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Abstract

Modeling preference heterogeneity in discrete choice models of product differentiation remains

computationally challenging. I derive a new method for estimating preference heterogeneity

in these models. A key advantage of the method is its simplicity: preference heterogeneity

parameters are estimated with a closed-form expression or with a linear regression. I apply

the method to estimate parameters of new vehicle demand and to simulate the effects of new

vehicle fuel economy standards. The simulation results suggest that a marginal tightening of the

standards has a modest impact on total new vehicle sales.
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1 Introduction

Ever since their development by McFadden (1974), discrete choice models have been applied to

analyze many relevant markets and public policies. Recent advances of these models, including by

Berry (1994) and Berry et al. (1995), have improved their identification and estimation in two key ways:

the estimation of unbiased estimates of average preference parameters and preference heterogeneity.

These improvements have allowed researchers and policy makers to answer questions in the industrial

organization and policy analysis literature, including the effect of market imperfections (such as market

power) on market outcomes (Nevo 2001), how markets are affected by mergers (Thomadsen 2005),

how the entry of new products affects producer and consumer welfare (Petrin 2002), and the social

welfare effects of regulations (Berry et al. 1999).

∗Fellow at Resources for the Future (RFF), leard@rff.org. I thank Maureen Cropper, Joshua Linn, and
Christy Zhou for valuable comments on this paper. I am grateful to the Sloan Foundation for supporting the
research.
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Given their flexible ability to model consumer and producer preferences, these models continue

to gain influence in public policy design. Analysis of policies such as federal gasoline taxes (Bento

et al. 2009; Grigolon et al. 2018), federal fuel economy standards (Klier and Linn 2012; Jacobsen 2013;

Reynaert 2017; Whitefoot et al. 2017; Leard et al. 2019), and subsidies for hybrid and electric vehicle

purchases and infrastructure (Beresteanu and Li 2011; Springel 2017; Li 2018; Xing et al. 2019) depend

on plausible identification and unbiased estimation of decision maker preferences in these models.

Unfortunately, many of these models come with drawbacks. One drawback is that they are, in general,

computationally difficult to code and estimate. Many of the models are formed as mixed logit models

with product-specific fixed effects, which allow for rich unobserved heterogeneity and are theoretically

able to capture any substitution pattern (McFadden and Train 2000). While mixed logit models

represent the most flexible form in the class of discrete choice models, their computational complexity

renders them unusable for some researchers and policy analysts. This complexity may be a reason

why some government agencies do not use them for analyzing policies. For example, the National

Highway Travel Safety Administration (NHTSA) and the Environmental Protection Agency (EPA)

do not use discrete choice models in their cost-benefit analyses of federal fuel economy and greenhouse

gas standards for light-duty vehicles, even though they have publicly stated their interest in using

these models.1 My discussions with representatives from NHTSA confirm that they have attempted

to work with these models, but they are so complex as to render them incompatible with their current

approaches to analyzing the standards. Furthermore, recent studies have highlighted computational

difficulties with traditional mixed logit models following Berry et al. (1995), henceforth referred to as

BLP models, resulting in erroneous conclusions. Knittel and Metaxoglou (2014) point out that the

generalized method of moments (GMM) objective function for BLP models is not necessarily concave,

and find that various routines for optimizing the GMM objective function yield wildly different

preference parameter estimates. They find that the resulting difference in model predictions based

on the parameter estimates can be significant. This makes it difficult to conclude whether any set of

results derived from these models is driven by the underlying data or is biased due to the sensitivity of

the computational routine. This finding makes results for policy analysis less believable and therefore

less useful.

Other “micro” versions of the BLP models that incorporate household-level data, such as Berry

et al. (2004), still do not necessarily have a concave objective function, extending the concerns from

1As stated in their regulatory impact analysis of the 2017-2025 standards, “NHTSA also considered developing and
using a vehicle choice model to estimate the extent to which sales volumes would shift in response to changes in vehicle
prices and fuel economy levels. As discussed Chapter V, the agency is currently sponsoring research directed toward
developing such a model. However, that effort has not yet yielded a choice model ready for integration into NHTSA’s
analysis. If that effort is successful in the future, the agency will consider integrating the model into the CAFE modeling
system and using the integrated system for future analysis of potential CAFE standards. If the agency does so, we
expect that the vehicle choice model would impact estimated fleet composition not just under new CAFE standards,
but also under baseline CAFE standards” (NHTSA 2012).
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Knittel and Metaxoglou (2014). Furthermore, versions of these models that use maximum simulated

likelihood generally take significant time to estimate due to the required number of computations per

household.2 Depending on the number of household observations used for estimation, these models

can take several hours or even days to estimate. This slows down the construction and implementation

of these models. Given that government agencies often face extremely tight deadlines for producing

cost-benefit analyses, this estimation time issue represents a barrier for adoption.

The computational difficulty encountered when estimating these models arises primarily because

of the detailed representation of consumer heterogeneity. Traditional estimation of mixed logit models

requires simulating choice probabilities that are based on distributions of preference parameters that

vary randomly across consumers. This simulation increases the number of computations and time

required for estimation by orders of magnitude relative to the closed-form logit model, and introduces

the concerns discussed in Knittel and Metaxoglou (2014). A recently developed method by Fox

et al. (2011) simplifies mixed logit estimation by representing consumer heterogeneity as discrete

groups, as opposed to the more typical approach of modeling consumer heterogeneity as continuous.

Their method does not involve simulation, and models based on their method can be estimated with

constrained least squares, which guarantees a global optimum. However, this method requires a control

function approach for handling product attribute endogeniety and is not compatible with the more

standard product fixed effect approach as in Berry et al. (1995).

In contrast to these techniques, other studies have taken a simpler approach by using a nested

logit model derived in Berry (1994) that relates market shares to preference parameters and product

attributes in a linear equation.3 This model is capable of modeling unobserved heterogeneity for

mutually exclusive groups of products, such as product classes or types.4 This model is elegant in that

it can be estimated with linear estimation routines, including ordinary least squares and instrumental

variables. Therefore, it avoids the drawbacks of mixed logit models while being able to produce

plausible substitution patterns and account for unobserved product attributes in the identification

of average preference parameters. While the model derived in Berry (1994) is limited in the form of

preference heterogeneity that it can accommodate, it often can capture heterogeneity that is relevant

for particular policies. Grigolon and Verboven (2014) compare nested logit models and mixed logit

models based on their ability to predict changes in prices and market shares due to mergers. They

find that the models produce similar results, and they conclude that nested logit models are ideal for

accounting for discrete sources of market segmentation not captured by continuous product preference

heterogeneity in mixed logit models. Klier and Linn (2012) and Leard et al. (2019) adopt versions of

2Recent examples of these models include Train and Winston (2007), Langer (2016), Whitefoot et al. (2017), and
Xing et al. (2019).

3This is Equation (28) in Berry (1994).
4For example, distinct classes for new vehicles can include pickup trucks, SUVs, crossovers, and sedans.
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the model derived in Berry (1994) to evaluate fuel economy standards for passenger vehicles. Klier and

Linn (2012) estimate unobserved heterogeneity using an instrumental variables approach that uses

data on vehicle engine programs and platforms. Leard et al. (2019) estimate observed heterogeneity

using correlations between household demographics and vehicle attributes.

In the current paper, I develop a new method that provides a simple approach to identifying and

estimating preference heterogeneity that can be used together with conventional methods for obtaining

unbiased estimates of average preference parameters. I build on the derivation of the nested logit model

developed in Berry (1994) by deriving a initial-stage estimation of the preference heterogeneity. The

parameters in the initial stages are identified by incorporating increasingly common microdata. The

microdata can be either in the form of second choice data or decision maker characteristics data. The

second choice data are based on household survey questions that ask respondents which product they

would have bought had the product they purchased been unavailable. The logic of the identification

strategy follows Berry et al. (2004) for identifying unobserved preference heterogeneity. Berry et al.

(2004) use the correlation in continuous attributes between observed choices and stated second choices

to identify the standard deviations of random coefficients for continuous attributes. I use the same

correlation approach for identifying unobserved preference heterogeneity for groups of products in a

nested logit framework: my approach uses the correlation among the classes of first and second choice

products. For example, a buyer of a pickup truck may have a strong unobserved preference for owning

a pickup truck. This would be present in the second choice data if many pickup truck buyers stated

that they would have purchased a different pickup truck had their purchased truck been unavailable.

Second choice data may not be available in some datasets. In this case, data on decision maker

characteristics, such as household demographics, linked to product purchases can be used. These

data are becoming more widely available in most marketing datasets. For example, household income

of buyers is often recorded in addition to the product chosen by the household. The logic of the

identification strategy follows the methods of Berry et al. (2004) in identifying observed preference

heterogeneity. Correlation between household demographics and product attribute levels is used to

identify the heterogeneous preference parameters. One example of a pattern that may be present in

household-level datasets is that households with relatively high income are more likely to purchase

expensive products.

In sharp contrast to the approach in Berry et al. (2004) and other mixed logit approaches,

the method I derive is simple to estimate and does not involve GMM or the optimization of

a likelihood function for estimation. Instead, estimating the preference heterogeneity parameters

involves evaluating a closed-form expression that is a function of market share and microdata or
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estimating a fixed effects linear regression. The remaining“mean utility”parameters are then estimated

in a final stage and are consistent with the estimated preference heterogeneity parameters.5

This method in this paper is complementary to the approaches presented in Berry et al. (2004)

and Fox et al. (2011). The strength of the GMM estimation in Berry et al. (2004) is that it can

accommodate virtually any form of preference heterogeneity, both observed and unobserved, and

for both discrete and continuous product attributes. Its weaknesses, however, are its computational

complexity and its potential for estimation instability. In settings where only certain simpler forms of

preference heterogeneity are relevant, the method that I present serves as an alternative that does not

share the drawbacks of the Berry et al. (2004) method. The Fox et al. (2011) method also avoids the

computational challenges in Berry et al. (2004), but requires specifying a discrete grid of pre-defined

preference parameter values and adopting a control function approach for handling product attribute

endogeneity. When a researcher has reasons to avoid these modeling requirements, the approach in

Berry et al. (2004) or the current paper may be preferable. Together, these distinct approaches provide

researchers with a broader toolkit for estimating discrete choice models of product differentiation.

To illustrate the value of the approach for policy evaluation, I use the method to estimate a

model of light-duty vehicle demand and simulate the effect of tightening fuel economy standards on

new vehicle sales. I find that marginally tightening the standards results in a small reduction in new

vehicle sales. The policy relevance of the effect of fuel economy standards on new vehicle sales dates

back to the enactment of federal fuel economy standards in the late 1970s and economic analyses

of the standards shortly thereafter. Gruenspecht (1982) finds that fuel economy standards for new

vehicles, because they only apply to new vehicles and not used vehicles, have unintended effects of

lowering new vehicle sales and slowing used vehicle scrappage. This scrappage effect can undo the

intended effects of the standards, since used vehicles tend to have lower fuel economy and greater

oil consumption than new vehicles. The magnitude of this effect depends on several key factors,

including how new vehicle buyers substitute between new and used vehicles and the relationship

between used vehicle prices and scrappage (Bento et al. 2018; Jacobsen and van Benthem 2015).

I simulate the substitution between new and used vehicles as a result of tightening fuel economy

standards by applying the method to estimate unobserved preference heterogeneity for new vehicles.

The policy relevance of this issue has only grown since the introduction of the standards, especially

during the last last ten years, during which the standards have been revised several times. In 2008,

the Obama administration passed legislation to double the stringency of the standards by 2025, and

in 2018, the Trump administration proposed legislation to roll back these standards to remain flat at

5The parameters are consistent because the heterogeneity parameters are estimated conditional on the values of the
mean utility parameters, and the dependent variable for the mean utility estimation equation is defined as a function
of the heterogeneity parameters. This reasoning follows prior two-stage BLP estimation approaches, including Berry
et al. (2004) and Train and Winston (2007).
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2020 levels. A recent analysis of the rollback proposal completed by the EPA and NHTSA finds that

the rollback will shrink the entire vehicle fleet and miles traveled, preventing a significant number of

vehicle fatalities (EPA 2018). Unfortunately, this analysis has been shown to have severe modeling

flaws and limitations. Bento et al. (2018) find that a key flaw in the analysis is that the agencies

use an incomplete reduced-form statistical model to simulate the effects of the rollback on new and

used vehicle fleet size. This model produces predictions that are inconsistent with basic economic

theory, likely because the model’s parameters are not estimated based on structural assumptions for

consumer or producer decision-making. Bento et al. (2018) suggest following an ideal protocol for

analyzing changes in fuel economy standards. The protocol involves using a vehicle choice model that

is underpinned by basic economic principles. The method presented in the current paper is a starting

point for developing such a model.

The method I build in this paper can be applied to many other settings, where different forms

of heterogeneity matter more than others. I focus the application of the method on estimating

substitution patterns between inside alternatives, i.e., new vehicles, and the outside option, i.e., used

vehicles, for two reasons. First, the identification of this substitution has been neglected in prior

studies, which have been focused on substitution patterns among inside alternatives. Second, as I

show empirically, substitution to the outside option can have substantial policy implications. The

outside option generally measures market size. Policy outcomes dependent on market size therefore

depend on the degree of substitution to the outside option.

