects as well
as the fixed effects indicated at the bottom of the table.

Table B.8: Quantity Regressions Using Busse et al. (2013) Methodology
Dependent variable: quantity Coef. SE Average new cars

registered per month

per state (100)

Percentage

change

Gas prices × MPG quartile 1 (least efficient) -6.353*** (1.928) 87.99 17.41

Gas prices × MPG quartile 2 -3.479* (2.057) 96.62 20.47

Gas prices × MPG quartile 3 8.848*** (2.489) 109.73 24.27

Gas prices × MPG quartile 4 (most efficient) 25.442*** (5.668) 122.57 30.84

Number of observations 12,182

R-squared 0.87

* p<0.10 ** p<0.05 *** p<0.01

Notes: Standard errors in parentheses, robust to heteroskedasticity. The regression follows the Busse et al. (2013) methodology
reported in their Tables 6 and 7. The dependent variable is the registrations by fuel economy quartile, state, and month. The
regression reported in this table includes interactions of state fixed effects and transaction year fixed effects, interactions of state
fixed effects and month of year fixed effects, and fuel economy quartile fixed effects. Observations are weighted by registrations.
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Table B.9: Baseline WTP by Expected Vehicle Miles Traveled (VMT)
(1) (2)

Baseline

Panel A. Dependent variable is log transaction price

Log fuel cost -0.354*** 2.894***

(0.075) (0.785)

Expected VMT (in 1 million miles) -35.329***

(8.564)

Log fuel cost × expected VMT -17.508***

(4.251)

Log performance 0.203*** 0.176***

(0.074) (0.050)

Number of observations 535,124 450,635

RMSE 0.13 0.14

F-stat (fuel cost) 185.5 185.5

F-stat (fuel cost by VMT) 188.6

F-stat (performance) 243.4 243.4

Panel B. Dependent variable is log new registrations

Log fuel cost -0.338*** -13.131***

(0.116) (3.695)

Expected VMT (in 1 million miles) 133.401***

(38.981)

Log fuel cost × expected VMT 67.245***

(19.642)

Log performance 0.371*** 0.498***

(0.083) (0.086)

Number of observations 535,124 450,635

RMSE 0.39 0.43

F-stat (fuel cost) 112.1 112.1

F-stat (fuel cost by VMT)

F-stat (performance) 150.1 150.1

Panel C. Willingness to pay (2010 USD)

For 1 percent increases in

• fuel economy 133.9

at average VMT at 0.19 million miles 156.5

with one s.d. of VMT at 0.01 million miles [141.0, 171.9]

• performance 93.9 98.2

* p<0.10 ** p<0.05 *** p<0.01

Notes: Robust standard errors in parentheses, clustered by vehicle model by state. Column 1 repeats the baseline in Table 3.
In column 2, we include expected lifetime VMT as an exogenous variable and its interaction with fuel costs as an endogenous
variable. The lifetime VMT depends on household income group and broad market segment (car or truck). We construct it
from survival data and annual VMT data as described in Section A.1.
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Table B.10: Alternative Measure for Performance

Dependent variable: log price or quantity (1) (2)

Baseline

Panel A. Price regression estimates

Log fuel cost -0.354*** -0.334***

(0.075) (0.111)

Log performance (hp/lb, or nm/lb) 0.203***

(0.074)

Log performance (hp/lb) 0.217*

(0.123)

Number of observations 535,124 535,130

RMSE 0.13 0.13

F-stat (fuel cost) 185.5 19.1

F-stat (performance) 243.4 98.0

Panel B. Quantity regression estimates

Log fuel cost -0.338*** -0.580***

(0.116) (0.038)

Log performance (hp/lb, or nm/lb) 0.371***

(0.083)

Log performance (hp/lb) 0.589***

(0.026)

Number of observations 535,124 535,130

RMSE 0.39 0.40

F-stat (fuel cost) 112.1 1540.2

F-stat (performance) 150.1 2047.9

* p<0.10 ** p<0.05 *** p<0.01.

Notes: Standard errors in parentheses, clustered by trim. Column 1 repeats the baseline. Column 2 use horsepower-to-weight
ratio for all vehicles. Column 2 uses torque-to-weight ratio for all vehicles.
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Table B.11: Estimates for Predicting Vehicle Miles Traveled

Dep. var.: vehicle miles traveled (1) (2)

Variables Cars Light truck

Vehicle age -298.5*** (16.87) -341.0*** (21.61)

Vehicle age squared 6.493*** (0.582) 5.013*** (0.839)

Vehicle age cubed -0.0391*** (0.00698) -0.0152 (0.0110)

Household income $20,000-$25,000 -206.2 (258.2) -538.1* (322.5)

Household income $25,000-$30,000 810.5*** (252.5) -258.2 (319.3)

Household income $30,000-$35,000 557.0** (232.4) 37.95 (284.9)

Household income $35,000-$40,000 1,607*** (262.1) 710.3** (328.7)

Household income $40,000-$45,000 1,099*** (225.5) 953.9*** (277.1)

Household income $45,000-$50,000 2,132*** (257.6) 1,651*** (327.5)

Household income $50,000-$55,000 2,096*** (227.5) 1,331*** (276.1)

Household income $55,000-$65,000 2,608*** (207.6) 1,883*** (261.6)

Household income $65,000-$75,000 2,878*** (216.3) 1,988*** (262.4)

Household income $75,000-$85,000 3,061*** (213.3) 2,311*** (262.8)

Household income $85,000-$100,000 3,647*** (201.8) 2,828*** (249.5)

Household income >$100,000 3,526*** (182.8) 3,098*** (231.3)

Vehicle age x household income $20,000-$25,000 21.99 (19.35) 27.94 (22.45)

Vehicle age x household income $25,000-$30,000 -45.81** (18.53) 7.359 (21.73)

Vehicle age x household income $30,000-$35,000 -12.81 (17.57) -13.43 (19.01)

Vehicle age x household income $35,000-$40,000 -50.82** (20.03) -21.02 (24.13)

Vehicle age x household income $40,000-$45,000 -25.37 (16.73) -52.54*** (19.57)

Vehicle age x household income $45,000-$50,000 -80.87*** (20.01) -65.82*** (25.24)

Vehicle age x household income $50,000-$55,000 -71.09*** (17.42) -68.50*** (17.42)

Vehicle age x household income $55,000-$65,000 -86.40*** (15.27) -82.73*** (19.13)

Vehicle age x household income $65,000-$75,000 -88.93*** (16.78) -88.46*** (19.75)

Vehicle age x household income $75,000-$85,000 -94.87*** (16.25) -91.95*** (20.13)

Vehicle age x household income $85,000-$100,000 -119.1*** (15.16) -111.6*** (18.92)

Vehicle age x household income >$100,000 -125.9*** (13.64) -131.2*** (16.74)

Constant 11,069*** (177.7) 12,937*** (228.6)

Observations 869 785

R-squared 0.893 0.905

* p<0.10 ** p<0.05 *** p<0.01

Table B.12: Estimates for Survival Rate

(1) (2)

Cars Light truck

Age ≤ 10 Age > 10 Age ≤ 10 Age > 10

A = −γ0/γ1 1.90 2.28 1.96 2.21

B = 1/γ1 -0.13 -0.16 -0.12 -0.14
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