The remaining sections of the paper are organized in the following manner. In Section 2, I derive

the estimation method building on the model presented in Berry (1994). In this section, I present

alternative forms of the method that use different types of microdata. I then apply the method to

the setting of the US light-duty vehicles market and simulate the effect of tightening fuel economy

standards on new vehicle sales in Section 3. In Section 4, I discuss possible extensions and alternative

applications of the method, and I make concluding remarks in Section 5.

2 Model Development

In this section, I present three different variations of the method for identifying preference

heterogeneity. Each variation differs in the types of heterogeneity that are identified and estimated.

All of them share the common methodology of being estimated in multiple simple stages. The

first variation adopts a nested logit form based on Berry (1994). The second adopts a logit form

that incorporates observed heterogeneity, and the third combines the first and second variations to

incorporate both observed and unobserved heterogeneity.
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2.1 Model Setup

I derive the first variation of the estimation method that requires second choice data by first

deriving the nested logit model beginning with utility maximization. I follow the presentation of the

nested logit model in Berry (1994). Assume there are J alternatives indexed as j = 0, 1, ..., J , where J
denotes the choice set, and where j = 0 denotes the outside good. Alternatives are grouped into G+1
groups, indexed by g = 0, 1, 2, ..., G. The outside option j = 0 is assumed to be the only alternative

in group 0. Decision maker i obtains utility uij when choosing alternative j in group g, where utility

is

uij = δj + ξig + (1− σ)εij. (1)

The term δj in Equation (1) represents average utility for alternative j, and can be decomposed

into two parts: δj = xjβ+εj. The vector xj represents values for the attributes of alternative j, and the

vector β denotes marginal utilities for the attributes. The term εj is an idiosyncratic error term. The

term ξig is an unobserved component of utility that is common to all alternatives in group g. The last

term in Equation (1) is an idiosyncratic error term that is scaled by (1−σ). The term σ is often referred

to as a nesting parameter and is a measure of within-group correlation with bounds 0 ≤ σ < 1. As σ

approaches one, the error component of Equation (1) approaches zero and within-group correlation

of utility approaches one. Larger values of σ therefore increase the degree of substitution between

alternatives that share a group and reduce the degree of substitution between alternatives that do not

share a group. Decision makers are assumed to select a single alternative that maximizes their utility.

Based on this setup, Berry (1994) shows that the predicted market share for alternative j equals

sj = eδj/(1−σ)

Dσ
g(j)

∑
gD

(1−σ)
g

, (2)

where

Dg(j) =
∑

k∈Jg(j)

eδk/(1−σ) (3)

and

∑
g

D(1−σ)
g =

∑
g

∑
k∈Jg

eδk/(1−σ)

(1−σ)

. (4)
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The outside option is assumed to have a normalized mean utility equal to zero, δ0 = 0, which

simplifies its predicted market share:

s0 = 1∑
gD

(1−σ)
g

. (5)

Berry (1994) derives a linear equation relating observed market shares, mean utilities δj, and the

nesting parameter σ:

ln(sj)− ln(s0) = δj + σ ln(sj|g), (6)

where the second term on the right-hand side of Equation (6) within the natural log operator, sj|g,

is the within-group share:

sj|g = eδj/(1−σ)

Dg(j)
= eδj/(1−σ)∑

k∈Jg(j)
eδk/(1−σ) . (7)

Equation (6) can be estimated with linear instrumental variables methods. Since the within-

group share sj|g is endogenous, an instrumental variable is required to identify σ. I next show that

this parameter can be identified without an instrumental variable for sj|g. The method I propose

uses second choice data. This alternative method is valuable for three reasons. First, finding a valid

instrumental variable for sj|g can be challenging. Second, a valid instrumental variable for sj|g may not

produce precise estimates for σ. Third, second choice data provide a source of information that directly

measures correlation of unobserved utility among alternatives, which is exactly what σ measures.

Therefore, unlike using most candidate instrumental variables, using second choice data serves as an

appropriate source of identification.

2.2 Estimating Unobserved Heterogeneity

I now develop a method for estimating unobserved heterogeneity within groups of productsthat

uses second choice data. Second choice data provide information on the stated frequency of alternative

choices when another alternative is unavailable. Survey questions typically take the following form to

elicit the second choice: “If the alternative you chose did not exist, what alternative would you have

chosen?” These choices can be aggregated to frequencies and combined with market share data to

compute market shares conditional on the removal of an alternative. I convert second choice frequencies

to market shares with alternatives removed from the choice set, since these market shares are easily

computed with a nested logit model, and this formulation retains all useful information for identifying
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consumer heterogeneity parameters.6 Suppose we have data on market sales, denoted by q, shares,

and the percentage of consumers choosing alternative j stating they would have chosen alternative k

had alternative j not been available, denoted by sk,j. Then sales of alternative k with alternative j

removed is equal to sales of k (with alternative j present) plus the product of the sales of j and the

percentage of alternative j consumers stating they would have chosen k had alternative j not been

available:

qk|j /∈J = qk + sk,jqj. (8)

Dividing both sides by total market size converts the sales terms to market shares:

sk|j /∈J = sk + sk,jsj. (9)

Dividing both sides of the sales equation by total sales within alternative k’s group (assuming

that alternative j and k share the same group) yields a within-group sales share conditional on the

removal of alternative j from the choice set:

sk|g,j /∈J = sk|g + sk,jsj|g. (10)

Equations (9) and (10) can be used to match share predictions from the nested logit model with

observed market share data and second choice frequencies. The left-hand side of Equation (9) is the

market share prediction from the nested logit model with alternative j removed from the choice set:

sk|j /∈J = eδk/(1−σ)

Dσ
g(k|j /∈J)

∑
gD

(1−σ)
g|j /∈J

. (11)

The right-hand side of Equation (9) is a combination of micro and macrodata, including aggregate

market shares for alternatives j and k as well as the second choice frequency. This matching can

be interpreted as a moment condition. More of these conditions can be formed than just the one

for alternative k. For example, there are J different versions of Equation (9), where alternative k is

replaced with another alternative besides alternative j.

6An alternative approach is to directly model the probability of choosing an alternative conditional on the choice of
a different alternative. This is typically done in mixed logit models by modeling an ordered logit or exploded logit for
the sequence of choice probabilities, where the identification of the unobserved heterogeneity parameters is from the
correlation of the attributes of the first and second choices (Berry et al. 2004; Train and Winston 2007).
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Equation (11) is a function of the nesting parameter σ and the mean utilities δ1, δ2, ..., δJ . The

mean utilities can be substituted out by using Equation (6). Solving the alternative k version of

Equation (6) for the mean utility yields

δk = ln(sk)− ln(s0)− σ ln(sk|g). (12)

The right-hand side of Equation (12) is a function of market share data (s0, sk, and sk|g) and

the nesting parameter. Substituting Equation (12) into Equation (11) yields an expression that is a

function of the data and the nesting parameter σ only:

sk|j /∈J = e[ln(sk)−ln(s0)−σ ln(sk|g,)]/(1−σ)

D̃σ
g(k|j /∈J)

∑
g D̃

(1−σ)
g|j /∈J

, (13)

where

D̃g(k|j /∈J) =
 ∑
m∈Jg(k|j /∈J)

e[ln(sm)−ln(s0)−σ ln(sm|g)]/(1−σ)

 (14)

and

∑
g

D̃
(1−σ)
g|j /∈J =

∑
g

 ∑
m∈Jg|j /∈J

e[ln(sm)−ln(s0)−σ ln(sm|g)]/(1−σ)

(1−σ)

. (15)

Equation (13) can be solved for a closed-form solution of σ, denoted as σ̂:

σ̂ = 1
J(J − 1)

G∑
g=1

sj|g
∑
j∈Jg

∑
k∈Jg ,k 6=j

[
1− ln(s0 + s0,jsj)− ln(s0)

ln(sk + sk,jsj)− ln(sk,)

]
. (16)

See the appendix for a derivation of this expression. This expression is a weighted average over all

j, k pairs of alternatives that share the same group.7 The weights are equal to within-group market

shares, but can be assigned differently by the researcher to account for sampling design. The term

within the brackets relates the change in market shares of the outside option and another alternative

k sharing the group of the removed alternative j. The data sk,j measures the degree to which decision

makers substitute to another alternative k when alternative j in the same group is removed from the

choice set. If within-group utility is highly correlated, the removal of an alternative j should lead to a

7Because of the way sk|g,j /∈J is computed, the pairs of alternatives should be limited to those that share the same
group.
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disproportionally large increase in the share of alternative k that is in the same group as alternative

j, which would be reflected by a relatively large value for sk,j. This increases the estimate for σ̂, since

Equation (16) is monotonically increasing in the value of sk,j.

To better understand how the data identify the nesting parameter, consider the simplified setting

where there is no unobserved heterogeneity. Here the predicted market shares become logit. In this

setting, the removal of alternative j from the choice set should not impact the market share of

alternative k relative to the market share for the outside option due to the independence of irrelevant

alternatives (IIA) property of the logit model (Train 2009). Therefore, the log difference of the outside

market shares before and after the removal of any alternative j – which is the numerator of the second

term in the brackets – should be identical to the log difference of the alternative k market shares for

all k before and after the removal of any alternative j – which is the denominator of the second term

in the brackets. This equality implies that the second term in the brackets of Equation (16) is equal

to 1 for all j, k pairs, and therefore σ̂ = 0.

A few caveats for Equation (16) are relevant. First, σ̂=1 if for all j, s0,j = 0, regardless of the

values for sk,j. This implies that researchers should be careful to specify the outside option so that

s0,j > 0 for all or at least a large majority of j. Otherwise, σ̂ will be significantly biased toward one.

Second, the estimate σ̂ is undefined for any sk,j = 0.8 In most contexts, microdata will have some

alternatives that have no second choices of other alternatives. The researcher can avoid this issue in

two ways. First, one can compute Equation (16) based on a subsample of alternatives where sk,j > 0
for all alternatives k, j in the subsample. This strategy should introduce very little (if any) bias in the

estimation of σ̂ if a small number of alternative pairs have sk,j = 0. In cases where many sk,j = 0, an

alternative strategy is required. One alternative is to impute sj,k with the following function:

s̃k,j = sk|g,j /∈J
∑

k∈Jg ,k 6=j
sk,j = sk

sg − sj
sg,j. (17)

This function assigns imputed values for sk,j based on the within-group substitution of alternative

j, denoted by sg,j, and defined as the frequency of decision makers selecting another alternative in

group g when alternative j is removed from the group (and choice set). This frequency represents

an aggregated measure of within-group correlation of utility, and therefore serves as an intuitive

approximation of the alternative specific frequency sk,j. Imputed values are scaled by sk|g,j /∈J = sk
sg−sj

so that alternatives with large shares are assigned a relatively large second choice market share.

This imputation is useful for several reasons. First, the imputation dramatically reduces the data

requirement of observing J within-group second choice shares, as opposed to all J × Jg − 1 shares for

8This is because the denominator equals zero in this case.
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each alternative pair. Second, the variation in the imputed shares maintains all relevant information for

identifying within-group correlation of utility. Third, the imputation is consistent with predictions of

the nested logit model, in that the scaling factor implies that within-group substitution is proportional

to within-group shares. Fourth, even if second choice data are available for all sk,j, if these are

computed based on microdata, they likely include substantial sample variance, since most micro

datasets are a small fraction of the entire population of decision makers.9 Alternatively, group-level

second choice shares sg,j, although still containing sample variance, have less variance than alternative-

level second choice shares. This motivates using the imputation strategy for any situation where sample

variance may be large.

Substituting sk,j = s̃k,j into Equation (16) and simplifying yields

σ̂ = 1
J(J − 1)

G∑
g=1

sj|g
∑
j∈Jg

(Jg(j) − 1)
1−

ln
(
1 + s0,jsj

s0

)
ln
(
1 + sg,jsj

sg−sj

)
 . (18)

This method outlined above yields σ̂. With this estimate, an equation can be formed to estimate

the mean utility preference parameters β by substituting σ̂ for σ into Equation (6) and re-arranging:

ln(sj)− ln(s0)− σ̂ ln(sj|g) = xjβ + εj. (19)

In summary, the method requires two steps:

1. Estimate the nesting parameter σ with Equation (16) if sk,j > 0 for all alternatives

k, j that share the same group. Otherwise, estimate the nesting parameter with Equation

(18).

2. Estimate mean utility parameters based on Equation (19).

This method can be easily extended to estimate more detailed nested logit models that include

more than one nesting parameter. For example, in the context of new vehicle demand, the nests can

be defined as new or used vehicles, as well as separate nests for each new vehicle class. For example,

the new vehicle classes can be defined by the decision to purchase a new car or a new light truck. The

data requirement for incorporating multiple nesting parameters is to have second choice data defining

the correlation for each nest. For example, the nesting parameter defined by the decision to purchase

a new car or new light truck is identified by the frequencies of new car buyers having a different new

car as their second choice and new light truck buyers having a different new light truck as their second

9As an example, the National Household Travel Survey (NHTS) surveys a little over 100,000 households in each
wave, which is about 0.1% of the U.S. population.
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choice. In other words, the correlation among the purchased vehicle class and the second choice vehicle

class identifies this nesting parameter. The moment conditions are formed by first deriving a linear

equation relating market shares, mean utilities, and the nesting parameters. For a nested logit model

with a unique nesting parameter for each nest, this equation is

ln(sj)− ln(s0) = δj +
∑
g

Ijgσg ln(sj|g). (20)

The appendix includes a derivation of this equation. The term Ijg is a dummy variable equal to

one if j ∈ Jg and zero otherwise. Similar to the equation for the case of a single nesting parameter,

this can easily be solved for mean utilities and substituted into predicted market share equations to

derive a closed-form expression for the nesting parameters. Using second choice data to define the

“moment conditions” yields

sk|j /∈J = e[ln(sk)−ln(s0)−σg(k) ln(sk)]/(1−σg(k))

D̃
σg(k)
g(k|j /∈J)

∑
g D̃

(1−σg)
g|j /∈J

, (21)

where

D̃g(k|j /∈J) =
∑

m∈Jg(k|j /∈J)

e[ln(sm)−ln(s0)−σm ln(sm)]/(1−σm) (22)

and

∑
g

D̃
(1−σg)
g|j /∈J =

∑
g

 ∑
m∈Jg|j /∈J

e[ln(sm)−ln(s0)−σm ln(sm)]/(1−σm)

(1−σg)

. (23)

The resulting closed-form expression for each σg(k) is similar to the expression for σ̂ derived above:

σ̂g(k) = 1
Jg − 1sj|g

∑
j∈Jg

∑
k∈Jg ,k 6=j

[
1− ln(s0 + s0,jsj)− ln(s0)

ln(sk + sk,jsj)− ln(sk,)

]
. (24)

Similar to the computation of σ̂,the pairs of alternatives j, k used to estimate each σg(k) should be

limited to those that share the same group. Unlike the computation of σ̂, only data for the pairs of

alternatives that are in group g are used to compute each σg(k).
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2.3 Numerical Example for Estimating Unobserved Heterogeneity

I provide a simple numerical example of the first two steps to build intuition for the method.

Suppose there are J = 3 inside alternatives and a single outside option, j = 0, for a total of four

alternatives. The three inside alternatives all share the same group, g = 1, and the outside option is

in its own group, g = 0. I identify the nesting parameter σ using the frequency with which the second

choice is an alternative in group g = 1 when another alternative in group g = 1 is removed from the

choice set.

The method requires data for market shares and second choice frequencies. The example data

appear in Table 1. Panel (a) has data for a case of high correlation of utility for alternatives in the

same group. The outside option is assumed to have a market share of 0.5 to facilitate a comparison of

the shares and frequencies to predicted outcomes with a logit model without preference heterogeneity.

I assign second choice frequencies when an inside alternative is removed to reflect strong within-group

substitution. When alternative j = 1 is removed, 95 percent of consumers would choose a different

inside alternative, and only 5 percent would choose the outside option. The second choice frequencies

for the inside alternatives are proportional to their respective market shares, reflecting the within-

group IIA property (Train 2009). The implied market shares with an inside alternative removed reflect

highly correlated within-group utility. The removal of alternative j = 1 increases the market share

of the outside option by one percentage point. In contrast, the market shares of the remaining inside

alternatives increase by 6 to 15 percentage points, despite having a lower market share. For these

data, the nesting parameter σ̂ is estimated to be 0.90, indicating high within-group substitution.

Panel (b) in Table 1 has data for a case of low correlation of utility for alternatives in the same

group. The market shares are the same as in the Panel (a) case. Second choice frequencies for the

outside option are much higher in that case, reflecting similar substitution among the inside and

outside alternatives. The outside option market share with an inside alternative removed is much

higher in this case, and the proportional increase in market share is similar for all of the alternatives,

resembling more of a logit-type model. For these data, the nesting parameter σ̂ is estimated to be

0.27, indicating lower within-group substitution.

2.4 Estimating Observed Heterogeneity

In certain empirical settings, second choice data may not be available, preventing the application

of the method described in the previous subsections. An alternative approach is to estimate

observed heterogeneity that is based on reported characteristics of decision makers, such as consumer

demographics. In this subsection, I derive a method for identifying and estimating observed preference

heterogeneity. I adopt the same notation used in Section 2.1. Suppose decision makers are assigned to
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demographic groups denoted by d based on their observed characteristics, such as their age. Decision

maker i who belongs to demographic group d obtains utility uij when choosing alternative j in group

g, where utility is

uij = δj + βdg + εij. (25)

The term βdg represents demographic-specific utility for alternatives in group g. Therefore, decision

makers in demographic d obtain utility δj + βdg when choosing alternative j. The term δj maintains

the same interpretation from Section 2.1 as being the average utility for alternative j. Decision makers

are assumed to select a single alternative that maximizes their utility. Assuming that the idiosyncratic

error component εij is independently and identically distributed type 1 extreme value, in the appendix

I show that this form of utility yields a simple linear equation relating market shares and parameters

of the decision maker utility function:

ln(sdj)− ln(sd0) = δj + βdg. (26)

This equation relates market shares for alternative j by demographic group to the average utility

and demographic group-specific utility for alternative j. The demographic-specific utility can be

decomposed into an average utility term and a demographic-specific error term, βdg = β̄dg + µdj,

so that we can form an estimation equation for Equation (26):

ln(sdj)− ln(sd0) = δj + β̄dg + µdj. (27)

Estimation of this equation requires data on market shares by demographic group. Aggregate market

shares by demographic group may not always be available. Data that are typically more commonly

available include aggregate market shares for each alternative, sj, and shares of alternative group

market shares by demographic group, sdg. For example, one can aggregate Consumer Expenditure

Survey (CEX) microdata to compute market shares of three vehicle groups–new cars, new light

trucks, and used vehicles–for various demographic groups, such as those defined by income quintile

or by urban or rural residence. But these data do not contain market shares of specific vehicles, such

as a new Toyota Prius Plug-In. Market shares for each alternative by demographic group can be

imputed without introducing noise in the estimation of the preference parameters in Equation (27).

The procedure is as follows: for each alternative j, scale the market share sj for each demographic

group d so that the implied sdg matches the data. To fix this idea, suppose there are three alternatives

j=0,1,2, with market shares s0 = 0.5, s1 = 0.3, and s2 = 0.2, where j = 1, 2 belong to an alternative

group g = 1, and j = 0 belongs to its own outside good group g = 0. There are two demographic
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groups d=1,2, and we observe demographic by alternative group market shares for demographic group

d = 1 as 0.4 for the outside good group and 0.6 for the inside good group. This demographic group

has a larger market share for the inside good group relative to the entire population. To impute

this demographic group’s alternative-specific market shares, the inside good market shares for this

demographic group are scaled up so that their sum is equal to 0.6. The scaling proportion is equal

to the ratio of the inside group market share for the demographic group d = 1, which is 0.6, and the

inside group aggregate market share, which is s1 + s2 = 0.5. Multiplying s1 and s2 by the scaling

factor of 0.6/0.5 = 6/5 yields imputed alternative market shares of s̃11 = 0.36 and s̃12 = 0.24 and an

implied imputed market share of the outside good as s̃10 = 0.4. This procedure is repeated for each

demographic group.

The imputed values are used as data to construct the dependent variables in Equation (27). The

parameters in this equation are estimated in two stages. In the first stage, the preference heterogeneity

parameters β̄dg are estimated, and alternative fixed effects δj are included. This stage is estimated

with a fixed effects regression. The preference heterogeneity parameters enter as product interaction

terms, where demographic groups are interacted with alternative groups. The preference heterogeneity

parameters are identified from differences in market shares for each demographic group by alternative

group pairing, controlling for aggregate mean utility common to each demographic group.

The first stage yields estimates for the fixed effects, denoted by δ̂j. These values enter in the second

stage as the dependent variable. Mean utility preference parameters are estimated in the second stage

with the following equation:

δ̂j = xjβ + εj. (28)

The following series of steps summarizes the estimation method for obtaining observed preference

heterogeneity:10

1. Form groups of decision makers and alternatives based on observed characteristics.

10This method is a simplified version of the estimation strategy adopted in Leard et al. (2019). Their method uses
a similar two-stage estimation strategy to obtain observed heterogeneity and unbiased mean utility parameters of a
vehicle demand model. Their method allows for observed heterogeneity for continuous attributes (such as price), which
contrasts with the approach outlined above, which only permits observed heterogeneity for discrete, nonoverlapping
groups of alternatives. Their method, however, has a significant data requirement for observing alternative market shares
for multiple demographic groups, which may be unavailable in certain contexts. This generally requires a massive set of
microdata for contexts with a large number of alternatives in the choice set, which is the case for vehicle demand. The
data requirement for the method described here is much less demanding, only requiring information on market shares
of aggregate alternative groups for different demographic groups. These data are generally common in many contexts
and are available in several public datasets, such as the CEX. So, while the method described here is less flexible in
modeling certain substitution patterns that are obtained from continuous heterogeneity, it is likely to be much more
widely accessible.
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2. If only sj and sdg are available, impute sdj using the procedure above. Otherwise, skip

to step 3.

3. Estimate first-stage fixed effects regression in Equation (27).

4. Estimate the second stage with Equation (28), using the estimated δ̂′js from the first

stage as the dependent variable.

2.5 A Combined Method for Estimating Observed and Unobserved

Heterogeneity

In this section, I formulate a method for estimating observed and unobserved heterogeneity that

combines the approaches from Sections 2.1 and 2.4. This is the most data-intensive method, requiring

second choice data and decision maker characteristics linked to alternative choices. But it provides

more flexibility in modeling heterogeneous preferences. I adopt the same notation used in Sections 2.1

and 2.4. Suppose decision makers are assigned to demographic groups denoted by d based on their

observed characteristics. Decision maker i who belongs to demographic d obtains utility uij when

choosing alternative j in group g, where utility is

uij = δj + βdg + ξig + (1− σ)εij. (29)

The interpretations of the utility function parameters are similar to those stated in prior sections.

Assuming that the error term εij is i.i.d. type 1 extreme value, in the appendix I derive a linear equation

relating market shares, observed heterogeneity preference parameters (βdg), and the unobserved

heterogeneity preference parameter (σ):

ln(sdj)− ln(sd0) = δj + βdg + σ ln(sdj|g). (30)

This equation combines the elements appearing in the estimation Equations (6) and (26). The

estimation of the preference parameters proceeds in three stages. In the first stage, the unobserved

heterogeneity parameter σ is estimated using moment conditions based on second choice data. These

moment conditions are constructed in a similar fashion to the methodology described in Section 2.2.

The first step to constructing the moment conditions is to form an expression of market shares with

an alternative removed from the choice set. This can be done by demographic group:

sdk|j /∈J = sdk + sdk,jsdj. (31)
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Note that this expression requires market shares by demographic group and alternative. If these

data are unavailable, an imputation strategy outlined in Section 2.4 can be used to obtain imputed

market shares.

Equation (32) can be used to match share predictions from the nested logit model with observed

market share data and second choice frequencies. The left-hand side of Equation (32) is the market

share prediction from the nested logit model with alternative j removed from the choice set

sdk|j /∈J = e(δk+βdg(k))/(1−σ)

Dσ
dg(k|j /∈J)

∑
gD

(1−σ)
dg|j /∈J

, (32)

where

Ddg(k|j /∈J) =
∑

m∈Jg(k|j /∈J)

e(δk+βdg(k))/(1−σ) (33)

and

∑
g

D
(1−σ)
dg|j /∈J =

∑
g

 ∑
m∈Jg|j /∈J

e(δk+βdg(k))/(1−σ)

(1−σ)

. (34)

Next, I solve Equation (30) for the parameters that do not represent unobserved heterogeneity,

δk + βdg:

δk + βdg = ln(sdk)− ln(sd0)− σ ln(sdk|g). (35)

These terms are then substituted into Equation (32), leaving an expression for the conditional

market share with alternative j removed that is a function of data and the unobserved heterogeneity

parameter only:

sdk|j /∈J = e[ln(sdk)−ln(sd0)−σ ln(sdk)]/(1−σ)

D̃σ
dg(k|j /∈J)

∑
g D̃

(1−σ)
dg|j /∈J

, (36)

where

D̃dg(k|j /∈J) =
∑

m∈Jg(k|j /∈J)

e[ln(sdm)−ln(sd0)−σ ln(sdm)]/(1−σ) (37)
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and

∑
g

D̃
(1−σ)
dg|j /∈J =

∑
g

 ∑
m∈Jg|j /∈J

e[ln(sdm)−ln(sd0)−σ ln(sdm|g)]/(1−σ)

(1−σ)

. (38)

Moment conditions are formed by equating the expressions in Equations (31) and (36). The

following closed-form expression for the nesting parameter σ̂ can be derived using a similar approach

in Section 2.2:

σ̂ = 1
J(J − 1)

∑
d

G∑
g=1

sdj|g
∑
j∈Jg

(Jg(j) − 1)

1−
ln
(
1 + sd0,jsdj

s0

)
ln
(
1 + sdg,jsdj

sdg−sdj

)
 . (39)

The parameter σ̂ can be computed as an average of the associated micro and macro share data

for each combination of d, j, and g, where j is in group g. This computation yields σ̂. In the second

stage, the observed heterogeneity parameters are estimated. They are estimated with the following

equation:

ln(sdj)− ln(sd0)− σ̂ ln(sdj|g) = δj + βdg. (40)

Substituting the decomposition of βdg, βdg = β̄dg + µdj, into Equation (40) yields the following

estimation equation:

ln(sdj)− ln(sd0)− σ̂ ln(sdj|g) = δj + β̄dg + µdj. (41)

Equation (41) is estimated with a fixed effects regression, with alternative fixed effects δj, and with

demographic group by alternative group interactions β̄dg. This yields estimates for the alternative

fixed effects, δ̂i. The third stage is estimated using these alternative fixed effects as the dependent

variable in an instrumental variables design of Equation (28). In summary, the method for estimating

the model with observed and unobserved heterogeneity includes the following steps:

1. Form groups of decision makers and alternatives based on observed characteristics.

2. If only sj and sdg are available, impute sdj using the procedure above. Otherwise, skip

to step 3.

3. Compute σ̂ based on Equation (39) as an average over each combination of d, j, and

g, where j is in group g.
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4. Estimate second stage fixed effects regression in Equation (41).

5. Estimate the third stage using the estimated δ̂′js from the second stage as the dependent

variable using Equation (28).

2.6 Further Extensions

In this section, I discuss a series of extensions of the method.

2.6.1 Group-Specific Unobserved Heterogeneity

An extension of the method is that the unobserved heterogeneity parameter, σ, can be computed

separately for each alternative group and demographic group, so that each σdg is estimated. This

requires forming separate moment conditions for each group based on second choice data specific

to each alternative group and demographic group. Identification requires disaggregated second

choice data by alternative group and demographic group. For example, the second choices made

by households in urban areas that purchase an SUV may be observed to be different than the second

choices made by households in rural areas that purchase an SUV.

2.6.2 Multi-Level Nesting

The method can be extended to include multiple levels of groups, such as in the three-level nested

logit model (Train 2009). Suppose alternatives are assigned to a group g and subgroup h associated

with group g. The estimation equation for the three-level nested logit model is

ln(sj)− ln(s0) = δj + σhg ln(sj|h) + σg ln(sh|g). (42)

This equation is derived in the appendix. Equation (42) has two nesting parameters, σhg and σg,

where σhg represents within subgroup correlation and σg represents within-group correlation. Each of

the nesting parameters is multiplied by the natural logarithm of a group share. The share sj|h denotes

the share of alternative j within its subgroup h, and the share sh|g denotes the combined share of all

alternatives in subgroup h within its group g. Each of these shares are observed in aggregate market

data. The nesting parameters can be estimated following the method in Section 2.2. This is done by

first solving Equation (42) for the mean utility of alternative j:

δj = ln(sj)− ln(s0)− σhg ln(sj|h)− σg ln(sh|g). (43)
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This Equation is then substituted into the closed-form predicted market share for the three-level

nested logit model with an alternative removed from the choice set, following the approach in Section

2.2. Moment conditions equivalent to Equation (9) are formed by equating observed market shares

with an alternative removed with predicted market shares with an alternative removed. Closed-form

solutions for the share parameters σhg and σg can be easily (but somewhat tediously) derived. In the

appendix I show that the following expression relates market shares and the nesting parameters:

ln(sk|j /∈J)− ln(s0|j /∈J)− [ln(sk)− ln(s0)] = σhg[ln(sk|h,j /∈J)− ln(sk|h)] + σg[ln(sh|g,j /∈J)− ln(sh|g)]. (44)

In contrast to the estimation equations associated with prior models, Equation (44) includes

multiple nesting parameters. Therefore, additional steps must be taken to identify the nesting

parameters from using different combinations of alternatives j, k. Two unique sources of variation

can be used to identify σhg and σg. The parameter σhg measures the degree that utility is correlated

among alternatives in subgroup h of group g. This parameter is identified with changes in market

shares of alternatives that share the same subgroup. One version of Equation (44) is formed by

computing sk|j /∈J, sk|h,j /∈J, and sh|g,j /∈J for pairs of alternatives j, k that are both in subgroup h of

group g. These shares are computed as Equation (9) and the following two equations:

sk|h,j /∈J = qk|j /∈J
qh|j /∈J

= qk + sk,jqj
qh + sh,jqj

, (45)

sh|g,j /∈J = qh|j /∈J
qg|j /∈J

= qh + sh,jqj
qg + sg,jqj

. (46)

The terms qk, qh,and qg denote sales of alternative k, all alternatives in subgroup h, and all

alternatives in subgroup g, respectively, and sh,j and sg,j denote second choice frequencies of first choice

alternative j for alternatives in subgroup h and group g, respectively. The parameter σg measures the

degree that utility is correlated among alternatives in subgroup h of group g, conditional on within

subgroup correlation. Therefore, this parameter can be identified from changes in market shares of

alternatives that share the same group but not the same subgroup. A second version of Equation (44)

is formed by computing sk|j /∈J, sk|h,j /∈J, and sh|g,j /∈J for pairs of alternatives j, k that are both in group

g but that are in different subgroups. These shares are computed with Equations (45) and (46).

Using the shares of any two pairs of alternatives where one pair shares the same subgroup and

another shares the same group but are in different subgroups as in inputs for the two versions of

Equation (44) yields a system of two linear equations and two unknowns, which can be easily solved
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for the two nesting parameters. All such pairs that satisfy the grouping conditions can be included

in the calculation of the nesting parameters, as in Equation (16) or Equation (18). This computation

yields estimates for the nesting parameters, denoted as σ̂hg and σ̂g. The following equation can be

then be used to compute mean utilities: δ̂j = ln sj − ln(s0) − σ̂hg ln(sj|h) − σ̂g ln(sh|g). Mean utility

parameters can then be estimated in a second stage.

2.6.3 Continuous Attributes Heterogeneity

One of the caveats that I mention above is that the empirical model does not incorporate

heterogeneous preferences for continuous product attributes. The method described in Section 2.5

is able to incorporate these preferences if market shares and second choice data are available by

demographic group. Continuous attributes heterogeneity parameters are estimated in the observed

heterogeneity estimation stage with the β̄ terms replaced by demographic group by continuous

attribute interactions. Denoting the value of the continuous attribute a by zja, the estimation of

observed preference heterogeneity in the combined estimation method from Section 2.5 is replaced by

ln(sdj)− ln(sd0)− σ̂ ln(sdj|g) = δj +
∑
a

β̄dazja + µdj. (47)

Simpler models of continuous attributes heterogeneity without unobserved heterogeneity can be

estimated by substituting the
∑
a β̄dazja term for the β̄dg in Equation (27).

2.6.4 Identifying and Estimating Unobserved Heterogeneity With Repeated Choice

Data

For certain settings, although second choice data may not be available, researchers may observe

repeated choices made by decision makers. These repeated choice data have often been used to identify

unobserved heterogeneity in discrete choice models.11 Repeated choice data can be converted into

second choice data by assuming an ordering among the repeated choices. For example, if a household

buys alternatives 1 and 2, the researcher can assume randomly that the household ranks alternative

1 over alternative 2. Then if alternative 1 were not available, the household would choose alternative

2. The random assignment among the chosen alternatives should not impact the estimation of the

preference parameters much unless there is little correlation among the alternatives. This sensitivity

can be checked by repeating the estimation many times for different random rankings.

11Examples of studies using repeated choices for identification include Bento et al. (2009) and Brownstone and Train
(1998).
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2.6.5 Identifying and Estimating Observed Heterogeneity at the Market Level

Information on household demographics may not be available for some contexts. The researcher,

however, is still able to estimate observed heterogeneity if data on product sales are available in

more than one market. For example, product sales may be available by geographic region, such

as at the state level. In this case, observed heterogeneity can be estimated by interacting market

dummy variables with product groups or attributes in the observed heterogeneity estimation stage. In

other words, each market is modeled as a distinct group d as described in Section 2.4. This produces

observed heterogeneity at the market level, so that decision maker preferences can vary across markets.

When markets are defined as distinct geographic regions, this form of heterogeneity can play an

important role for assessing regional policies, or a combination of regional and national policies.12 If

a researcher has a dataset with many markets, they can reduce the number of parameters to estimate

by aggregating the definition of the group d (to, for example, the regional level).

2.6.6 Calibration

In some cases, modelers may have a tight deadline for completing an analysis of a policy.

Given their time constraint, they may want to estimate only certain parameters and calibrate

others based on estimates from the literature. The method in the current paper can be adopted

to accommodate calibration. For example, suppose a modeler wants to build a discrete choice model

that has heterogeneity and mean utility parameters. If the modeler has access to microdata, they can

estimate preference heterogeneity parameters using the methodology from this paper. They can then

calibrate mean utility parameters based on estimates from the literature. The mean utility parameter

for price and non-price product attributes can be calibrated so that the implied own-attribute elasticity

of demands or the implied willingness to pay for each non-price attribute match estimates from the

literature.13

3 Empirical Application: The Effect of Fuel Economy

Standards on New Vehicle Demand

In this section, I apply the method for estimating unobserved heterogeneity described in Section

2.2 by estimating consumer demand for new vehicles. I choose to estimate this version of the method

because it best illustrates the ability of the method to accurately address a relevant application of

the estimation. I estimate a demand model that accounts for heterogeneity along the new-versus-

12An example of a combination of policies in the transportation sector includes the Zero Emissions Vehicle (ZEV)
mandate administered by of subset of states in the U.S. and the federal fuel economy (CAFE) standards administered
by the federal government.

13This calibration process is relatively simple because own-attribute elasticities and willingness to pay values have
closed-form solutions for the nested logit model. See the appendix for a derivation of the own-price elasticity of demand.
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used vehicle choice dimension. This dimension of vehicle choice has received little attention in prior

literature, even though it is often relevant for policy analysis. In particular, this dimension influences

the prediction of policy outcomes that depend on aggregate market share impacts, such as the effect of

a gasoline tax on new and used vehicle ownership.14 Prior vehicle demand models often omit this choice

margin completely due to computational and data constraints (Train and Winston 2007; Whitefoot

et al. 2017; Xing et al. 2019). Other demand models, such those presented in Berry et al. (1995),

Berry et al. (2004), and Klier and Linn (2012), include an outside option–either a composite used

vehicle or the broad choice to not buy a new vehicle–along with new vehicles in the choice set. But in

these models, the substitution between new vehicles and an outside option is identified by differences

in new-vehicle attributes, which is likely an inaccurate and misleading source of identifying variation

for this choice margin. In contrast, the empirical strategy here uses appropriate identifying variation

in the form of used vehicle second choice frequencies of new vehicle buyers.

I use the estimated demand model to quantify the effect of fuel economy and greenhouse gas

standards on new and used light-duty vehicle sales. The effect of the standards on vehicle sales has

long been of interest to policy makers and analysts, yet little research has addressed this policy

question, with a recent notable exception being Linn and Dou (2018). The method in the current

paper is ideal for quantifying sales impacts, since they are determined by how new vehicle buyers

substitute to used vehicles in response to changes in new vehicle characteristics. This substitution

pattern is reflected by the willingness of new vehicle buyers to pay for vehicle attributes, and their

propensity to prefer new vehicles over used vehicles. In this section, I estimate these two features of

new vehicle buyer preferences.

Fuel economy and greenhouse standards in the United States currently require vehicle

manufacturers to achieve a sales-weighted average fuel economy and an equivalent level of greenhouse

gas emissions among vehicles sold. In 2008, the Obama administration passed legislation to double the

average fuel economy requirement by 2025 relative to 2010 levels. The current Trump administration

has since proposed to roll back these standards beginning with the 2020 model year.15 The

federal agencies regulating fuel economy and greenhouse gas emissions for light-duty vehicles, the

Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration

(NHTSA), have since released a detailed preliminary impact analysis (PRIA) for the proposed rollback

(EPA 2018). The PRIA summarizes a detailed calculation of costs and benefits of the rollback, which

14This effect is relevant for understanding the impact of gasoline taxes on total gasoline consumption and greenhouse
gas emissions (Bento et al. 2009).

15The legislation
is titled the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Year 2021–2026 Passenger Cars and Light
Trucks. See https://www.npr.org/2018/08/02/631986713/white-house-proposal-rolls-back-fuel-economy-standards-no-
exception-for-californ and https://www.washingtonpost.com/national/health-science/2018/08/01/90c818ac-9125-11e8-
8322-b5482bf5e0f5 story.html?noredirect=on&utm term=.100ead61f250 for news coverage of the rollback.
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finds that the rollback will lead to net social benefits. A recent review of this modeling finds substantial

flaws with the assessment, suggesting that the sign and magnitudes of the costs and benefits have

been grossly misestimated (Bento et al. 2018). The review finds that the key reason for this result

is the agencies’ flawed modeling of the effect of the standards on new and used vehicle purchases.

The agencies use a reduced-form model of vehicle sales to estimate the effect of the rollback on

the composition of new and used vehicles on the road. Bento et al. (2018) indicate large flaws with

this model and suggest the agencies take a more structural approach for modeling sales impacts. In

particular, they recommend developing a vehicle demand model that has parameters estimated with

sales and vehicle characteristics data. The structural approach taken in the current paper is one such

example of the model they recommend.

Before continuing to the estimation, it is important to recognize other applications of the methods

that incorporate observed heterogeneity in Sections 2.4 and 2.5. The incorporation of observed

heterogeneity is not only able to help expand the ability of the model to reflect certain substitution

patterns, it can provide modelers the ability to perform distributional analysis according to the

assigned demographic groups. For example, if household income is observed, demographic groups can

be assigned based on this variable, as in Leard et al. (2019). Policy impacts can then be disaggregated

by demographic group.

3.1 Data

I use data on new and used vehicle sales, characteristics, and second choice microdata to estimate

a vehicle demand model for the 2015 market year, which corresponds to sales from October 2014 to

September 2015. New vehicle sales data are from IHS Automotive. These data are highly disaggregated

counts of vehicle registrations by quarter. Each observation is defined by buyer type (household vs.

fleet), quarter, model year, make, model, trim/series, fuel type, drive type, body style, and engine size

(e.g., four cylinder vs. six cylinder). I drop observations for fleet vehicles since the microdata are only

for household buyers.16 I aggregate the sales data to the market year level, combining observations

that share the same variable names but have different quarters or model years.17 Therefore, each

observation represents sales of a vehicle by make, model, trim/series, fuel type, drive type, body style,

and engine size during the 2015 market year.

I merge with the sales data vehicle characteristics data from Wards Automotive. These data

include information on horsepower, weight, and vehicle dimensions. Based on the vehicle dimensions

information, I calculate each vehicle’s footprint as the product of the vehicle’s wheelbase and its track

16Fleet vehicles represent 15 to 20 percent of new vehicle sales, and fleet buyers tend to exclusively purchase new
vehicles (Leard et al. 2017). Therefore, there is likely little to no substitution between new and used fleet vehicle
demand.

17Aggregating over model years avoids issues related to sales and pricing impacts due to inventory effects.
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width. These data are merged based on all of the unique vehicle identifiers listed above. I merge fuel

economy information from the Environmental Protection Agency’s fuel economy database, and I merge

annual average gasoline, diesel, and electricity prices from the Energy Information Administration,

which are all denominated in 2015$.

I merge transaction prices from household survey data obtained from MaritzCX. This survey

includes about 210,000 raw observations for the 2015 market year. These data are self-reported

transaction prices for vehicles purchased or leased during the 2015 market year. About one-third of

the observations have missing transaction price information, leaving around 140,000 usable prices.18

I compute average transaction prices by all of the unique vehicle identifiers listed above, which are

merged to the sales and characteristics data using the same identifiers.

A key feature of the MaritzCX survey data is that it asks respondents about vehicles that

the respondents would have bought had their newly acquired vehicle not existed. This represents

the second choice data that can be used to form moment conditions for estimating preference

heterogeneity. The exact question is “If the model you acquired did NOT exist, what vehicle would

have purchased/leased?” The survey asks respondents for the model year of the second choice vehicle,

as well as discrete options for the age of the second choice vehicle: new, used, or pre-owned. I code

used and certified pre-owned responses as used vehicles. The data include many additional details

about the second choice responses, including make, model, fuel type, engine size, and body style,

among other characteristics. About two-thirds of the survey observations have valid responses for

these questions.19 I aggregate the second choice decision for new versus used to the vehicle level.

This variable represents the expected likelihood that a new vehicle buyer would buy a used vehicle

had their obtained new vehicle been unavailable. After merging, I clean the data, leaving 762 vehicle

observations for estimation. See the appendix for a detailed description of the data-cleaning steps

taken.

I merge data on used car and light truck sales from the CEX corresponding to the 2015 market

year. The CEX surveys about 7,000 households each quarter, and includes questions about household

purchases and leases of new and used vehicles. I compute a market share for used vehicles based

on the proportion of total vehicle purchases and leases that are used. For the 2015 market year, this

18These data are similar to the transaction price data used in Leard et al. (2019). See Leard et al. (2019) for more
details on the MaritzCX data.

19The survey also includes a third and fourth choice option, with the same vehicle characteristics questions. Third and
fourth choice data are less frequently provided than the second choice information, but could be used for identification
of preference heterogeneity. For example, Train and Winston (2007) use up to four stated second choices by survey
respondents to estimate preference heterogeneity among new vehicle buyers.
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proportion is 0.681, or a little over two-thirds of the entire light-duty market. This market is consistent

with recent reports on sales of new and used vehicles.20

Summary statistics for the data appear in Table 2. Average transaction prices are around $40,000.

This is substantially higher than the median transaction price in the sample (about $32,000) due to

the logarithmic shape of the new vehicle price distribution. The second choice data suggest a strong

within-group preference for new vehicles. About 92 percent of new vehicle buyers state that they

would have acquired a different new vehicle had their acquired new vehicle not been available. Only

8 percent of these buyers stated they would buy a used vehicle as their second choice. Comparing

these proportions to the used vehicle market share confirms that new vehicle buyers have a strong

preference for new vehicles. A benchmark comparison is with a logit model, which does not account

for shared within-group utility. A logit model would predict that the proportion of new vehicle buyers

substituting to a used vehicle would be approximately equal to the market share for used vehicles

for a small market share of the removed alternative.21 The fact that the substitution is much lower

suggests a high correlation in utility among new vehicles. The minimum and maximum values for these

variables suggest some heterogeneity among vehicles. Curiously, buyers of new 2015 Mini Coopers tend

to favor used vehicles as their second choice. This vehicle is the only vehicle observation with a second

choice new frequency below 50 percent. The correlation coefficient for transaction price and the second

choice new variable is 0.38, suggesting that buyers of inexpensive vehicles are more likely to substitute

to a used vehicle. This is consistent with lower income households having a higher price elasticity of

demand and opting to buy either inexpensive new vehicles or used vehicles.22

3.2 Estimation Results

I specify utility to be a linear function of cost per mile, performance measured as the ratio of

horsepower to weight, size measured by footprint, and the natural log of transaction price. I include

a control variable for the average model year of each vehicle, and I include fixed effects for fuel type,

body style (e.g., pickup truck), and drive type (e.g., all-wheel drive). I estimate utility parameters

20Used car and light truck sales in the US are typically
around 40 million per year. For example, see https://www.edmunds.com/about/press/used-vehicle-sales-hit-record-
high-in-2017-according-to-latest-edmunds-used-car-report.html. New car and light truck sales in the US were about 17
million in 2017: https://www.automobilemag.com/news/u-s-auto-sales-totaled-17-25-million-calendar-2017/.

21The proportion is typically slightly larger than the market share for used vehicles. To see this, we know
that slogit

0|j /∈J = slogit
0 + slogit

0,j slogit
j , where the superscript denotes the shares are based on the logit model. Solving

this equation for the substitution proportion slogit
0,j yields slogit

0,j =
slogit

0|j /∈J−slogit
0

slogit
j

. A few steps of algebra shows that

slogit
0|j /∈J − slogit

0 = slogit
0|j /∈Js

logit
j . Substituting this into the expression for slogit

0,j yields slogit
0,j = slogit

0|j /∈J. The share slogit
0|j /∈J

satisfies slogit
0|j /∈J > slogit

0 and slogit
0|j /∈J ≈ s

logit
0 for small values of slogit

j .
22See Leard et al. (2019) for estimates of observed household demand heterogeneity that are consistent with this

pattern.
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with a series of logit and nested logit models. The demand estimation results appear in Table 3.

Columns (1) and (2) include logit model specifications that do not include a first stage estimation

of the nesting parameter. The results appearing in column (1) are estimated with ordinary least

squares, and column (2) shows results for an instrumental variables (IV) specification. The coefficient

estimates for the vehicle characteristics have expected signs. Vehicle buyers prefer lower prices, lower

fuel costs, higher performance, and larger vehicles. For all IV specifications, I construct instruments

following Train and Winston (2007), using the sum of continuous characteristics of other vehicles sold

by the same manufacturer and the sum of the continuous characteristics of other vehicles sold by other

manufacturers in the same body style category, as well as the squares of these sums. For consistency

with my simulation exercises, I deviate from Train and Winston (2007) by relaxing the assumption

that cost per mile is exogenous, so that only performance and footprint are used as instruments.

Therefore, for the IV specifications, both the log of price and cost per mile are instrumented. The

logit results appearing in column (2) show that treating price and cost per mile as endogenous increases

the price sensitivity, which is consistent with results from prior literature showing that unobserved

vehicle characteristics tend to bias the price coefficient toward zero.

Columns (3) and (4) report estimation results for nested logit specifications. The first-stage

estimation of the nesting parameter shows a strong within-group correlation, with σ̂ = 0.955. This

value is consistent with the high within-group share reported in Table 2. The price coefficient in

instrumented nested logit specification appearing in column (4) is about twice as large in magnitude

relative to the OLS estimate appearing in column (3). The implied own-price elasticity of demand

for the IV specification is −3.58, which is within the range of price elasticity estimates from prior

literature (Berry et al. 1995; 2004; Train and Winston 2007).23 It is also similar to a recent estimate

from Leard et al. (2019) that uses a similar level of vehicle aggregation and several years of data. T

To infer household demand for vehicle attributes,I calculate implied willingness to pay (WTP) for

a 1 percent change in vehicle attributes and report these figures in Table 3.24 Households are willing

to pay $60 for a one percent reduction in cost per mile. This estimate is similar to the WTP for

fuel cost reductions in Leard et al. (2019). Assuming that the associated lifetime fuel cost savings

are $249 based on calculations from Leard et al. (2017), the implied fuel cost valuation ratio is 0.24.

This valuation ratio is defined by a noisy estimate of the cost per mile coefficient. For this reason,

in the simulations I vary WTP for fuel cost savings over a range of values from recent literature.

Households are willing to pay $101 for a 1 percent increase in vehicle performance. This is similar in

magnitude to the WTP for performance reported in Leard et al. (2017). Households are willing to

23See the appendix for a derivation of this elasticity.
24Willingness to pay for a unit change in an attribute is the ratio of the marginal utility of the level of an attribute to

the marginal utility of price. Obtaining willingness to pay for a 1 percent change requires normalizing the unit change
calculation by 1 percent of the level of the attribute.
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pay $546 for a 1 percent increase in footprint, which is consistent with WTP for particular subgroups

of the population reported in Leard et al. (2019). The WTP estimates for performance and footprint

are near the median of the distribution of estimates reported in Greene et al. (2018).

In Table 3, I report the implied total new vehicle market price elasticity of demand.25 This elasticity

is approximately equal to the percentage change in aggregate new vehicle sales due to a one percent

change in all new vehicle prices. The market price elasticity of demand defines the change in new

vehicle sales due to a policy that causes changes in new vehicle prices. Therefore, this elasticity can

be used to estimate the sales impacts of tightening or relaxing fuel economy standards. For the IV

specification, this elasticity is equal to −0.11, suggesting an inelastic market demand response. This

response is smaller than the central value from Berry et al. (2004), equal to −1 based on private

information from General Motors. However, the central market elasticity assumed in Berry et al.

(2004) implies an extraordinarily large (in absolute value) own-price semi-elasticity of demand equal

to −10.56. Berry et al. (2004) also calibrate their model with a market elasticity of −0.4, which

yields an own-price semi-elasticity equal to −3.94. This implied own-price elasticity is in line with

prior estimates and the estimate from this paper, suggesting that −0.4 is a more appropriate market

elasticity. The estimate from this paper of −0.11, although smaller in magnitude, is consistent with

this inelastic market price elasticity.26

The total new vehicle cost per mile elasticity of demand is equal to −0.02, which is about a

fifth of the total new vehicle market price elasticity of demand. Therefore, fuel economy standards

that lower fuel costs by over a factor of five or more than the associated increase in purchase prices

should increase total new vehicle sales. For example, the regulatory impact analysis of the Obama

2017− 2025 fuel economy standards predicted an increase in purchase prices of $1,800, or roughly 6

percent of the sticker price for model year 2025 vehicles, with an associated reduction in fuel costs

of $5,700 to $7,400, or roughly 38 to 49 percent of lifetime fuel costs (EPA 2012). The estimated

demand parameters applied to the predictions would imply a small increase in new vehicle sales due

to tightening standards.27

A final note about the estimation is that it is computationally fast. The first stage for the nested

logit models, which is computed with a closed-form expression, take less than one second to estimate.28

Of course, the computational time necessary to estimate the first stage will be longer if a larger dataset

25See the appendix for a derivation of this elasticity.
26This elasticity is smaller than but similar in magnitude to the demand response found in EPA (2018), which uses a

reduced-form time series model to estimate the effect of changes in new vehicle prices on new vehicle sales. The implied
market price elasticity from that model falls in the range of -0.2 to -0.3, suggesting an inelastic demand response.

27Equivalently, the recent proposal to roll back 2021−2025 standards should be expected to reduce new vehicle sales,
which is contrary to findings from the preliminary regulatory impact analysis of the rollback (EPA 2018). Of course,
these results critically depend on the forecasted changes in purchase prices and fuel costs.

28For each model, the final second stage takes under one second.
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is used or if more than one nesting parameter is estimated. But the time here is orders of magnitude

faster than most standard BLP or micro-BLP estimation routines, which can take hours or even days

to estimate. For modelers and policy analysts who want to build a discrete choice model by running

multiple specifications or apply many different specifications for the purposes of policy simulation,

this short estimation time is likely to prove useful.

3.3 Simulation of Tightening Fuel Economy Standards

I use the estimated demand model to simulate the sales impacts of tightening fuel economy

standards. I take a stylized approach to quantify the effect of the standards on sales. I assume

a simple supply-side response by manufacturers, which pass the costs of the standards on to new

vehicle buyers in the form of higher vehicle prices. I further assume that the standards affect vehicle

prices uniformally. I consider the case of a 1 percent increase in the stringency of the standards

relative to 2015 fuel economy levels. This is modeled by increasing each vehicle’s fuel economy by 1

percent. Following estimates implied by Leard et al. (2019) that are based on engineering relationships

between fuel-savings from technology adoption and manufacturing costs, for the benchmark simulation

I assume that this increase in stringency is accompanied by an increase of vehicle prices by 0.25 percent

for cars and 0.18 percent for light trucks.29 I reference this setting as using engineering technology

costs. I abstract from a non-uniform increase in prices due to pricing competition to focus on the

impact of varying demand modeling assumptions on sales.30

I consider four simulation scenarios. In the first scenario, changes in vehicle prices are defined by the

engineering technology cost relationships defined above and where vehicle buyers do not value changes

in cost per mile. This scenario is consistent with assumptions made in the new vehicle sales simulation

model adopted by federal agencies in quantifying the effects of the recently proposed rollback of fuel

economy standards (EPA 2018). Under this scenario, tighter standards increase new vehicle prices

and lower costs per mile, but new vehicle demand only responds to the increase in new vehicle prices.

This is equivalent to assuming that the cost per mile coefficient is equal to zero, or assuming that the

change in cost per mile is equal to zero. For the second and third scenarios, I assume that changes

in the present value of fuel costs equal changes in vehicle prices as a result of a marginal tightening

of the standards. This scenario requires calibrating the relationship between cost per mile and the

present value of lifetime fuel costs. Discounted fuel costs equal the product of cost per mile and the

present discounted miles driven. For the latter, I assume that cars and light trucks are driven 195,264

29Leard et al. (2019) estimate an elasticity of vehicle manufacturer marginal costs to fuel economy of about 0.25 for
cars and 0.18 for light trucks. Assuming that changes in marginal costs are fully passed on to new vehicle buyers in the
form of higher prices yields the assumptions made in the current paper.

30Recent examples of modeling efforts to incorporate pricing effects include Jacobsen (2013), Reynaert (2017), and
Leard et al. (2019).
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and 225,865 miles, respectively, following EPA (2012). Therefore, a one percent change in cost per

mile increases new vehicle purchase prices by the product of cost per mile and 1,952.64 for cars and

2,258.65 for trucks.31 These scenarios represent a setting where all technologies where the associated

fuel cost savings exceed installation costs have already been adopted. This setting implies there is no

market failure on the supply side of the market for fuel economy. In the second scenario, I continue

to assume that consumers do not value fuel cost savings. In the third scenario, I assume that changes

in fuel costs equal changes in vehicle prices and consumers value fuel cost savings according to the

demand model estimates from the nested logit IV specification (column (4) in Table 3). In the fourth

scenario, I assume that changes in fuel costs equal changes in vehicle prices and consumer value 75

percent of fuel cost savings, which is approximately three times the implied valuation from the third

scenario.32These three scenarios present a wide range of alternative assumptions regarding technology

costs and consumer demand.

The simulated effects of a marginal tightening of fuel economy standards appear in Figure 1. The

vertical axis measures the percentage change in new vehicle sales. In the benchmark scenario where

changes in prices are defined by engineering estimates and where vehicle buyers do not value fuel

cost savings, new vehicle sales fall by about 0.023 percent as a result of a 1 percent tightening. This

magnitude is smaller than the change in new vehicle sales estimated in Linn and Dou (2018): they

use a reduced-form approach relating new vehicle sales to fuel economy stringency over time and

estimate that a 1 percent tightening reduces new vehicle sales by 0.1 percent. However, in the second

scenario where changes in prices equal changes in fuel costs and where consumers do not value fuel

cost savings, new vehicle sales fall by 0.082 percent, which is close to the estimate in Linn and Dou

(2018). For the third scenario where consumers value fuel cost savings according to the IV nested

logit demand estimates, new vehicle sales fall less, by 0.061 percent, as reduction in demand from

higher prices is tempered by higher demand due to lower fuel costs. If consumers value 75 percent of

fuel cost savings, a 1-percent tightening of fuel economy standards reduces new vehicle sales by 0.021

percent. Across all of the scenarios, the change in new vehicle sales is quite modest: the elasticity of

new vehicle sales to fuel economy stringency is highly inelastic. This is due to the limited substitution

between new and used vehicles, given the inelastic demand of the new vehicles estimate reported in

Table 3.

31This could be overestimate of the cost increase since this calculation includes an implicit assumption that the
real discount rate is equal to zero. Therefore, this scenario can be interpreted as an upper bound for the change (in
magnitude) in new vehicle sales as a result of a marginal tightening of the standards. An alternative approach is to
compute present discounted miles driven using an annual miles schedule estimated from household data in National
Highway Travel Survey and household survey data on auto loans, as in Leard et al. (2017).

32This valuation ratio is consistent with benchmark estimates from Allcott and Wozny (2014).
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3.4 Comparison with Alternative Models

To address how the method for identifying and estimating preference heterogeneity is relevant for

assessing policies like fuel economy standards, I compare the simulation results to outcomes derived

from alternative models. I consider two alternative models. The first has a smaller nesting parameter

σ equal to one-half of the estimated parameter in Table 3. This alternative represents a nested logit

model with parameters estimated based on macrodata alone using an instrumental variables strategy

as suggested in Berry (1994). It can also represent a mixed logit model that has a random parameter

for the outside option (used vehicles in the current context) that is estimated without second choice

microdata. The second alternative model is an IV logit version of the benchmark model, which I define

as the set of model parameters from column (4) in Table 3, where vehicle buyers do not value changes

in cost per mile (represented by the left bar in Figure 1). For both of these alternative models, I adjust

the price coefficient so that the implied own-price elasticity of demand equals −3.58 to be consistent

with the benchmark model.

The simulated effects of tightening standards on new vehicle sales for these alternative models

appear in Figure 2. The benchmark model results appear as the left-most bar for comparison. The

change in new vehicle sales is substantially larger for both of the alternative models. For the logit

model, the simulated change in new vehicle sales is about 20 times as large as the benchmark. Although

the predicted change is not as extremely different for the model with a smaller assumed value for the

nesting parameter σ, it is about an order of magnitude larger. These differences are much larger than

the differences in sales impacts implied by adjusting assumptions about how tightening the standards

affects vehicle prices or how vehicle buyers value fuel costs. These stark differences highlight the

importance of using microdata for identifying the preference heterogeneity coefficients.

3.5 Caveats

The empirical results presented here come with several caveats. The model is a highly styled

version of the light-duty vehicle market, so that the results should be interpreted more qualitatively

than quantitatively. Many of the assumptions made are likely to affect the overall magnitudes of the

sales impacts. In particular, a marginal tightening of the federal fuel economy standard is unlikely to

uniformly raise vehicle prices. The imperfectly competitive nature of the new vehicle market likely

makes the standards have heterogeneous effects across vehicles. Vehicle buyers are also assumed to

have homogeneous preferences for new vehicle characteristics. Prior literature has shown that vehicle

buyers have quite heterogeneous preferences for vehicle characteristics (Berry et al. 1995; 2004; Train

and Winston 2007; Leard et al. 2019; Xing et al. 2019). This form of consumer heterogeneity may

affect the relationship between fuel economy standards and new vehicle sales. It is also likely to play a

key role in evaluating the incidence impacts of the standards (Jacobsen 2013; Leard et al. 2019). I also
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do not model tradeoffs between new vehicle characteristics, including the tradeoffs between vehicle

performance, fuel economy, and weight (Knittel 2011; Klier and Linn 2012; Leard et al. 2019). Leard

et al. (2017) show that the tradeoff between vehicle performance and fuel economy has significant

implications for assessing the welfare and sales impacts of fuel economy standards. This is because

manufacturers tend to forego performance increases to meet the tightened standards and new vehicle

buyers have a relatively high valuation of performance. Therefore, tightening standards can lower new

vehicle buyer welfare and sales if the value of the sacrificed performance is sufficiently large. A more

detailed simulation model should incorporate this tradeoff to achieve a more accurate assessment of

the sales changes due to tightening standards.

4 Applications in Other Settings

The methodology here can be applied to other empirical settings beyond the vehicles market.

One application is the estimation of a mode travel choice model, in which households choose a travel

mode–such as taking the bus–for their daily commute to work. Empirically estimated mode choice

models have been developed in the transportation engineering literature to address impacts of various

policy interventions, such as the effect of subsidizing public transit. But they have not been widely

developed in the economics literature, partly due to a lack of quality market-level data on mode

choices.33 The 2017 wave of the National Household Travel Survey (NHTS) may be used to estimate a

national mode choice model. This version of the survey includes questions that are useful for identifying

observed and unobserved heterogeneity parameters in a mode choice model. The survey has mode

choices linked with household demographics. These data can be used to identify and estimate observed

heterogeneity, as described in Section 2.4. The survey asks, “If you were unable to use your household

vehicle(s), which of the following options would be available to you to get you from place to place?”

The options include walking, biking, taking a bus, taking a train, and taking a rideshare. Although this

question is not a clean-cut request for the traveler’s preferred second choice, the question’s responses

do contain similar information about household substitution patterns among the different modes. The

responses from this question along with stated mode choices can be aggregated and used for estimating

unobserved heterogeneity in a mode choice model following the method described in Section 2.2.

Many empirical settings have aggregate sales data and microdata aggregated to different levels. For

example, the IHS new vehicle sales data that I use are highly disaggregated, including trim and engine

size configurations for each model. This contrasts with many public sets of microdata of vehicle choice,

such as the CEX, which only has vehicle identifiers at the make-by-class level. This makes combining

the data for estimation challenging, although recent research has derived methods for incorporating

33One example of a study in the economics literature on mode choice is Parry (2009), which includes a calibration
exercise for a model of the choice between commuting by car, bus, or light rail.
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datasets that are aggregated differently (Brownstone and Li 2018).34 The method that I develop is

easily capable of handling different levels of aggregation. The researcher can define demographic and

vehicle groups by the levels of aggregation of the microdata (which tends to be more aggregated).

These generally are sufficiently disaggregated for modeling an appropriate amount of heterogeneity.

For example, the CEX data on new and used vehicle purchases used in this paper also differentiates

between new and used cars and trucks, which I could add to the empirical model to reflect substitution

between these classes.

The methods presented in the current paper are especially useful for settings with extremely large

choice sets. One example of such a setting is the explicit modeling of the decision to buy a new or used

vehicle, in which all new and used vehicles are represented as unique alternatives. A recent example

of this type of model is Bento et al. (2009), which estimates observed and unobserved heterogeneity

in a new and used vehicle demand model with household level data from the 2001 wave of the NHTS.

A key benefit of this approach is that the model is capable of predicting compositional changes in

the used vehicle market in response to various policies, such as a gasoline tax or a tightening of

fuel economy standards (Jacobsen 2013). These used vehicle market changes have been shown to

be relevant for cost-benefit analysis of federal fuel economy standards (EPA 2018; Jacobsen 2013;

Jacobsen and van Benthem 2015; Bento et al. 2018). Bento et al. (2009) adopt a Bayesian estimation

approach and aggregate their vehicle choice set to avoid computational constraints, creating a choice

set of 270 alternatives. This aggregation likely masks relevant substitution patterns, and it may bias

implied elasticities that are relevant for policy analysis. An alternative to their approach is to adopt

the simplified estimation method from this paper, exploiting the household-level data that the NHTS

has to offer for identifying observed and unobserved heterogeneity. These data include household

demographics linked with vehicle ownership, and they include all of the vehicles owned by each

household. The household demographics linked with vehicle ownership data can be used to identify

and estimate observed heterogeneity based on the method from this paper. The vehicle portfolio can

be used for identifying unobserved heterogeneity by assuming that vehicle ownership is a separate,

repeated choice, following the logic described in Bento et al. (2009). As I explain in Section 2.6, the

repeated choice data can be converted to second choice data, which then can be used to form moment

conditions for estimating unobserved heterogeneity based on the method from this paper.

34A traditional method for accounting for different levels of aggregation is to aggregate the more disaggregated dataset
to the level of the most aggregated dataset (Bento et al. 2009; Klier and Linn 2012). But doing so often masks relevant
variation that can be used for identifying model parameters and may even bias parameter estimates (Brownstone and
Li 2018).
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5 Conclusion

Using discrete choice models for differentiated products to address questions about market and

policy outcomes remains both theoretically and computationally challenging. In this paper, I derive

a simple approach for the identification and estimation of observed and unobserved heterogeneity

parameters that helps create plausible substitution patterns. The method requires an additional

source of identification in the form of microdata, but is estimated with basic estimation routines,

rendering it easily accessible and computationally fast. The accessibility of the method should lower

the entry barrier for it to be adopted by other analysts and policy makers. Furthermore, this method

can be combined with recent innovations for estimating unbiased mean utility parameters in a final

estimation stage, such as using optimal instruments (Reynaert and Verboven 2014; Reynaert 2017;

Grigolon et al. 2018).

I illustrate the method by estimating a vehicle demand model that incorporates vehicle buyer

heterogeneity along the new versus used dimension. I use second choice data to identify the

heterogeneity parameter, finding a strong correlation in utility among new vehicles. I then evaluate the

implications of this heterogeneity by simulating the sales impacts of federal fuel economy standards.

I find that the model predicts a small sales impact from a marginal tightening of the fuel economy

standard. This is in contrast to the simulations I perform with alternative models that have limited or

no heterogeneity along the new versus used dimension, which predict a sales impact that is an order

of magnitude larger.

The method that I have developed can be applied to estimate parameters of choice models that can

be used to perform cost-benefit analysis calculations for major social policies, such as fuel economy

and greenhouse gas standards for light-duty vehicles. This application can address the weaknesses

highlighted in Bento et al. (2018) in the most recent analyses of federal fuel economy standards made

by federal agencies by providing an economic modeling framework that predicts plausible vehicle

substitution patterns.
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Figures

Figure 1: Predicted Percentage Changes in New Vehicle Sales Due to a 1-Percent Increase in New
Vehicle Fuel Economy

Notes: The figure reports the simulated change in new vehicle sales as a result of a 1-percent tightening of new

vehicle fuel economy standards. The change in new vehicle sales is measured as a percentage change relative to

2015 new vehicle sales. The leftmost bar represents a setting where the change in technology costs are defined by

engineering costs as described in the text, and where vehicle buyers do not value changes in cost per mile. In this

setting, a tightening of fuel economy standards increases new vehicle purchase prices, which reduces new vehicle

sales. The second bar represents a setting where changes in technology costs equal changes in associated present

value lifetime fuel costs and where vehicle buyers do not value changes in cost per mile. In this setting, tightening

of fuel economy standards increases new vehicle purchase prices and reduces fuel costs per mile of new vehicles.

The third bar represents a setting where changes in technology costs equal changes in associated present value

lifetime fuel costs and where vehicle buyers value changes in cost per mile according to parameter estimates from

the nested logit IV demand model estimation. The rightmost bar represents a setting where changes in technology

costs equal changes in associated present value lifetime fuel costs and where vehicle buyers value 75% of changes

in fuel cost savings.
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Figure 2: Alternative Model Predictions of Percentage Changes in New Vehicle Sales

Notes: The figure reports the simulated change in new vehicle sales as a result of a 1-percent tightening of new

vehicle fuel economy standards for alternative assumptions on the degree of vehicle buyer heterogeneity. The

change in new vehicle sales is measured as a percentage change relative to 2015 new vehicle sales. Each scenario

represents a setting where vehicle buyers do not value changes in cost per mile. The leftmost bar indicates the

sales impact in the benchmark setting, which is equivalent to the simulation results from the leftmost bar in

Figure 1. This sales impact is based on the heterogeneity estimates from the nested logit IV demand estimation.

The middle bar represents the sales impacts predicted by a model with less consumer heterogeneity, as measured

by recalibrating the demand model with a value for σ that is equal to 50 percent of the estimated value reported

in Table 3. The rightmost bar represents the sales impacts predicted by a model with no consumer heterogeneity,

as measured by recalibrating the demand model with a value of σ = 0. In both recalibrations, the own-price

elasticity of demand is recalibrated to match the implied own-price elasticity from the nested logit IV demand

estimation. In each of the simulations, changes in new vehicle prices are defined by the engineering technology

cost relationships as defined in the text.
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Tables

Table 1: Data for Numerical Example Estimation of Unobserved Heterogeneity

Panel (a): High Correlation
Second choice freq.

with j removed
Market share with j

removed
Alternative Market share j = 1 j = 2 j = 3 j = 1 j = 2 j = 3
j = 0 0.50 0.05 0.24 0.10 0.51 0.52 0.52
j = 1 0.22 – 0.38 0.66 – 0.25 0.35
j = 2 0.08 0.27 – 0.24 0.14 – 0.13
j = 3 0.20 0.68 0.38 – 0.35 0.23 –

All inside alternatives 0.50 0.95 0.76 0.90 0.49 0.48 0.48
Estimated σ̂ = 0.90

Panel (b): Low Correlation
Second choice freq.

with j removed
Market share with j

removed
Alternative Market share j = 1 j = 2 j = 3 j = 1 j = 2 j = 3
j = 0 0.50 0.41 0.50 0.625 0.59 0.54 0.625
j = 1 0.22 – 0.26 0.275 – 0.24 0.275
j = 2 0.08 0.17 – 0.10 0.12 – 0.10
j = 3 0.20 0.42 0.24 – 0.29 0.22 –

All inside alternatives 0.50 0.59 0.50 0.375 0.41 0.46 0.375
Estimated σ̂ = 0.27

Notes: The table reports example data and estimated unobserved preference heterogeneity parameters. In each panel,

the outside option is assumed to have a market share of 0.5. Panel (a) includes example data for a setting where utility

for alternatives in the same group is highly correlated. The example data in this setting are calibrated to reflect a strong

within-group substitution when an inside alternative is removed from the choice set. Panel (b) includes example data

for a setting where utility for alternatives in the same group is weakly correlated. The example data in this setting are

calibrated to reflect a weak within-group substitution when an inside alternative is removed from the choice set. The

unobserved heterogeneity parameter σ is estimated with the method outlined in Section 2.2. In Panel (b), the case with

alternative j = 3 removed from the choice set has data generated from a logit model.
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Table 2: Summary Statistics for 2015 Vehicle Sample

Variable Mean Std. Dev. Min Max

Sales 15,961 30,110 107 299,101
Transaction price 40,790 17,620 14,673 98,749
Cost per mile 0.114 0.026 0.029 0.197
Horsepower/weight 0.065 0.019 0.012 0.184
Footprint 8.151 1.016 4.513 13.152
Second choice new 0.920 0.078 0.448 1
Second choice used 0.080 0.078 0 0.551
All-wheel drive 0.278 0.448 0 1
Sedan 0.324 0.468 0 1
SUV 0.382 0.486 0 1
Hybrid 0.035 0.185 0 1
Plug-in hybrid or electric 0.016 0.125 0 1
Used vehicle market share 0.681 0 0.681 0.681
Notes: The table reports summary statistics of characteristics and sales for new

vehicles sold during the 2015 market year. The total number of vehicle observations is

762. Vehicle transaction prices are from the MaritzCX microdata. Non-price attributes

are from Wards Automotive. Cost per mile is defined as the average annual fuel price

divided by fuel economy. For gasoline vehicles, this is the average annual gasoline price

(from the Energy Information Administration) divided by the vehicle’s fuel economy.

For electric vehicles, this is the average annual electricity price (from the Energy

Information Administration) divided by the vehicle’s electricity use per mile. For plug-

in hybrid vehicles, a weighted average approach following Leard et al. (2017) is used

to construct cost per mile. Vehicle prices and costs per mile are denominated in 2015$.

Second choice new and second choice used are variables constructed from MaritzCX

microdata. These variables represent the frequency of second choice vehicles being

either new or used, respectively. The used vehicle market share is computed based on

used and new car purchase and lease data from the Consumer Expenditure Survey.
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Table 3: Demand Estimation Results

(1) (2) (3) (4)
Variables Logit OLS Logit IV NLogit OLS NLogit IV
First stage
σ 0.955 0.955

Second stage
Ln(Price) -1.774 -3.588 -0.0795 -0.161

(0.261) (0.765) (0.0117) (0.0343)
Cost per mile -13.4 -5.803 -0.6 -0.260

(5.153) (18.37) (0.231) (0.823)
Horsepower/weight 5.634 17.94 0.252 0.804

(6.119) (11.13) (0.274) (0.499)
Footprint 0.491 0.711 0.022 0.0318

(0.118) (0.283) (0.00529) (0.0127)
Constant -1,936 -2,923 -87.46 -131.7

(741.6) (985.4) (33.23) (44.15)

Observations 762 762 762 762
R-squared 0.271 0.202 0.271 0.202

Own-price elasticity of demand -1.77 -3.58
Own-cost per mile elasticity of
demand

-1.45 -0.63

Total new vehicle market price
elasticity of demand

-0.05 -0.11

Total new vehicle market cost
per mile elasticity of demand

-0.04 -0.02

WTP for a 1% reduction in cost
per mile

282 60

WTP for a 1% increase in
horsepower/weight

64 101

WTP for a 1% increase in
footprint

764 546

Notes: Standard errors are reported in parentheses and are clustered by vehicle model, e.g., Toyota Prius. Vehicle

prices and cost per mile are denominated in 2015$. The instruments used for specifications in columns (2) and (4)

include the sales-weighted sum of horsepower/weight and footprint for all other vehicles sold by the same firm and for

all other vehicles sold by other firms sharing the same vehicle body style (e.g., SUV), as well as the squares of these

sums. The own-price elasticity of demand is calculated according to the formula in Appendix A.8. It is calculated as

the average across all vehicle models and is weighted by vehicle sales. The own-cost per mile elasticity of demand is

calculated using a similar formula. The total new vehicle market price elasticity of demand is calculated according to

the formula in Appendix A.9. The total new vehicle market cost per mile elasticity of demand is calculated using a

similar formula. The willingness to pay (WTP) calculations are based on the ratio of the estimated marginal utility for

a vehicle attribute to the marginal utility of vehicle price. All WTP values are reported in 2015$.
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Appendix

A.1 Derivation of Closed-Form Expression for Unobserved

Heterogeneity Parameter

Denote the outside share with alternative j removed as

s0|j /∈J = 1∑
g D̃

(1−σ)
g|j /∈J

. (A.1)

Taking the difference of the natural log of sk|j /∈J and the natural log of s0|j /∈J yields

ln(sk|j /∈J)− ln(s0|j /∈J) = ln(sk)− ln(s0)− σ ln(sk|g)
1− σ − σ ln(D̃g(k|j /∈J)). (A.2)

Adding and subtracting σ ln e[ln(sk)−ln(s0)−σ ln(sk|g)]/(1−σ) gives

ln(sk|j /∈J)− ln(s0|j /∈J) = ln(sk)− ln(s0)− σ ln(sk|g)
1− σ − σ

ln(sk)− ln(s0)− σ ln(sk|g)
1− σ + σ ln(sk|g,j /∈J),

(A.3)

where sk|g,j /∈J is the alternative k within-group share with alternative j removed from the choice

set, defined as sk|g,j /∈J = e
[ln(sk)−ln(s0)−σ ln(sk|g)]/(1−σ)

D̃g(k|j /∈J)
. Equation (A.3) simplifies to

ln(sk|j /∈J)− ln(s0|j /∈J) = ln(sk)− ln(s0)− σ ln(sk|g) + σ ln(sk|g,j /∈J). (A.4)

Appendix Equation (A.4) can be solved for σ:

σ = ln(sk|j /∈J)− ln(s0|j /∈J)− [ln(sk)− ln(s0)]
ln sk|g,j /∈J − ln(sk|g)

. (A.5)

Substituting Equations (9) and (10) into Appendix Equation (A.5) yields

σ = ln(sk + sk,jsj)− ln(s0 + s0,jsj)− [ln(sk)− ln(s0)]
ln(sk|g + sk,jsj|g)− ln(sk|g)

. (A.6)
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We know that ln(sk + sk,jsj) − ln(sk) = ln(sk|g + sk,jsj|g) − ln(sk|g) since sj
sk

= sj|g
sk|g

. Therefore,

Appendix Equation (A.6) simplifies to

σ = 1− ln(s0 + s0,jsj)− ln(s0)
ln(sk|g + sk,jsj|g)− ln(sk|g)

. (A.7)

We can further simplify the expression by substituting the denominator for ln(sk +sk,jsj)− ln(sk):

σ = 1− ln(s0 + s0,jsj)− ln(s0)
ln(sk + sk,jsj)− ln(sk)

. (A.8)

Taking a weighted average over all j, k pairs, where alternatives j and k share the same group and

the weights are equal to market shares, yields an estimate for σ:

σ̂ = 1
J(J − 1)

G∑
g=1

sj
∑
j∈Jg

∑
k∈Jg ,k 6=j

[
1− ln(s0 + s0,jsj)− ln(s0)

ln(sk + sk,jsj)− ln(sk)

]
. (A.9)

A.2 Derivation of Multinesting Parameter Share Equation

Alternatives are grouped into G+ 1 groups, indexed by g = 0, 1, 2, ..., G. The outside option j = 0
is assumed to be the only alternative in group g = 0. Consumer i obtains utility uij when choosing

alternative j in group g(j), where utility is

uij = δj + ξig + (1− σg(j))εij. (A.10)

Assuming that εij is identically and independently distributed extreme value, the predicted market

share for alternative j is35

sj = eδj/(1−σg(j))(∑
k∈Jg(j)

eδk/(1−σg(k))
)σg(j) ∑

g

(∑
k∈Jg e

δk/(1−σg)
)1−σg . (A.11)

Given the nested logit specification, the predicted within-group share for alternative j is a logit

formula:

sj|g = eδj/(1−σg(j))∑
k∈Jg(j)

eδk/(1−σg(k)) . (A.12)

35This can be derived following more conventional approaches to defining the nested logit model, such as the definition
in Train (2009).
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The outside option has utility normalized to zero, so that its predicted market share is

s0 = 1∑
g

(∑
k∈Jg e

δk/(1−σg)
)1−σg . (A.13)

Taking the difference between the natural logarithm of the predicted market share for alternative

j and the natural logarithm of the predicted market share for the outside option yields

ln(sj)− ln(s0) = δj/(1− σg(j))− σg(j) ln
 ∑
k∈Jg(j)

eδk/(1−σg(k))

 . (A.14)

Adding and subtracting σg(j) ln[eδj/(1−σg(j))] to the right-hand side of Appendix Equation (A.14)

and substituting the definition of the predicted within-group share yields

ln(sj)− ln(s0) = δj/(1− σg(j))− σg(j)δj/(1− σg(j)) + σg(j) ln(sj|g). (A.15)

Combining like terms and making cancellations yields

ln(sj)− ln(s0) = δj + σg(j) ln(sj|g). (A.16)

Converting the term σg(j) ln(sj|g) into a summation with dummy variables yields Equation (20).
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A.3 Derivation of Estimation Equation (26)

Given the assumption that εij is i.i.d. type 1 extreme value, the predicted choice probability for

decision maker i in demographic group d choosing alternative j and market share for demographic

group d and alternative j is

sdj = eδj+βdg(j)∑
k e

δk+βdg(k)
. (A.17)

I assume that decision makers in each demographic group obtain utility equal to zero when selecting

the outside option:

ud0 = δ0 + βd0 = 0. (A.18)

Therefore, the outside good market share for demographic group d is

sd0 = 1∑
k e

δk+βdg(k)
. (A.19)

Taking the difference of the natural logarithms of Appendix Equations (A.17) and (A.19) yields

Equation (26).
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A.4 Derivation of Estimation Equation (30)

Assuming that the error term in Equation (29) is i.i.d. type 1 extreme value, demographic group

d’s predicted market share for alternative j is

sdj = e(δj+βdg)/(1−σ)(∑
k∈Jg(j)

e(δk+βdg/(1−σ)
)σ∑

g

(∑
k∈Jg e

(δk+βdg)/(1−σ)
)1−σ . (A.20)

The within-group predicted market share is

sdj|g = e(δj+βdg)/(1−σ)∑
k∈Jg(j)

e(δk+βdg)/(1−σ) . (A.21)

For every demographic group, the outside option utility is normalized to zero:

δ0 + βd0 = 0. (A.22)

Therefore, the predicted market share for the outside option is

sd0 = 1∑
g

(∑
k∈Jg e

(δk+βdg)/(1−σ)
)1−σ . (A.23)

Taking the difference of the natural logarithm of Equations (A.20) and (A.23) yields

ln(sdj)− ln(sd0) = (δj + βdg)/(1− σ)− σ ln
 ∑
k∈Jg(j)

e(δk+βdg)/(1−σ)

 . (A.24)

Adding and subtracting σ ln
(
e(δk+βdg)/(1−σ)

)
to the right-hand side of Appendix Equation (A.24)

and substituting the definition of the within-group share from Equation (A.21) and making

cancellations yields

ln(sdj)− ln(sd0) = (δj + βdg)/(1− σ)− σ(δj + βdg)/(1− σ) + σ ln(sdj|g). (A.25)

This equation simplifies to estimation Equation (30).
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A.5 Derivation of Three-Level Nested Logit Estimation

Equation (42)

I adopt the presentation of the three-level nested logit model based on Brenkers and Verboven

(2006). I maintain the same model notation from prior sections, so that j denotes alternatives and

g denotes groups of alternatives. I denote subgroups by h, so that h is a subgroup of group g. The

predicted share for this model can be expressed as the product of conditional probabilities:

sj = sj|hsh|gsg = eδj/(1−σhg)

eIhg/(1−σhg)
eIhg/(1−σg)

eIg/(1−σg)
eIg

eI
, (A.26)

where

Ihg = (1− σhg) ln
Jhg∑
j=1

eδj/(1−σhg), (A.27)

Ig = (1− σg) ln
Hg∑
h=1

eIhg/(1−σg), (A.28)

and

I = ln
G∑
g=1

eIg . (A.29)

The parameters σhg and σg measure within subgroup and within-group correlation of utility,

respectively. The terms Jhg, Hg, and G denote the number of alternatives in subgroup h of group

g, the number of subgroups in group g, and the number of groups, respectively. The conditional

shares sj|h and sh|g represent the within subgroup h share of alternative j and the within-group g

share of subgroup h, respectively. The share sg denotes the group g share. I assume that the outside

option is mean utility equal to zero, δ0 = 0, so that its predicted market share is

s0 = 1
eI
. (A.30)

Taking the natural logarithm of both sides of Appendix Equation (A.26) and subtracting the

natural logarithm of the outside good share yields
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ln(sj)− ln(s0) = δj
1− σhg

+ Ihg
1− σg

+ Ig −
Ihg

1− σhg
− Ig

1− σg
. (A.31)

Combining like terms gives

ln(sj)− ln(s0) = δj
1− σhg

+ σg − σhg
(1− σg)(1− σhg)

Ihg −
σg

1− σg
Ig. (A.32)

Adding and subtracting σg
1−σg Ihg to and from the right-hand side of Appendix Equation (A.32) and

substituting the definition of ln(sh|g) yields

ln(sj)− ln(s0) = δj
1− σhg

+ σg − σhg
(1− σg)(1− σhg)

Ihg −
σg

1− σg
Ihg + σg ln(sh|g). (A.33)

Combining like terms and simplifying gives

ln(sj)− ln(s0) = δj
1− σhg

+ σhg
1− σhg

Ihg + σg ln(sh|g). (A.34)

Adding and subtracting
σhg

1−σhg
δj to and from the right-hand side of Appendix Equation (A.34) and

substituting the definition of ln(sj|h) yields

ln(sj)− ln(s0) = δj
1− σhg

+ σhg
1− σhg

δj + σhg ln(sj|h) + σg ln(sh|g). (A.35)

This simplifies to

ln(sj)− ln(s0) = δj + σhg ln(sj|h) + σg ln(sh|g). (A.36)
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A.6 Derivation of Equation (44)

This derivation follows closely the steps in Appendix Section (A.5). For the three-level nested logit

model, the market share for alternative k belonging to subgroup h and group g conditional on the

removal of alternative j from the choice set is

sk,j /∈J = sk|h,j /∈Jsh|g,j /∈Jsg,j /∈J = eδk/(1−σhg)

eIhg/(1−σhg)
eIhg/(1−σg)

eIg/(1−σg)
eIg

eI
, (A.37)

where Ihg,Ig and I are defined in Appendix Equations (A.27), (A.28), and (A.29), respectively,

with the exception that alternative j is removed from the choice set. Taking the natural logarithm of

both sides and subtracting the natural logarithm of the outside good share yields

ln(sk,j /∈J)− ln(s0,j /∈J) = δk
1− σhg

+ Ihg
1− σg

+ Ig −
Ihg

1− σhg
− Ig

1− σg
. (A.38)

Combining like terms gives

ln(sk,j /∈J)− ln(s0,j /∈J) = δk
1− σhg

+ σg − σhg
(1− σg)(1− σhg)

Ihg −
σg

1− σg
Ig. (A.39)

Adding and subtracting σg
1−σg Ihg to and from the right-hand side of Appendix Equation (A.39) and

substituting the definition of ln(sh|g,j /∈J) yields

ln(sk,j /∈J)− ln(s0,j /∈J) = δk
1− σhg

+ σg − σhg
(1− σg)(1− σhg)

Ihg −
σg

1− σg
Ihg + σg ln(sh|g,j /∈J). (A.40)

Combining like terms and simplifying gives

ln(sk,j /∈J)− ln(s0,j /∈J) = δk
1− σhg

+ σhg
1− σhg

Ihg + σg ln(sh|g,j /∈J). (A.41)

Adding and subtracting
σhg

1−σhg
δk to and from the right-hand side of Appendix Equation (A.41) and

substituting the definition of ln(sk|h) yields

ln(sk,j /∈J)− ln(s0,j /∈J) = δk
1− σhg

+ σhg
1− σhg

δk + σhg ln(sk|h,j /∈J) + σg ln(sh|g,j /∈J). (A.42)

This simplifies to
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ln(sk,j /∈J)− ln(s0,j /∈J) = δk + σhg ln(sj|h,j /∈J) + σg ln(sh|g,j /∈J). (A.43)

Substituting δk = ln(sk)− ln(s0)− σhg ln(sk|h)− σg ln(sh|g) (which is the alternative k re-arranged

version of Appendix Equation (A.36)), factoring common terms and re-arranging yields Equation

(44).
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A.7 Further Details on Data Used to Estimate Vehicle

Demand

Given the highly disaggregated definition of a vehicle, the vehicle sample after merging the data

sets is 1,413. I take several steps to purge the data of observations that may bias demand coefficient

estimates. First, I drop extremely expensive vehicles that have a transaction price exceeding $100,000.

This drops 82 observations from the data. I then drop observations that have more than 50 percent of

sales that are for a prior or future model year. For example, a vehicle sold during the 2015 market year

can include 2014 and 2016 versions. These are usually sold at highly discounted prices to clear out

inventory for the current model year version. In some cases, most or all of the sales of a model are from

the prior model year, sometimes due to the model being discontinued. To prevent any inventory effects

biasing the demand coefficient estimates, I limit the sample to models that have a majority of sales

from the same model year, i.e., 2015 model year versions. This drops 520 observations, leaving 811.

A small number of remaining observations are dropped due to missing transaction price or second

choice data. I limit the sample to vehicles with at least 100 sales, and those that have sufficient

observations for constructing instrumental variables. This drops an additional 35 observations. The

final observation count is 762.

Table A.1: Data Cleaning
Reason for dropping

observations
Observations dropped Remaining observations

Transaction price exceeding
$100,000

82 1,331

Over 50% of sales are for a
prior or future model year

520 811

Missing transaction price or
second choice data

14 797

Fewer than 100 sales 26 771
Insufficient observations for
constructing instrumental

variables
9 762

Notes: The final sample size is 762. The initial sample size is 1,431.
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A.8 Derivation of Own-Price Elasticity of Demand

In this section of the appendix, I derive a closed-form expression for the own-price elasticity of

demand. The average own-price elasticity of demand is equal to

εown−price = 1
J

∑
j

dqj
dpj

pj
qj
, (A.44)

where qj denotes sales of vehicle j. Sales of vehicle j are qj = Nsj, where N is the number of new

and used vehicle buyers, i.e., the market size. Sales are given by

qj = N
eδj/(1−σ)[∑

k∈Jg(j)
eδk/(1−σ)

]σ
+∑

k∈Jg(j)
eδk/(1−σ)

. (A.45)

Differentiating qj with respect to price pj yields

dqj
dpj

= N
eδj/(1−σ) dδj

dpj
/(1− σ)(∑

k∈Jg(j)
eδk/(1−σ)

)σ
+∑

k∈Jg(j)
eδk/(1−σ)

−N
eδj/(1−σ)

[
σ
(∑

k∈Jg(j)
eδk/(1−σ)

)σ−1
eδj/(1−σ) dδj

dpj
/(1− σ) + eδj/(1−σ) dδj

dpj
/(1− σ)

]
[(∑

k∈Jg(j)
eδk/(1−σ)

)σ
+∑

k∈Jg(j)
eδk/(1−σ)

]2 .

This simplifies to

dqj
dpj

= N

sj dδj
dpj

/(1− σ)− sj
dδj
dpj

/(1− σ)sj

σ
 ∑
k∈Jg(j)

eδk/(1−σ)

σ−1

+ 1


 . (A.46)

Factoring common terms yields

dqj
dpj

= Nsj
dδj
dpj

/(1− σ)

1− sj

σ
 ∑
k∈Jg(j)

eδk/(1−σ)

σ−1

+ 1


 . (A.47)

Substituting this expression into Appendix Equation (A.44) and making cancellations yields

εown−price = 1
J

∑
j

βln(Price)

1− σ

1− sj

σ
 ∑
k∈Jg(j)

eδk/(1−σ)

σ−1

+ 1


 , (A.48)
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where βln(Price) is the preference coefficient for the log of purchase price.
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A.9 Derivation of Total New Vehicle Market Price Elasticity

of Demand

Total new vehicle sales are

J∑
j=1

qj = N(1− s0), (A.49)

where N is the market size and where s0 is the share of the outside option. The total new vehicle

market price elasticity of demand is

εtotal−price =
J∑
j=1

dqj
dpj

pj
qj

=
J∑
j=1

d(1− s0)
dpj

pj
(1− s0) . (A.50)

Evaluating d(1−s0)
dpj

yields

d(1− s0)
dpj

= s2
0(1− σ)

 J∑
j=1

eδj/(1−σ)

−σ eδj/(1−σ) βln(Price)

(1− σ)pj
, (A.51)

where βln(Price) is the preference coefficient for the log of purchase price. Substituting Appendix

Equation (A.51) into Appendix Equation (A.50) and simplifying yields

εtotal−price = s2
0

1− s0
βln(Price)

 J∑
j=1

eδj/(1−σ)

1−σ

. (A.52)
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